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Jǐŕı Vomlel2

Institute of Information Theory and Automation2,

Czech Academy of Sciences,
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Abstract

Learning parameters of a probabilistic model is a necessary step in most
machine learning modeling tasks. When the model is complex and data
volume is small the learning process may fail to provide good results. In this
paper we present a method to improve learning results for small data sets
by using additional information about the modelled system. This additional
information is represented by monotonicity conditions which are restrictions
on parameters of the model. Monotonicity simplifies the learning process and
also these conditions are often required by the user of the system to hold.

In this paper we present a generalization of the previously used algorithm
for parameter learning of Bayesian Networks under monotonicity conditions.
This generalization allows both parents and children in the network to have
multiple states. The algorithm is described in detail as well as monotonicity
conditions are.

The presented algorithm is tested on two different data sets. Models are
trained on differently sized data subsamples with the proposed method and
the general EM algorithm. Learned models are then compared by their ability
to fit data. We present empirical results showing the benefit of monotonicity
conditions. The difference is especially significant when working with small
data samples. The proposed method outperforms the EM algorithm for small
sets and provides comparable results for larger sets.
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1 Introduction

In our research we address Computerized Adaptive Testing (CAT) [1, 13]. CAT is
a concept of testing latent student abilities which allows us to create shorter tests,
asking less questions in a shorter time while keeping the same level of information.
This task is performed by asking the right questions for each individual student.
Questions are selected based on a student model. In common practice experts
often use Item Response Theory models [10] (IRT) which are well explored and
have been in use for a long time. Nevertheless, we have focused our attention on
a different family of models to model a student using Bayesian Networks (BNs)
since they offer more options in the modelling process. It is for example possible to
model more complex influences between skills and questions as BNs are not limited
to connecting each skill with each question as well as we can introduce connections
between skills themselves.

During our research we noticed that there are certain conditions which should
be satisfied in this specific modelling task. We especially focused on monotonic-
ity conditions. Monotonicity conditions incorporate qualitative influences into a
model. These influences restrict conditional probabilities inside the model in a
specific way to avoid unwanted behavior. Monotonicity in Bayesian Networks has
been discussed in the literature for a long time. It is addressed, selecting the most
relevant to our topic, by [14, 3] and more recently by ,e.g., [11, 5]. Monotonicity
restrictions are often motivated by reasonable demands from model users. In our
case of CAT it means we want to guarantee that students having certain skills will
have a higher probability of answering questions correctly.

Certain types of models include monotonicity naturally by the way they are
constructed. In the case of general BNs this is not true. In order to satisfy these
conditions we have to introduce restrictions to conditional probabilities during the
process of parameter learning.

In our previous work we first showed that monotonicity conditions are uself in
the context of CAT [8]. Later we applied these conditions to Bayesian Network [9].
In this article we extend our earlier presented gradient descent optimum search
method for BN parameter learning under monotonicity conditions. The last article
covers only specific BNs. It works solely with binary children variables in the model
(yes/no answers in terms of CAT). The extension we present in this article provides
a tool to include monotonicity in BN models with multiple-state children nodes.
Additionally, in this article we perform experiments on a new dataset. It is consists
of data from the Czech high school state final exam. This data source contains a
large volume of reliable data, and it is very useful for the empirical verification of
our ideas.

We implemented the new method in R language and performed experimental
verification of our assumptions. We used two data sets. The first one, a synthetic
data set, is generated from artificial models satisfying monotonicity conditions.
The second one, an empirical data set, is formed by data from the Czech high
school final exam. Experiments were performed on these data sets also with the
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ordinary EM learning without monotonicity restrictions in order to compare these
two approaches.

The structure of this article is as follows. First, we establish our notation
and describe monotonicity conditions in detail in Section 2. Next, we present the
extended method in Section 3. In Section 4 of this paper, we take a closer look
at the experimental setup and present results of our experiments. The last section
contains an overview and a discussion of the obtained results.

2 BN Models and Monotonicity

2.1 Notation

In this article we use the new gradient descent method for BNs which are used to
model students in the domain of CAT. Details about BNs can be found, for example,
in [7, 6]. We restrict ourselves to the BNs that have two levels. In compliance with
our previous articles, variables in the parent level are addressed as skill variables S.
The children level contains questions variables X. Examples of network structures,
which we also used for experiments, are shown in Figures 1 and 2.

• We use the symbol X to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indexes of question variables is N = {1, . . . , n}. Question variables’ individ-
ual states are xi,t, t ∈ {0, . . . , ni} and they are observable. Each question can
have a different number of states, the maximum number of states over all
variables is Nmax = max

i
(ni) + 1. States are integers with natural ordering

specifying the number of points obtained in the i− th question1.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states
s = (s1, . . . , sm). The set of all indexes of skill variables is M = {1, . . . ,m}.
Skill variables have a variable number of states, the total number of states of a
variable Sj is mj , and individual states are sj,k, k ∈ {1, . . . ,mj}. The variable

Si = Spa(i) stands for a multivariable containing only parent variables of the
question Xi. Indexes of these variables are M i ⊆M . The set of all possible
state configurations of Si is V al(Si). Skill variables are unobservable.

The BN has CPT parameters for all questions Xi, i ∈ N , si ∈ V al(Si) which
define conditional probabilities as

P (Xi = t|S = s) = θti,si ,

and for all parent variables Sj , j ∈M as

P (Sj = sj) = θ̃j,sj .

1The interpretation of points is very complex and has to be viewed as per question because
we use the CAT framework. In this context getting one point in one question is not the same as
one point in another.
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Figure 1: An artificial BN model

Figure 2: A BN model for CAT

From the definition above it follows that parameters are constrained to be
between zero and one and to sum up to one. For question variable the condition
is
∑ni

t=0 θ
t
i,si = 1, ∀i, si and for parent variables it is

∑
sj
θ̃j,sj = 1, ∀j. To remove

this condition for the later use in the gradient method we reparametrize parameters

θti,si =
exp(µti,si)∑ni

t′=0 exp(µ
t′
i,si

)

θ̃j,sj =
exp(µ̃j,sj )∑mi

s′j=1 exp(µ̃j,s′j )
.

The set of all question parameters θti,si and all skills parameters θ̃j,sj is θ without
the reparametrization and µ with the reparametrization.

2.2 Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the
last decade of the previous millennium [14, 3]. Later its benefits for BN parameter
learning were addressed, for example, by [12, 2]. This topic is still active, e.g.,
[4, 11, 5].

We consider only variables with states from N0 with their natural ordering, i.e.,
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the ordering of states of skill variable Sj for j ∈M is

sj,1 ≺ . . . ≺ sj,mj
.

A variable Sj has a monotone effect on its childXi if for all k, l ∈ {1, . . . ,mj}, t′ ∈
{0, · · · , ni}:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

and antitone effect:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≤
t′∑

t=0

P (Xi = t|Sj = sj,l, s) ,

where s is a configuration of remaining parents of question i without Sj . For
each question Xi, i ∈ M we denote by Si,+ the set of parents with a monotone
effect and by Si,− the set of parents with an antitone effect.

The conditions above are defined for states of question variable Xi in the set
{0, · · · , (ni − 1)}. Given the property of conditional probabilities, i.e.

θni

i,si = 1−
ni−1∑

t=0

θti,si ,

it holds for the state ni in the form for monotonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≤ P (Xi = ni|Sj = sj,l, s)

and for antitonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≥ P (Xi = ni|Sj = sj,l, s)

Next, we create a partial ordering �i on all state configurations of parents Si

of the i-th question, where for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−

)
.

The monotonicity condition then requires that the probability of an incorrect
answer is higher for a lower order parent configuration (chances of correct better an-
swers increasing for higher ordered parents’ states), i.e., for all si, ri ∈ V al(Si), k ∈
{0, . . . , (ni − 1)}:

si �i ri ⇒
k∑

t=0

P (Xi = t|Si = si) ≥
k∑

t=0

P (Xi = t|Si = ri) .

In our experimental part we consider only the monotone effect of parents on
their children. The difference with antitone effects is only in the partial ordering.
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3 Parameter Gradient Search with Monotonicity

To learn the parameter vector µ we have developed a method based on gradient
descent optimization. We follow the work of [2] where authors use a gradient
descent method with exterior penalties to learn parameters. The main difference
is that we consider models with hidden variables. In this article we generalize the
method from [9] to multistate question variables.

We denote by D the set of indexes of question vectors. One vector xk, k ∈D
corresponds to one student and an observation of i-th variable Xi is xki . The
number of occurrences of the k-th configuration vector in the data sample is dk.

We use the model as described in Section 2 having unobserved parent variables
and observed children variables. With sets Ikt , t ∈ {0, . . . , Nmax} of indexes of
questions answered with the point gain of t points, we define the following products
based on observations in the k-th vector:

pt(µ, s, k) =
∏

i∈Ik
t

exp(µti,s)∑ni

t′=0 exp(µ
t′
i,s)

, t ∈ {0, · · · , Nmax}; pµ(µ, s) =

m∏

j=1

exp(µ̃j,sj ).

We work with the log likelihood of data modelled by BN with the parameter
vector µ:

LL(µ) =
∑

k∈D
dk · log


 ∑

s∈V al(S)

m∏

j=1

exp(µ̃j,sj )∑mj

s′j=1 exp(µ̃j,s′j )
·
Nmax∏

t=0

pt(µ, s, k)




=
∑

k∈D
dk · log

( ∑

s∈V al(S)

pµ(µ, s)

Nmax∏

t=0

pt(µ, s, k)
)
−N ·

m∑

j=1

log

mj∑

s′j=1

exp(µ̃j,s′j ) .

In the gradient descent optimization we need partial derivatives to establish the
gradient. The partial derivatives of LL(µ) with respect to µi,si for i ∈ N , si ∈
V al(Si) are

δLL(µ)

δµt
i,si

=

∑

k∈D
dk·

I(t, i, si, k)− (
∑ni

t′=0 exp(µ
t′

i,si)− exp(µti,si)) · pµ(µ, si)
∏Nmax

t=0 pt(µ, s, k)

∑ni

t′=0 exp(µ
t′

i,si) ·
∑

s∈V al(S)

(
pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
) ,

where I(t, i, si, k) =

{
exp(µt

i,si), if t = k

0, otherwise
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and with respect to µ̃i,l for i ∈M , l ∈ {1, . . . ,mi} are

δLL(µ)

δµ̃i,l
=

∑

k∈D
dk ·

∑si=l
s∈V al(S) pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
∑

s∈V al(S) pµ(µ, s)
∏Nmax

t=0 pt(µ, s, k)
−

−N · exp(µ̃i,l)∑mi

l′=1 exp(µ̃k,l′)
.

3.1 Monotonicity Restriction

To ensure monotonicity we use a penalty function which penalizes solutions that
do not satisfy monotonicity conditions

C(θi,si , θi,ri , t′, c) = exp(c · (
t′∑

t=0

θti,ri −
t′∑

t=0

θti,si))

for the log likelihood:

LL′(θ, c) = LL(θ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(θi,si , θi,ri , t′, c),

and in the case of reparametrized parameters:

LL′(µ, c) = LL(µ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(
exp(µt

i,si)
∑ni

t′=0 exp(µ
t′

i,si)
,

exp(µt
i,ri)

∑ni

t′=0 exp(µ
t′

i,ri)
, t′, c),

where c is a constant determining the slope of the penalization function. The higher
the value the more strict the penalization is. Theoretically, this condition does not
ensure monotonicity but, practically, selecting high values of c results in monotonic
estimates. If the monotonicity is not violated then the penalty value is close to
zero. Otherwise, the penalty is raising exponentially fast. In our experiments we
have used the value of c = 200 but any value higher than 100 provided almost
identical results.

After adding the penalized part to the log likelihood, partial derivatives with
respect to µi,l remain unchanged. Partial derivatives with respect to µt

i,si change.

The reparametrization causes the derivatives to become very complex. Due to
limited space in this paper we do not include their full description here.

Using the penalized log likelihood, LL′(µ, c), and its gradient ∇(LL′(µ, c)) we
can use standard gradient descent optimization methods to find the paramters of
BN models.

4 Experiments

We designed tests to verify our assumptions. We want to show that if we learn
parameters of BNs with little amount data it is beneficial to use monotonicity
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Figure 3: Artificial model: The ratio between the fitted and the real log likelihood
(measured on the whole data set) obtained by models trained with EM and the
restricted gradient methods for different training set sizes. Notice the logarithmic
scale of the x axis. Curves are slightly misaligned in the direction of the x-axis to
avoid overlapping.

constraints. We designed two experiments to test the method described above.
The first one works with artificial (synthetic data); the other uses a real world
empiric data sample.

Parameters are learned with our gradient method and the standard unrestricted
EM algorithm. In both cases, we learn model parameters from subsets of data of
different sizes. The quality of the parameter fit is measured by the log likelihood.
The log likelihood is measured on the whole data set to provide results comparable
between subsets of different sizes.

4.1 Artificial Model

The structure of the first model is shown in Figure 1. This model reflects the usual
model structure used in CAT where there are two levels of variables, one level of
questions, and one level of parents (skills). Parents S1 and S2 have 3 possible
states and children X1, X2, X3, X4 also have three states. The model was set up
with 10 different sets of parameters θ∗a satisfying the monotonicity conditions.
Furthermore, every model produced 10 000 test cases.

To learn parameters of these models we drew random subsets of size d of 10,
50, 100, 200, 1 000, 5 000. Ten different sets for each size (indexed by b). Next,
we created 10 initial starting points (indexed by c) for the model learning phase.
The structure of both generating and learning models is the same and is shown in
Figure 1. Starting parameter vectors θb are randomized so that they satisfy the
monotonicity conditions. Parameters of all parent variables are uniform. Starting

Gradient Descent Parameter Learning of Bayesian Networks under Monotonicity Restrictions

160



Figure 4: Artificial model: Mean parameter distance between real and fitted param-
eters in models trained with the EM and restricted gradient methods for different
training set sizes. Notice the logarithmic scale of the x axis. Curves are slightly
misaligned in the direction of the x-axis to avoid overlapping.

points are the same for both the EM and the gradient method alike. In this
setup we have 10 different original models, 10 different observation subsets, and
10 different starting parameters, which gives 1 000 combinations for each set size.
Each combination has a set of parameters θda,b,c, a, b, c ∈ {1, . . . , 10}. We performed
tests for all these combinations and the results are evaluated as follows.

We measure the log likelihood on the whole data set in order to keep results
comparable. The resulting log likelihood after learning is compared with the log
likelihood obtained with the real model and then averaged over all instances. This
process gives us the average percentual difference between the original and fitted
model. For the set size d:

LRd =

∑
a,b,c

LL(θ∗a)

LL(θda,b,c)

1000

Resulting valus for all set sizes are shown in Figure 3. In this artificial setup we
are also able to measure the distance of learned parameters from the generating
parameters. First we calculate an average error for each learned model:

edi,j =
|θ∗a − θda,b,c|
|θ| ,

where || is the L1 norm. Next we average over all results in one set size d:

ed =

∑
a,b,c ei,j

1000
.

The summary of results is shown in Figure 4.
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4.2 CAT Model

The second model is the model presented in Figure 2 and we use it for our CAT
research. Parent variables S1, . . . , S8 have 3 states and each one of them represents
a particular student skill. Children nodes Ui are variables representing questions
which have a various number of states (based on the evaluation of the specific
question). This model was learned from data contained in the data sample collected
from the Czech high school final exam2. The data set contains answers from over
20 000 students who took the test in the year 2015. We created the model structure
based on our expert analysis and assigned skills to questions. To learn parameters
we use random subsets of size of 10, 50, 100, and 500 cases of the whole sample. We
drew 10 random sets for each size. Models were initiated with 10 different initial
random starting parameters θi.

Figure 5: BN model for CAT empirical data: LLIK scored on the whole dataset for
models trained with the EM and restricted gradient methods for different training
set sizes. Notice the logarithmic scale of the x axis. Curves are slightly misaligned
in the direction of the x-axis to avoid overlapping.

For the learned models we computed the log likelihood for the whole data set.
These values are then averaged over all results of the same size LLA(k) similarly
to the artificial model. Results are presented in Figure 5. In this case we cannot
compare learned parameters because the real parameters are unknown.

2The test is accessible here (Czech language):http://www.statnimaturita-matika.cz/
wp-content/uploads/matematika-test-zadani-maturita-2015-jaro.pdf
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5 Conclusions

In this article we presented a new gradient based method for learning parameters
of Bayesian Networks under monotonicity restrictions. The method was described
and then tested on two data sets. In Figures 3 and 5 it is clearly visible that
the newly proposed method provide better results than the general EM algorithm
for small set sizes. When the size of learning set grows both method are getting
more accurate and fitting data better. As we can see in results of the artificial
model, both methods converge to the same point which is almost identical to the
log likelihood of the model with real parameters. The speed of convergence is slower
for the gradient method, nevertheless in the artificial case, it is not outperformed
by the EM algorithm. In the case of empirical data, we can observe the same
notion where for small set sizes the new gradient method is scoring better results.
In this case EM is getting better log likelihood for larger data sets. This is caused
by the fact that for these larger sets monotonicity restrictions start to make the
learning process harder. For smaller sets they are showing the right path and
guiding the learning process to a better solution. For larger sets they are restricting
parameters and making the process harder. On the other hand, in case when we use
the gradient method, we are working with learned model satisfying monotonicity
conditions which may be desirable given its purpose.

This article shows that it is possible to benefit from monotonicity conditions. It
presents the method to be used to learn parameter of BNs under these conditions.
A possible extension of our work is to design a method which would use gradient
descent optimization in a polytope defined by monotonicity conditions instead of
using a penalty function. This approach has certain benefits as it ensures ending
with strictly monotonic solution, on the other hand the current method allows
small deviations from monotonicity if data strongly contradicts it.
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