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Abstract. We discuss error identities for two classes of free boundary
problems generated by obstacles. The identities suggest true forms of the
respective error measures which consist of two parts: standard energy
norm and a certain nonlinear measure. The latter measure controls (in a
weak sense) approximation of free boundaries. Numerical tests confirm
sharpness of error identities and show that in different examples one or
another part of the error measure may be dominant.
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1 Introduction

New types of error identities were recently derived [8] for two types of inequal-
ities generated by obstacle type conditions: a classical obstacle problem and a
two-phase obstacle problem. Both problems belong to the class of variational
problems

inf
v∈V

J(v), J(v) = G(Λv) + F (v), (1)

where Λ : V → Y is a bounded linear operator, G : Y → R is a convex, coercive,
and lower semicontinuous functional, F : V → R is another convex lower semi-
continuous functional, and Y and V are reflexive Banach spaces. Henceforth, we
use results of [6] related to derivation of a posteriori error estimates for this class
of problems.

1.1 The Classical Obstacle Problem

The classical obstacle problem (see, e.g. [2,3]) is characterized by

G(Λv) =
1
2

∫

Ω

A∇v · ∇v dx, F (v) = −
∫

Ω

fv dx + χK(v),
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where the characteristic functional is defined as

χK(v) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if φ ≤ v ≤ ψ,

+∞ else

and the admissible set reads

K := {v ∈ V0 := H1
0 (Ω) | φ(x) ≤ v(x) ≤ ψ(x) a.e. in Ω}.

Here, H1
0 (Ω) denotes the Sobolev space of functions vanishing on ∂Ω (hence we

consider the case uD = 0), Ω ⊂ R
d (d ∈ {1, 2, 3}) is a bounded domain with a

Lipschitz continuous boundary ∂Ω and φ, ψ ∈ H2(Ω) are two given functions
(lower and upper obstacles) such that

φ(x) ≤ 0 on ∂Ω, ψ(x) ≥ 0 on ∂Ω, φ(x) ≤ ψ(x), ∀x ∈ Ω.

It is assumed that A is a symmetric matrix subject to the condition

A(x)ξ · ξ ≥ c1 |ξ|2 c1 > 0, ∀ξ ∈ R
d (2)

almost everywhere in Ω. Under the assumptions made, the unique solution
u ∈ K exists. The mechanical motivation of the obstacle problem is to find
the equilibrium position of an elastic membrane whose boundary is held fixed,
and which is constrained to lie between given lower and upper obstacles φ and ψ.

1.2 The Two-Phase Obstacle Problem

The functional J(v) of the two-phase-obstacle problem (see, e.g. [9]) is defined
by the relation

J(v) :=
∫

Ω

(1
2
A∇v · ∇v − fv + α+(v)+ + α−(v)−

)
dx. (3)

The functional J(v) is minimized on the set

V0 + uD := {v = v0 + uD : v0 ∈ V0, uD ∈ H1(Ω)}.

Here uD is a given bounded function that defines the boundary condition (uD

may attain both positive and negative values on different parts of the boundary
∂Ω). It is assumed that the coefficients α+, α− : Ω → R are positive constants
(without essential difficulties the consideration and main results can be extended
to the case where they are positive Lipschitz continuous functions). Also, it is
assumed that f ∈ L∞(Ω), A ∈ L∞(Ω,Rd×d), and the condition (2) holds.
Since the functional J(v) is strictly convex and continuous on V , existence and
uniqueness of a minimizer u ∈ V0 + uD is guaranteed by well known results of
the calculus of variations. The mechanical motivation of the two-phase obstacle
problem is to find the equilibrium position of an elastic membrane in the two-
phase matter with different gravitation densities related to α− and α+.
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2 Error Identities

The solution u of the classical obstacle problem divides Ω into three sets:

Ωu
− := {x ∈ Ω | u(x) = φ(x)} ,

Ωu
+ := {x ∈ Ω | u(x) = ψ(x)} , (4)

Ωu
0 := {x ∈ Ω | φ(x) < u(x) < ψ(x)} .

The sets Ωu
− and Ωu

+ are the lower and upper coincidence sets and Ωu
0 is an open

set, where u satisfies the Poisson equation div(A∇u)+f = 0. Thus, the problem
involves free boundaries, which are unknown a priori. Let v be an approximation
of u. It defines approximate sets

Ωv
− := {x ∈ Ω | v(x) = φ(x)} ,

Ωv
+ := {x ∈ Ω | v(x) = ψ(x)} , (5)

Ωv
0 := {x ∈ Ω | φ(x) < v(x) < ψ(x)} .

Notice that unlike the sets in (4), the sets (5) are known.

Theorem 1 [8]. Let v ∈ K be any approximation of the exact solution u ∈ K
of the classical obstacle problem. Then it holds

1
2 ||∇(u − v)||2A + μφψ(v) = J(v) − J(u), (6)

where

μφψ(v) :=
∫

Ωu
−

Wφ(v − φ) dx +
∫

Ωu
+

Wψ(ψ − v) dx, (7)

and Wφ := −(divA∇φ + f),Wψ := divA∇ψ + f are two nonnegative weight
functions generated by the source term f , the obstacles ψ, φ and the diffusion A.

Here, μφψ(v) represents a certain (non-negative) measure, which controls (in a
weak integral sense) whether or not the function v coincides with obstacles ψ, φ
on true coincidence sets Ωu

− and Ωu
+.

Remark 1. The error identity (6) was derived for the homogeneous boundary
condition u = 0 on ∂Ω, but it is possible to extend it in the same form to for
the nonhomogeneous boundary condition u 
= 0 on ∂Ω.

For the two-phase obstacle problem, we introduce two decompositions (dif-
ferent from the classical obstacle problem) of Ω associated with the minimizer
u and an approximation v:

Ωu
− := {x ∈ Ω | u(x) < 0},

Ωu
+ := {x ∈ Ω | u(x) > 0}, (8)

Ωu
0 := {x ∈ Ω | u(x) = 0},
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and

Ωv
− := {x ∈ Ω | v(x) < 0},

Ωv
+ := {x ∈ Ω | v(x) > 0}, (9)

Ωv
0 := {x ∈ Ω | v(x) = 0}.

These decompositions generate exact and approximate free boundaries. If we
introduce new sets

ω+ := Ωv
+ ∩ Ωu

0 , ω− := Ωv
− ∩ Ωu

0 , ω± :=
{
Ωv

+ ∩ Ωu
−

} ∪ {
Ωv

− ∩ Ωu
+

}
,

we can formulate an error identity for the two-phase obstacle problem.

Theorem 2 [7,8]. Let v ∈ V0 + uD be any approximation of the exact solution
u ∈ V0 + uD of the two-phase obstacle problem. Then it holds

1
2
||∇(u − v)||2A + μω(v) = J(v) − J(u), (10)

where

μω(v) :=
∫

ω

α(x)|v| dx, ω := ω+ ∪ ω− ∪ ω± (11)

and

α(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(x) = α+ if x ∈ ω+,

α(x) = α− if x ∈ ω−,

α(x) = α+ + α− if x ∈ ω±.

(12)

Here, μω(v) represents another nonlinear measure (which differs from μφψ).

3 Numerical Verifications

We verify a posteriori error identities (6) and (10) for both obstacle problems and
focus on interpretation of their nonlinear measures μφψ(·) and μω(·). Another
goal is to present examples with different balance between two components of
the overall error measure.

3.1 The Classical Obstacle Problem in 2D

We assume a 2D example taken from [5]. In this example, Ω = (−1, 1)2, A =
I, φ = 0, ψ = +∞. It is known that for

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

−16(x2 + y2) + 8R2 if
√

x2 + y2 > R

−8(R4 + R2) + 8R2(x2 + y2) if
√

x2 + y2 ≤ R

,
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Fig. 1. A perturbation function w (left) generated by parameters R = 0.7, r = 0.2, k =
16 and the same corresponding coincidence set Ωv

− (right) for all approximative solu-
tions v = u + ε w, where ε > 0. The boundary of Ωu

− is indicated by the full circle, the
inner radius r by the dotted circle and the intermediate radius r+3R

4
by the dashed

circle.

where R ∈ [0, 1) is given, the exact solution to the obstacle problem reads

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(
max{x2 + y2 − R2, 0})2 if (x, y) ∈ Ω

(
x2 + y2 − R2

)2 if (x, y) ∈ ∂Ω

.

The corresponding energy can be computed (see [4]) and it reads

J(u) = 192
(

12
35

− 28R2

45
+

R4

3

)
− 32R2

(
28
45

− 4R2

3
+ R4

)
+

2
3
πR8.

We consider approximations v in the form

vε := u + εw, (13)

where ε > 0 is a given amplitude and w is a solution perturbation defined in
polar coordinates (ρ, θ) as

w(ρ, θ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if ρ ≤ r

1 − ρ−r
r̃(θ)−r , if r ≤ ρ ≤ r̃(θ)

0, if ρ ≥ r̃(θ)

(14)

Here, 0 < r < R is given internal radius and a variable radius r̃(θ) is defined as

r̃(θ) := r + (R − r)
(

2 + cos(kθ)
4

)
(15)
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Table 1. The error identity parts computed for various vε = u + εw, where the exact
coincidence set Ωu

− is represented by the circle of the radius R = 0.7 and the pertur-
bation w is defined by the choice r = 0.2, k = 16.

ε 1
2
‖∇(u − vε)‖2

A μφψ(vε) J(vε) − J(u) κ(vε) [%]

1.0000 7.1531e+00 4.4311e+00 1.1584e+01 38.2512

0.1000 7.1531e−02 4.4311e−01 5.1464e−01 86.1008

0.0100 7.1531e−04 4.4311e−02 4.5027e−02 98.4113

0.0010 7.1531e−06 4.4311e−03 4.4388e−03 99.8388

0.0001 7.1531e−08 4.4311e−04 4.4375e−04 99.9839

for some k ∈ Z. This construction ensures that

r <
3r + R

4
≤ r̃(θ) ≤ r + 3R

4
< R (16)

and consequently ∇w is bounded. An examples of perturbations w is visualized
in Fig. 1 together with corresponding coincidence sets Ωv

−. For given k and r,
there is always a convergence in the energy error

vε → u (in K) as ε → 0 (17)

and consequently the nonlinear measure must also converge

μφψ(vε) → μφψ(u) = 0 as ε → 0. (18)

It should be noted the shape of Ωvε− depends on k and r only and it is completely
independent of ε. Therefore, Ωvε− never approximates Ωu

− = {x ∈ Ω : ||x|| ≤ R}
for any choice of ε!

Table 1 reports on values of terms in the energy identity (6) for few approx-
imations vε, where ε decreases to 0 and u and w are given by the choice of R
and r, k. If ε tends to zero, the term 1

2‖∇(u − vε)‖2A converges quadratically to
0 and the nonlinear measure μφψ(vε) only linearly to 0. The contribution of the
nonlinear measure to the energy identity is measured by the quantity

κ(vε) := 100
μφψ(vε)

J(vε) − J(u)
[%]. (19)

We see in this example, the contribution of μφψ(vε) dominates over the contri-
bution of 1

2‖∇(u − vε)‖2A.

3.2 The Two-Phase Obstacle Problem in 1D

This subsection extends results of [7]. We consider the two-phase obstacle prob-
lem in 1D from [1]. Here, Ω = (−1, 1), f = 0, A = I, α⊕ = α� = 8 and the
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Fig. 2. Exact solution u of the two-phase obstacle problem and its approximations vN

(left) for N = 8 and the distributions of μω(vN ) (right).

Dirichlet boundary conditions u(−1) = −1, u(1) = 1. The exact solution is given
by

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−4x2 − 4x − 1, x ∈ [−1,−0.5] ,

0, x ∈ [−0.5, 0.5] ,

4x2 − 4x + 1, x ∈ [0.5, 1]

and J(u) = 51
3 . We consider a sequence of approximations

vN (x) = IN (u)(x), x ∈ [−1, 1] ,

where IN (for N = 2, 3, . . . ) denotes a piecewise linear nodal interpolant of the
function u in N uniformly distributed nodes {−1,−1 + h, . . . , 1 − h, 1}, where

Table 2. The error identity terms computed for various approximation vN .

N 1
2
‖∇(u − vN )‖2

A μω(vN ) J(vN ) − J(u) κ(vN ) [%]

2 1.67e+00 2.00e+00 3.67e+00 54.55

5 6.67e−01 0 6.67e−01 0.00

6 3.59e−01 7.20e−02 4.31e−01 16.72

7 2.59e−01 7.41e−02 3.33e−01 22.22

8 2.16e−01 2.62e−02 2.42e−01 10.82

9 1.67e−01 0 1.67e−01 0.00

10 1.20e−01 1.23e−02 1.32e−01 9.33

30 1.23e−02 3.69e−04 1.27e−02 2.91

60 3.06e−03 4.38e−05 3.10e−03 1.41

120 7.53e−04 5.34e−06 7.58e−04 0.70
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h = 2/(N − 1). Table 2 reports on terms in the energy identity (10) for some
increasing values of N . In general, it holds

μω(vN ) = 0 for N = 4k + 1, k ∈ N.

In these cases, two interpolation nodes lie on the exact free boundary at x = ±0.5
and sets Ω−

vN
, Ω0

vN
, Ω+

vN
coincide with Ω−

u , Ω0
u, Ω+

u . For all other approximations
vN (see Fig. 2 for N = 8), it holds μω(vN ) > 0. The contribution of the nonlinear
measure to the energy identity is measured by the quantity

κ(vN ) := 100
μω(vN )

J(vN ) − J(u)
[%]. (20)

We see in this benchmark, the contribution of 1
2‖∇(u − vN )‖2A dominates over

the contribution of the nonlinear measure term μω(vN ).
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