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Abstract

Human sleep is traditionally classified into five (or six) stages. The manual
classification is time consuming since it requires knowledge of an extensive
set of rules from manuals and experienced experts. Therefore automatic
classification methods appear useful for this task. In this paper we extend
the approach based on Hidden Markov Models by relating certain features not
only to the current time slice but also to the previous one. Dynamic Bayesian
Networks that results from this generalization are thus capable of modeling
features related to state transitions. Experiments on real data revealed that
in this way we are able to increase the prediction accuracy.

1 Introduction

Human sleep occurs in cycles. Each cycle lasts approximately 90 minutes. Typi-
cally, there are four or five cycles per night. Traditionally, sleep stages are scored
into the following five stages of sleep: (W) Wakefulness, (REM) the stage named
after "rapid eye movement” that occurs during this stage, and three Non-REM
stages named (N1), (N2), and (N3). In Figure [I| we present an example of a real
hypnogram from the dataset we used in our experiments.

Traditionally, a set of rules from a manual is used for sleep scoring. The rules
for sleep scoring were standardized by [5]. An up-to-date manual is provided by the
American Academy of Sleep Medicine, see [3]. However, it should be beneficent if
the scoring system is based on probabilistic principles rather than on a predefined
set of rules. Hidden Markov models (HMMs) can play this role.

In [4] the authors verify on synthetic data that Gaussian Observation HMMs
(GOHMMSs) can detect the state transitions and are thus a model well-suited for
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Figure 1: An example of a hypnogram.

the EEG analysis.In [2] a probabilistic continuous sleep stager based on Hidden
Markov models is developed using only a single EEG signal. In the work of [I] an
automatic diagnosis system based on HMMs is proposed to help clinicians in the
diagnosis of sleep apnea syndrome.

In our paper we build on these works and use a generalization of HMMs —
Dynamic Bayesian networks. This allows us to properly include features related to
hidden states of two consecutive stages into the model. We used one such feature
from our dataset — Arousal, which appears typically when a transition between
sleep stages occurs. We will see that already treating a single feature properly (in
a DBN model) helps us to significantly increase the prediction accuracy.

In this paper, first, we discuss probabilistic models suitable for the sleep clas-
sification task. We start with two versions of the Naive Bayes (NB) model in
Section [2l In Section |3| we extend the NB model in two steps. First, the time fac-
tor is included into the model by considering the transition probabilities between
sleep stages — in this way we get Hidden Markov Models (HMMs). Second, the
HMDMs are generalized by relaxing the Markov property. HMMs are generalized to
Dynamic Bayesian Networks (DBNs) by including features related to transitions
between two consecutive stages. We conclude the paper by experimental evaluation
of the considered probabilistic models (in Section , by a summarizing our results,
and by a discussion of possible future work (in Section .

2 Naive Bayes models

Probabilistic models offer an advantage of being objective by not relying on human
scorers and being based on solid probabilistic principles rather than a predefined
set of rules. A Naive Bayes (NB) model is an example of a simple probabilistic



model. It is a Bayesian network model that builds on the assumption of conditional
independence of observed features given the state (class) variable. In the context of
sleep analysis, it means that the observed attributes are assumed to be independent
given the sleep stage. The model is static in the sense that features observed in
time ¢ are relevant for the classification of the sleep at time ¢ only.

In Figure 2] we present an example of a Naive Bayes model. Variable Y rep-
resents the sleep stage at a given time ¢ and variables Xi,..., X5 are features.
Examples of features used in the sleep analysis are:

e the spectral density at given frequency ranges of the Electro Encephalogram
(EEG) signal,

e Electro Oculogram (EOG), which identifies eye movements,
e Electro Myogram (EMG), which identifies muscle activity,
e Central Sleep Apnea,

e Snoring, etc.

Most of these features are continuous variables (in figures displayed as double
circles) and some of them are discrete — often binary (in figures displayed as single
circles).

OO OO

Figure 2: The structure of the Naive Bayes Model for clock time ¢.

For continuous features X a natural model for the conditional density P(X =
z|Y = y) seems to be the Conditional Gaussian distribution N (p,,0,) where p,
and oy, are the mean and the standard deviation of feature X given the value y of
parent variable Y. At the top of Figure[3]we can see the Gaussian density estimates
for the delta power spectral density learned from real data.

In the experiments (reported in Section [4]) it appeared that the CGDs did not
lead to a good prediction accuracy. A better option appeared to be the Kernel
Density Functions (KDFs) that can better fit the actual shape of the conditional
density functions. At the bottom of Figure [3| we can see the KDF's for the delta
power spectral density learned from real data. The density shape for the sleep
class N3 seems surprising complex (two maxima) but KDFs lead to a significant
improvement of accuracy on testing data (i.e. it does not seem to be an overfitting
effect).
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Figure 3: Gaussian density estimates (top) and Kernel Density Functions (bottom)
for the delta power spectral density.

3 From Hidden Markov Models to Dynamic Bayesian
Networks

At each clock time ¢, a Hidden Markov Model (HMM) consists of:

e an unobserved state variable Y; taking a finite number of states. In the sleep
analysis the unobserved variable will be the sleep stage and it will take states
Y ={Wake,N1,N2, N3, REM } and

e a set of observed variables X, ;i = 1,...,k (e.g., the spectral density at a
given frequency range of the EEG signal).

A new state y;41 is entered based upon a transition probability distribution P(Y;1+1 =
y'|Y: = y) for y,yy’ € Y which depends on the previous state Y; (this is called the
Markovian property). This allows to exploit the probabilistic dependence of suc-
cessive sleep stages. Transitions between some of the sleep stages are much more
likely than between others. For example, a transition from stage “wake” (W) di-
rectly to stage “deep sleep” (N3) is quite unlikely. After each transition is made,



an observation z is produced according to a conditional probability distribution
P(X;4+1 = x|Yi41 = y) which depends on the current state y of Y341 only. In
Figure [f] we present and example of a structure of the two consecutive stages of a
Hidden Markov Model.

Figure 4: The structure of two consecutive stages of a Hidden Markov Model.

The conditional probability distributions P(X;y1 = x|Y;41 = y) are assumed to
be stationary (i.e., they do not depend on time ¢) and can be defined (and learned)
in the same way as the conditional probability distributions of the NB model as
discussed in Section 2] We used the CDFs due to their better performance in the
experiments on real data. The transition probability distribution P(Y;+1 = ¢/|Y; =
y) is discrete and it is also assumed to be stationary. It is easily estimated from
training data by normalizing the corresponding contingency table.

As we will see in the Section [] the HMMs perform better than NB models.
However, we conjectured that there is still a room for additional improvement since
some of the features should not be treated as dependent on the current state only
but also on the previous state. This is because some features are witnesses of state
transitions. Therefore we include the model binary variables Z; ;1 that depend
on state variables Y;;; and Y;. These distributions are again assumed to be sta-
tionary. They are estimated from training data by normalizing the corresponding
contingency table.

Figure 5: The structure of two consecutive stages of a Dynamic Bayesian Network.

In Figure [p| we present an example of a structure of the two consecutive stages
of a Dynamic Bayesian Network. There are two state transition witness features —



denoted Z; and Z5 in the figure. We will refer to them as transition features. Note
that the Markovian property does not hold any more since the values of features
Xi,++1 are not independent of the past given the current state of Y;1 1. We can see
that if a transition feature Z; ;41 is known a path from the past gets open.

The probabilistic inference in these DBN is very similar to the standard in-
ference in the HMMs, where the Viterbi algorithm [6] is used. The difference is
that in each time step we modify the transition matrix representing transition
probability distribution P(Y;41|Y:) by multiplying it by a probability potential
P(Z; 141 = #j141|Yi+1,Y:) where 2,411 is the state of the transition feature ob-
served at time t + 1. We do this multiplication for each transition feature. The
computational process in time slice ¢ is completed (as it is also done in the standard
Viterbi algorithm) by selecting the most probable state y; for each state y;+1 and
by normalizing the distribution over the states of Y; ;1. Then a backward pass is
performed to find a most probable configuration of state variables. See Algorithm [T}

Input: A DBN defined by the conditional probability distributions
P(Ye1lY2), P(Zje41|Yie1, Ye), P(Xit41]Yi41), and P(Y7),
feature evidence:

- x4 for features X;;,¢=1,...,nx,t=1,...,N, and
- zj, for transition features Z;;,j =1,...,nz,t =2,...,N.

Output: The most probable state values y; for t =1,..., N

S1+ P(Y1) - I[; P(Xi0 = i1 |Y1)

for t + 2 to N do

for y € Y do

R« S 1 P(Zjs=zj4|Ye = y,Ye1) - P(Yr = ylYi-1)
P(Xip =2 4|Ys = y);

Ti(y) < argmaxycy R(y');

St(y) < maxy ey R(y');

end
Sy
Sp ¢ —=————;
D))
end

YN < argmaxyey Sn(y);
for t <+ N to 2 do

‘ Ye—1 < T (ye);
end

Algorithm 1: The inference algorithm for solving the sleep analysis DBN

4 Experiments

We learned our models on a training dataset that consisted of 37 hypnograms.
The models were tested on a (testing) dataset that also consisted of 37 (different)
hypnograms. Altogether we used 46 features. In the DBN model we used the



Arousal feature as the transition feature while in all other models it was treated
as a standard feature related to the current state only. The results of experiments
are summarized in Table[I] where the methods are presented in the ascending order
given by their accuracy.

Table 1: The average accuracy of the tested methods on testing data.

Method Accuracy
No Information Rate 41.57%
Naive Bayes with CGDs 49.13%
Philips Respironics 57.43%
Naive Bayes with KDFs 65.06%
Hidden Markov Model 65.71%
Dynamic Bayesian Network | 67.02%

In Figure [f] we compare the accuracy of the proposed methods on the testing
dataset. Each point in the plot corresponds to one hypnogram from the testing
dataset. To see whether the methods differ significantly we performed the Wilcoxon
signed rank test for the pairs of methods results presented in Figure [f] We can
conclude that:

e The NB model with Kernel Density Functions achieved significantly better
accuracy than the NB model with Conditional Gaussian Distributions with
the p-value = 5.093e-10

e Hidden Markov Models achieved significantly better accuracy than the NB
model with Kernel Density Functions with the p-value = 7.577e-05.

e DBNs achieved significantly better accuracy than HMMs with the p-value =
1.533e-05.

e DBNs achieved significantly better accuracy than Philips Respironics with
the p-value = 0.001416

See Figure[7]for the comparisons of the hypnograms predicted by tested methods
with the expert for a selected hypnogram of one person. Though, the predicted
hypnograms may look very similar, at a closer look, we can see differences that
imply different accuracy on the testing dataset. For example, if we have a look at
the first two hours of the patient’s sleep we can see that the HMM and DBN leads to
less oscillations than NB. The DBN further improves the fit by widening the third
period of the N2 sleep stage. The DBN also further reduces some oscillations in the
latter periods of the sleep. The accuracy for this patient hypnogram was: 77.13%
(for NB), 77.53% (for HMM), and 79.98% (for DBN). The Philips Respitronics has
the accuracy of 52.50% for this patient.
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Figure 6: Comparisons of the methods’ accuracy on real data.




o
<
g —
<
=
o
4
1]
=3
8
n -
a Z 7
[
.
2]
o
g 4
— — expert
o | —— Naive Bayes
z
T T T T T
0 2 4 6 8
hours
o
<
g —
<
=
o
4
1]
=3
o]
w o
a Z 7
9]
<
2]
o
g 4
— — expert
o —— HMM
z
T
8
o
2
g —
<
=
& 4
4
(]
=3
B
2B
a z
9
Q<
Q
o
z
— — expert
o | — DBN
z
T T T T T
0 2 4 6 8
hours

Figure 7: Comparisons of the predicted hypnograms with the expert hypnogram
for one selected patient.



5 Conclusions and Future Work

In the problem of the classification of sleep stages Hidden Markov models and
Dynamic Bayesian networks have achieved a better accuracy. They also better
filter oscillations in hypnograms than Naive Bayes models. It is because they take
into their consideration the sleep stage in the previous time step which is closely
related to the sleep stage in the current time step. Using the Arousal feature
we have demonstrated that the implementation of transition-related features in
a Dynamic Bayesian Network helps to further improve the predictions accuracy.
Other candidate features of this type are spindles, K-complexes, etc. These were
not available in our dataset.

A model we did not use in our experiments but with which we would also like to
compare in our future work is a Recurrent Neural Network. We also may consider
to include time factors into our models - as are the time spent in a sleep stage and
the total time spent in a sleep.

Another future goal is to use the proposed methods for automatic detection of
sleep related disorders, which is of great interest of medical doctors. Yet another
interesting research direction might be opened by lifting the assumption of five
predefined sleep stages and by considering the variable representing the sleep stages
as a truly hidden variable with an unknown number of states.
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