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Abstract

The recognition of MNIST numerals is discussed as a benchmark problem. Apply-
ing the probabilistic neural networks to MNIST data we have found that the training
and test set have slightly different statistical properties with negative consequences for
classifier performance. We assume that the frequently used extension of MNIST train-
ing data by distorted patterns improves the recognition accuracy by creating images
similar to the atypical test set numerals. In this way the benchmark experiments may
be influenced by the external knowledge about the hand-written digits and the compar-
ative value of the benchmark becomes more or less limited to recognition of MNIST
numerals. As a more generally applicable benchmark model we propose recognition
of artificial binary patterns generated on a chessboard by random moves of the pieces
rook and knight.
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1. Introduction

The MNIST collection of handwritten digits is one of the most frequently used benchmark
databases to test and compare different pattern recognition methods and machine learning
algorithms. The website [9] reports 69 references with a brief characteristic of the underly-
ing recognition technique, the achieved accuracy and a link to the corresponding paper.

The MNIST database was constructed from the original NIST Special Databases SD3
and SD1 which contain unformatted binary images of handwritten digits. As the SD3 is
“much cleaner and easier to recognize”, the MNIST database is constructed by mixing
both, to make the training and test set more similar. The training set is composed of 30,000
patterns from SD3 and 30,000 patterns from SD1 and, analogously, the MNIST test set is
composed of 5,000 patterns from SD3 and 5,000 patterns from SD1. However, the sets of
writers of the training set and test set were disjoint to make the test conditions more realistic
[9].

From the point of view of a practical application, it is quite reasonable to verify how
robust is the considered method in recognition of previously unseen digits written by dif-
ferent persons. Nevertheless, from the theoretical point of view, the statistical properties
of the training and test set should be identical in case of a generally applicable benchmark
database. We show that, despite the mixing of SD1 and SD3 numerals, the MNIST training
and test-data sets still have slightly different statistical properties (probably due to different
writers) which may affect the evaluation of the applied recognition methods. For example,
a detailed analysis of misclassified MNIST numerals [12] shows that about 60% of errors
on the test patterns might be caused by the lack of similar training samples.

It appears that the frequently used enlargement of MNIST training data sets by suit-
ably distorted patterns actually helps to bridge the differences between the training and test
sets. We assume that the massive extension of training data based on external knowledge
substitutes some missing training counterparts of the unusual test patterns. In this way
a medium-level method could become comparable with a strong knowledge-independent
classifier.

Without any doubt, in case of a practical problem we should use as much external
knowledge as possible both for the feature extraction and data extension techniques. How-
ever, if a comparison of classifiers based on a benchmark experiment should be of a general
validity, then the training algorithm should not relay on a specific external knowledge about
the data since no such knowledge can be assumed available in a general case.

The classification of hand-written numerals is one of the most traditional problems of
pattern recognition. In this respect the MNIST database with its long history is an important
benchmark to compare different methods of recognition of handwritten digits. Nonetheless,
because of the specific differences between the data sets and widely used external knowl-
edge in the classifier design, its comparative value is more or less restricted to recognition
of the MNIST numerals.

Aming at a more general applicability we suggest in this paper an example of a large
and easily applicable benchmark based on artificial binary patterns randomly generated on
a chess-board by moving the chess-pieces rook and knight. The two classes "ROOK” and
“KNIGHT” may overlap and the related classification problem has a clear statistical nature.
Except for the two underlying chess-moves there is no external knowledge about the data
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Figure 1. Comparison of “mean numerals” (mean grey levels) from the MNIST training set
(first row) and test set (second row). The third row contains absolute differences of both
(rescaled 8-times).

and there is no simple way to extract informative features from the binary vectors. The
data sets are easily reproducible by using uniquely initialized sequences of pseudo-random
numbers.

The paper is organized as follows: In Sec. 2 we discuss some MNIST benchmark
results, in Sec. 3 and 4 we recall the basic features of probabilistic neural networks and
their implementation aspects. The numerical experiments are described in Sec. 5. and Sec.
6 suggests a novel statistically balanced benchmark. Sec. 7 summarizes the concluding
remarks.

2. Comments on Related Work

According to [9], the original black and white (bilevel) NIST images were size normalized
to a 20 x 20 box and then centralized in a 28 x 28 field. The resulting MNIST images are
described in grey levels (0-255) as a result of the normalization algorithm. The different
statistical properties of the MNIST training and test data sets are even visible from the
comparison of the mean marginal grey levels in Fig.1. We recall that different marginals
imply different properties but more complex statistical properties may differ with identical
marginals too. By comparing the mean training images to the mean test images we have
noticed that the test digits are slightly more upright. This is probably the reason why, in
some cases (13 references in [9]), a directly used deskewing or deslanting of numerals helps
to improve the classification accuracy.

The most successful methods apply some data enlargement techniques to generate dif-
ferently modified versions of the original MNIST images (27 references in [9]). In partic-
ular, the best classifiers make use of different affine or elastic distortions, shifts, skewing,
scaling, compression or even very general nonlinear random transforms in order to extend
the training set. According to [1] the deformations of training images are essential to pre-
vent overfitting and greatly improve generalization.

We assume that the distorted numerals help to compensate for the missing training
counterparts of the unusual test set images. In this sense, the data extension techniques as
well as specific feature extraction methods often utilize the intuitive “external” knowledge
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about the semantic invariance of handwritten numerals. The resulting error rates are very
low (about 0.5%) with the recent top result of 0.19% [11]. The last paper combines elastic
distortion technique with additional scaling and rotation transforms to obtain strongly dis-
torted training images. In the survey paper [10] the benefit of data enlargement methods is
not discussed.

In this paper we use the probabilistic neural networks (PNN), cf. [3]-[8], to verify the
specific properties of the MNIST data. The PNN as a generative model assume the Bayesian
classification according to the posterior probabilities. For this purpose, we approximate
the class-conditional distributions directly in the sample space by multivariate Bernoulli
mixtures. In this respect the PNN represent one of the few methods to classify the MNIST
data by explicit evaluation of the Bayes formula without any feature extraction.

The Bayes decision rule minimizes the error probability provided that the conditional
distributions are correctly estimated and therefore, unlike e.g. discriminative classifiers,
there is a close relation between the statistical properties of the source data sets and the
resulting classification accuracy.

3. Probabilistic Neural Networks

The statistical recognition of handwritten numerals presumes the probabilistic description
of classes. Considering the numerals described by means of binary vectors

x=(x1,...,x5) € X, X =1{0,1}",

we approximate the class-conditional distributions P(x|w) by multivariate Bernoulli mix-
tures

P(zlw)= Y wnF(xlm)= > wy [] folanlm), (1)

meM,, meM,, neN
Y wm=1, N={1,...,N}, |JM,=M.
meM,, weN

Here w,,, > 0 are probabilistic weights, M, are the component index sets, N is the index
set of variables, F'(x|m) denote the components and f,(x,,|m) are the univariate Bernoulli
distributions with the parameters 6, :

fr(@plm) = 6% (1 — Opp) 7% n e N. (2)

The basic idea of probabilistic neural networks is to assume the components (neurons)
F(x|m) in the form

F(x|m) = F(x|0)G(x|m, ¢m), m € M, 3)

where F'(x|0) is a “background” distribution defined as a fixed product of global uncondi-
tional marginals

F(x|0) = [T 66 (1—60n)"""", (6o = P{wn = 1}) )
neN
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and G(x|m,¢,,) are the component functions including binary structural parameters

$mn € {0,1}
omen = I [F]™ - IL[(5)" () 7] o

neN neN

Using the structural mixture model we can cancel the background distribution F'(x|0)
in the Bayes formula

P(W) 2omem, WnG(@|m, dm)
2 wea PW) X jepm, wiG (@), b))

and therefore the decision making depends on the component functions G(+|-) defined on
different subspaces. In other words the input connections of a probabilistic neuron can be
confined to any subset of input variables.

The PNN defined by the structural mixture model can be optimized in full generality by
means of the EM algorithm (cf. [8, 3, 5]). In particular, given a training set

p(wlz) = 6)

S, = {m(l), . ,:B(KW)}, z® e x, (w e ),

we can estimate the conditional distribution P(x|w) by maximizing the log-likelihood func-
tion
1
L= A D log | Y wnF(]0)G(z|m, ém) | - (7)
w €S, meM,,
The structural EM algorithm has the form (cf. [8, 5]):

G(:c|m, ¢m)wm

- , xeS,, meM,, ()
jEM,, G(m’jv¢])w]

q(mlz) = 5

/ 1 / 1
Wy = o Z q(m|x), 0,,,= —=—F Z zpg(mlz), neN, )

S| z€S, | Sl €S,
. ' 0, : (1-6,,,)
’Ymn [ mn Og 9077, + ( mn) Og (1 _ 9077,) Y ( )
’ 1, ’}/;nn > Tm P /
- 7 = = E . 11

Here w;n, H;Tm, and gb;nn are the new iteration values of the mixture parameters, fy;nn are the
structural criterion values, 7,, is a component-specific threshold and p > 0 is an optional
coefficient to control model complexity. The increasing coefficient p reduces the number of
parameters in components.

Unlike previous papers [5, 7], we do not optimize the structural properties globally
but only at the level of individual neurons. The novel component-specific optimization

approach does not suppress the low-weight components (cf. [5, 8]) and is less prone to
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Figure 2. Examples of distorted variants of an original numeral.

overfitting. The iterative equations (8)-(11) generate a nondecreasing sequence {L(t)}gO
converging to a (possibly local) maximum of the log-likelihood function (7), (cf. [8]).

The structural criterion v;nn represents the Kullback-Leibler information divergence
I(f,,(-|m)|fa(:|0)) between the component-specific distribution f;,(z,,|m) and the corre-
sponding univariate “background” distribution f,,(x,,|0):

1 ’

fu(€lm)
fn(€]0)

Yom = Y Fn(€lm) log

£=0

= I(f,(-Im)| fa(-]0))

and, in this sense, only the most informative conditional distributions f;l(|m) are included
in the structural mixture model at each iteration.

In a series of papers (cf. [3] - [8]) we have shown that the PNN have many properties
well interpretable from the point of view of biological neural networks. Without any prelim-
inary extraction of features we use a structural mixture model to optimize the connections
of neurons with the input variables. In this way each neuron can use its own optimal “’re-
ceptive field” defined by a subset of input features. PNNs can be combined in a parallel and
vertical sense, the probabilistic neuron has strictly modular properties and the sequential
version of the EM algorithm ([4]) supports the Hebbian principle of learning.

We recall that the structural mixture model is invariant with respect to arbitrary per-
mutation of input variables (cf. [5]), the topological properties of the raster are identified
statistically. This is a quite important neuromorphic feature of PNN since e.g. the higher-
level neurons in the brain have no information about the topological structure of the retina.

4. Implementation of PNN

For the sake of numerical experiments we have transformed the original nearly binary
MNIST variables &, € (0,255) to a strict binary form (§,, > 50 = x,, = 1). Formally the
binarization is accompanied by an information loss but this is well counter-balanced by the
resulting efficient description of the data.

The implementation of the EM algorithm (8)-(11) includes two main parameters,
namely the number of mixture components |M,,| (identical for all classes w € (2), and
the coefficient p to control the number of mixture parameters (model complexity). In all
experiments, we have changed the two parameters in relatively wide bounds to illustrate
their limited relevance.

The EM algorithm has always been initialized randomly using uniform component
weights w,, = 1/|M|, m € M, and by specifying the component parameters 6,
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according to randomly chosen data vectors € S,,:
Omn = 042, +0.1(1 — ), neN, me M,. (12)

A small regularizing constant was added to the estimated parameters to avoid singularities
in Eq. (10):

’

mr S, wp,

0 0,01+ > ang(mlz)], neN. (13)

JEESw

The conditional weights ¢(m|x) have to be evaluated in logarithmic form and carefully
normalized because of the latent risk of multiple underflow.

The EM iterations have been stopped by the relative increment threshold. We needed
about 10—15 iterations to satisfy the stopping rule condition (L' — L)/|L| < 0.001. The
CPU time (single core of the processor Intel Core 15-4690 CPU@3.50GHz) depends on
the number of mixture components |M,,| and the complexity parameter p. The time for a
complete solution of the problem including estimation of all ten class-conditional distribu-
tions from the original data was in tens of minutes. In case of the extended data (117-times)
the complete solution needed between 5 hours (|M,| = 300,p = 0.35) and 48 hours
(|IMy] = 4,000, p = 0.15).

5. Numerical Experiments

5.1. Non-extended Data

The initial computational experiments (Table 1) refer to the original non-extended binarized
data. First, we approximated each conditional distribution P(x|w) by a single product of
784 univariate marginal distributions (2). The related mean Bayesian classification error
obtained for the independent test set is 15.47% (cf. Table 1, experiment I). In the next
experiments II — X with the same data we have verified the recognition error of differently
specified structural mixtures (|M,,| = 50 — 1000, p = 0.05 — 0.15) with the best result
3.94% in the experiment V. There is a clear tendency to overfitting with more than 100
components. The resulting recognition accuracy is starting-point dependent in all tables
but, as it can be seen, the corresponding differences are small (in fractions of %). The mean
number of utilized parameters 6,,,, (per component) is given in the third row.

5.2. Extended Data

We assume that the relatively high recognition error of about 4% is partly due to small
size of the training set. For this reason we extended the training data by means of simple
transforms in the experiments of Table 2. We generated 117 variants for each training
numeral by combining simple shifts and adding or removing rows or columns, as illustrated
in Fig. 2. In this way we use external knowledge about the natural invariance of hand-
written digits but the distortions are rather limited. We recall that the shifting of images has
a “natural” biological counterpart in so called saccadic movements of human eyes.

Unlike similar data extension methods we use the modification of numerals in the clas-
sification step too (cf. [5]). In particular, we compute the Bayes probabilities p(w|x) for all
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Experiment: ‘ I ‘ I ‘ I ‘ v ‘ \% ‘ VI ‘ VII ‘ VIII ‘ IX ‘ X ‘
Comps. |M.,|: 1 50 80 100 100 100 200 200 500 1000
Parameters 784.0 | 709.8 | 693.4 | 679.4 | 700.6 | 676.8 | 487.6 | 644.4 | 5357 | 642.4
Error [%]: 15.47 | 4.28 4.19 4.12 3.94 4.18 4.22 4.51 4.56 4.66

Table 1. Recognition of the original non-extended MNIST training data and the independent
test data. The table shows the number of components in classes (2nd row), mean number of
mixture parameters per component (3rd row) and the resulting mean error rate (last row).

’ Experiment: ‘ I ‘ II ‘ 111 ‘ v ‘ \Y% ‘ VI ‘ VII ‘ VIII ‘ IX ‘ X ‘
Comps. |[M.,|: 1 300 500 800 1000 1000 1500 | 2000 | 3000 | 4000
Parameters 784.0 | 4549 | 4162 | 276.2 | 373.5 | 373.1 | 388.6 | 416.5 | 389.3 | 390.5
Error [%]: 20.80 | 2.33 1.86 1.81 1.66 1.55 1.82 1.77 1.64 1.65

Table 2. Recognition based on the MNIST training set and the independent test set, both
extended 117-times by slightly distorted original numerals (cf. Fig.2).

117 variants of each tested numeral * € X and use the mean posterior probability for the
final classification:

117
1 .
— 5 5 - (@)
wo argglgg{p(w!w)}, p(w|x) 117i§1p(w\w )- (14)

The decision-making based on the mean posterior probabilities is very similar to major-
ity voting (because of nearly binary values p(w|z(")) and reduces the classification error
essentially.

The experiments based on the extended data sets are shown in Table 2. The results
correspond to differently specified structural mixtures (p = 0.15 — 0.35) with the best clas-
sification error of 1.55% (Table 2, experiment VI). This result corresponds well to our pre-
vious experiments with similarly normalized NIST data (cf. [5]) and also to other MNIST
results achieved in the sample space without feature extraction, e.g. k-NN rule: 3.66%,
RBF-network: 2.53%, multilayer perceptron: 1.91%, support vector classifier: 1.41% (cf.
[10], Table 8).

5.3. Test Data Included into Training

At the first view, the best classification results on the MNIST benchmark (cf. [9]) suggest
that a suitable extension of the training data by means of distorted patterns is rather im-
portant to achieve a low error rate. Considering a general intuitive knowledge about the
semantic invariance of hand-written numerals with respect to different deformations we
can propose a wide variety of distorting transforms. Moreover, by displaying the misclas-
sified test numerals we can get useful hints regarding how the training numerals should be
modified.
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Experiment: \ I \ 11 \ 10 \ v \ v \ VI \ VI \ vm\ X \ X ‘

Comps. | M., |: 500 500 1000 1500 1500 | 2000 | 2500 | 3000 | 3500 | 4000
Parameters 738.6 | 741.2 | 7383 | 739.5 | 740.7 | 739.5 | 740.3 | 739.3 | 738.6 | 739.1
Error [%]: 0.49 0.45 0.15 0.11 0.10 0.09 0.06 0.04 0.04 0.02

Table 3. Both non-extended test- and training set used for training. The resulting “positively
biased” error rate is decreasing with the increasing mixture complexity.

Bxperiment: | 1 | n | m [ v | v [ vi [vo[vm] x| x|

Comps. |[M.,|: 100 200 300 500 800 100 500 1000 | 2000 | 3000
Parameters 352.0 | 727.0 | 373.5 | 4389 | 352.0 || 700.6 | 759.7 | 742.8 | 742.7 | 742.7
Error [%]: 0.680 | 0.280 | 0.120 | 0.050 | 0.000 || 1.667 | 0.317 | 0.088 | 0.017 | 0.003

Table 4. Re-substitution experiments with identical non-extended data used for training and
testing. Test data: experiments I-V, training data: experiments VI-X.

| Experiment: | 1 | o | m [ v | v [ vi [ voi]vm]| x|

Comps. |[M.,|: 100 500 1000 | 2000 100 200 500 1000 | 2000
Error (valid.) [%] | 2.167 | 0.953 | 0.645 | 0.461 || 2.170 | 1.546 | 0.950 | 0.652 | 0.449
Error (test) [%] 2.185 | 0.970 | 0.659 | 0.472 || 2.170 | 1.539 | 0.963 | 0.652 | 0.456

Table 5. Classification of the rook-made and knight-made patterns on the 16 x 16 chess-
board, number of positions NX=25. The table shows the number of components in classes
and the resulting mean error rate on the validation-set and test-set (rows 3,4).

From this point of view the “best possible” extension can be obtained by directly in-
cluding all the test numerals in the training data set. The corresponding “illegal” results of
recognition experiments, when the joined (non-extended) training and test sets were used
for estimating the class-conditional mixtures P(x|w), are shown in Table 3. The best (pos-
itively biased) classification error 0.02% (Table 3, experiment X) is no more independent,
but it is surprisingly small. This can be seen as an indirect evidence that the statistical prop-
erties of the training and test set are different. We assume that in case of sufficiently large
and statistically well balanced benchmark the inclusion of test samples into the training set
would have little or no influence on the recognition error.

5.4. Resubstitution Experiments

In order to clarify the “illegal” results in the Table 3 we have made so-called re-substitution
experiments - with the same (non-extended) data set used both for training and testing. We
recall that there is no risk of overfitting in this case since any outliers in the training set
and the test set are identical. Consequently, by increasing the number of components the
classification error should approach zero.

By using alone the non-extended test data both for training and testing (Table 4, ex-
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periments I-V), we obtained the theoretically achievable zero re-substitution error with
M| = 800 components, (Table 4, experiment V). It is interesting that, by computing
analogous re-substitution errors for the non-extended training data, we obtained worse re-
sults (Table 4, experiments VI-X). Again, there is no risk of overfitting but even for large
number of components the re-substitution error is decreasing slowly (0.003%, experiment
X), probably because the training set is six times larger.

We can conclude that there is an indirect evidence of different statistical properties of
the training- and test-set numerals. First, the obvious tendency to overfitting in Table 1
suggests that many training numerals do not occur in the test set and vice versa. Second,
the classification accuracy improves essentially by including the test numerals into training
because of lack of similar data in the original training set (Table 3). Finally, the resubstitu-
tion experiments prove reliable classification performance of PNN in terms of theoretically
achievable results (Table 4).

6. Statistically Balanced Benchmark

The main goal of pattern recognition theory is to develop general problem-independent
methods. In order to prevent the classification benchmark from dependence on the implicit
or explicit external knowledge we consider the recognition of artificial binary patterns on a
chessboard. For the sake of the benchmark model we generate two classes of binary patterns
by random moves of the chess-pieces rook and knight. Unlike previous experiments [6] we
use a chessboard of size 16 x 16, a fix number of 25 generated positions and reproducible
sequences of pseudo-random numbers. Thus each pattern is described by a 256-dimensional
binary vector containing 25 ones and 231 zeros.

The procedures to generate the rook-made and the knight-made patterns are described
in the Appendix. We remark that the procedure KNIGHT generates the pattern in two
separate sequences to produce less condensed images on the chess-board. Each data set is
uniquely defined by the related procedure and by the initial ’seed” of the pseudo-random
generator. Thus, the sequence of patterns is exactly reproducible and arbitrarily long. The
data vectors need not be stored, because the procedures are very simple and can be used
on-line. The application of the benchmark is very simple, because we need only the two
procedures in the Appendix and six seeds (cf. Fig. 3) to reproduce two training sets, two
validation sets and two test sets, without any necessity to download and decode any data.
A correctly generated sequence of patterns can be easily verified by a single pattern with
a given sequence number. For this purpose Fig. 3 shows the three pairs of rook-made and
knight-made patterns with the sequence number n=1000, for the training sets, validation
sets and test sets respectively.

The statistical properties of the two classes "ROOK” and "KNIGHT” depend on the
respective procedures and the pseudo-random sequences. We use a popular pseudo-random
sequence RANDU defined by the recurrent relation

Rp+1 = (R, % 65539) mod 2147483648, Ry ~ seed, (15)

where the seed can be arbitrary odd number. The sequence of pseudo-random numbers is
periodical with a large period (maximally 2147483648), but the periodicity of the generated
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patterns is probably much larger as long as the next occurrence of the initial seed does not
come exactly at the input of the generating procedure. Possible irregularities of the pseudo-
random sequence (like correlations between consecutive numbers) are irrelevant in our case
because they only introduce a statistical ”color” into the generated patterns. We assume that
the statistical properties of pattern sequences differing only by the initial seed will be nearly
identical (cf. Tab. 5).

The data sets generated from the two classes "ROOK” and "KNIGHT” may overlap
and the related classification problem has a clear statistical nature. Except for the two
underlying chess-moves there is no external knowledge about the data and there is no simple
way to extract informative features from the binary vectors.

Table 5 shows the results of numerical experiments with the artificial chess-board
benchmark. We have verified the classification accuracy for differently complex condi-
tional distributions (cf. the number of mixture components in the second row). The next
two rows correspond to independent validation- and test-sets respectively. In the first group
of experiments (col. I — IV) the size of all data sets was |Sg| = |Sk| = 10° patterns and in
the second group (col. V —IX) twice greater, i.e. |Sg| = |Sk| = 2 * 10° patterns. In view
of the large data sets we have estimated the Bernoulli mixtures in full version including all
parameters, without structural modification.

Figure 3. Rook- and knight-patterns with the sequence number ¢ = 1000 for training set,
validation set and test set. See Appendix for the corresponding procedures ROOK and
KNIGHT.

It can be seen that the results obtained for validation- and test-data are very similar
because the statistical properties of the corresponding data sets are nearly identical. In both
groups the error rates decrease with the increasing complexity, but the corresponding results
are not very different despite the twice larger data sets in the second group of experiments.
We can conclude, that the number of training patterns in the first group is already large
enough to get reliable estimates of the conditional distributions. The best error rate 0.449%
(col. IX) is probably near to the underlying theoretically achievable value.

7. Conclusions

The recognition of MNIST numerals is negatively influenced by the slightly different sta-
tistical properties of the training and test-sets. We assume that the widely used approach
of extending the training data by randomly distorted numerals actually helps to overcome
these differences by generating missing variants of the atypical test set numerals. In this
sense the application of MNIST benchmark may depend on the external knowledge relat-
ing to the semantic invariance of hand-written digits and therefore the comparative value of
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the benchmark partly confines to MNIST numerals.

With the aim of a more general applicability we suggest a model of a perfectly balanced
statistical benchmark based on artificial binary patterns generated on a chess-board by ran-
dom moves of the chess-pieces rook and knight. By using uniquely initialized pseudo-
random sequences the data sets are exactly reproducible in arbitrary length and therefore
any data enlargement is unnecessary. There is no external knowledge about the binary pat-
terns except for generating rules and there is no simple way to extract informative features
from the data. Obviously, we could create in a similar way a benchmark based on real data
vectors or color images.

8. Appendix
Procedure ROOK

const int RS=16, RS2=8, NPOINT=25;
unsigned long RNR,RNK,CM=2147483648; unsigned char X[NN],XB[RS][RS];

int ROOK() // ROOK-pattern synthesis

{//initial seeds: training RNR=1987654327,
validation RNR=2987654327, testing RNR=3987654327
int I,J,K,I0,J0,NX;

for (I=0; I<RS;I++) for (J=0;J<RS;J++) XB[I][J]=0;

RNR=(65539xRNR) $CM; I0=(RNR/10000)%RS;

RNR=(65539xRNR) $CM; J0=(RNR/10000) %RS;

XB[IO][J0]1=1; NX=1;

while (NX<NPOINT)

{ RNR= (65539xRNR) $CM; J=(RNR/10000) %RS;
RNR= (65539+RNR) $CM; K= (RNR/10000)%RS;
i1f (J<RS2) I0=K; else J0=K; 1if(XB[IO][J01<1){XB[IO][JO0]=1;NX++;}

} // end of while-loop

NX=0; for(I=0;I<RS;I++) for (J=0;J<RS;J++) X[NX++]=XB[I][J];

return 0;

} // end of ROOK

Procedure KNIGHT

int KNIGHT() // KNIGHT-pattern synthesis
{//initial seeds: training RNK=1987654325,
validation RNK=2987654325, testing RNK=3987654325
int I,J,K,I0,J0,NX;
for (I=0; I<RS;I++) for (J=0;J<RS;J++) XB[I][J]=0;
RNK= (65539*RNK) $CM; I0=(RNK/10000) %$RS;
RNK= (65539xRNK) $CM; JO=(RNK/10000) $RS;
XB[IO0][J0]=1; NX=1;
while (NX<NPOINT)
{ 1f (NX==NP2)
{ RNK=(65539%RNK) $CM; IO0=(RNK/10000)%RS;
RNK= (65539%RNK) $CM; J0=(RNK/10000) %RS; }
RNK= (65539xRNK) $CM; K= (RNK/10000) %RS2;
switch (K)
{ case 0: I=I0+2; J=J0+1; break; case 1: I=I0+1; J=J0+2; break;
case 2: I=I0+2; J=J0-1; break; case 3: I=I0+1; J=J0-2; break;
case 4: I=I10-2; J=J0+1; break; case 5: I=I0-1; J=J0+2; break;
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case 6: I=I10-2; J=J0-1; break; case 7: I=I10-1; J=J0-2; break;
} // end of switch
1f(I>-1)if (J>-1)if (I<KRS)if (JIJ<RS)
{ I0=I; J0=J; 1if(XB[IO][J0]<1){XB[IO][JO0]=1; NX++;}
} // end of if-clause
} // end of while-loop
NX=0; for (I=0;I<RS;I++) for (J=0;J<RS;J++) X[NX++]=XB[I][J];
return 0;
} // end of KNIGHT
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