
Rotationally Invariant Bark Recognition
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Abstract. An efficient bark recognition method based on a novel wide-
sense Markov spiral model textural representation is presented. Unlike
the alternative bark recognition methods based on various gray-scale
discriminative textural descriptions, we benefit from fully descriptive
color, rotationally invariant bark texture representation. The proposed
method significantly outperforms the state-of-the-art bark recognition
approaches in terms of the classification accuracy.
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1 Introduction

Automatic bark recognition is a challenging but practical plant taxonomy appli-
cation which allows fast and non-invasive tree recognition irrespective of the
growing season, i.e., whether a tree has or has not its leaves, fruit, needles, or
seeds or if the tree is healthy growing or just a dead stump. Automatic bark
recognition makes identification or learning of tree species possible without any
botanical expert knowledge through, e.g., using a dedicated mobile application.
Manual identification of a tree’s species based on a botanical key of bark images
is a tedious task which would normally consist of scrolling through a book. Since
bark can not be described as easily as leaves or needles [5,18], the user has to go
through the whole bark encyclopedia looking for the corresponding bark image.

An advantage of bark based features is their relative stability during the cor-
responding tree’s life time. Single shrubs or trees have specific bark which can
be advantageously used for their identification. It enables numerous ecological
applications such as plant resource management or fast identification of invad-
ing tree species. Industrial applications can be in saw mills or bark beetle tree
infestation detection.

1.1 Alternative Bark Recognition Methods

A SVM type of classifier and gray-scale LBP features are used in [1]. Their
dataset is a collection of 40 images per species and there are 23 species, i.e., a
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total of 920 bark color images of local, mostly dry subtropical-climate, shrubs
and trees (acacias, agaves, opuntias, palms). The classifier exploited in [9] is a
radial basis probabilistic neural network. The method uses Daubechies 3rd level
wavelet based features applied to each color band in the Y CbCr color space.
A similar method [8] with the same classifier uses Gabor wavelet features. Both
methods use the same test set which contains 300 color bark images. Gabor
banks features with a narrow-band signal model in 1-NN classifier was proposed
in [4]. The test set has 8 species with 25 samples per tree category. The author
also demonstrates a significant, but expectable, performance improvement when
color information was added. The 1-NN and 4-NN classifier [19] represent bark
textures by the run length, Haralick’s co-occurrence matrix based, and histogram
features. These methods are verified on a limited dataset of 160 samples from 9
species. Authors in [3] propose a rotationally invariant statistical radial binary
pattern (SRBP) descriptor to characterize a bark texture. Four types of multi-
scale LBP features (Multi-Block LBP (MBLBP) with a mean filter, LBP Fil-
tering (LBPF), Multi-Scale LBP (MSLBP) with a low pass Gaussian filter, and
Pyramid-based LBP (PLPB) with a pyramid transform) are used in [2]. Two
bark image datasets (AFF [5], Trunk12 [17]) were used to evaluate the multi-
scale LBP descriptors based bark recognition. The authors observed that multi-
scale LBP provides more discriminative texture features than basic and uniform
LBP and that LBPF gives the best results over all the tested descriptors on
both datasets. The paper [15] proposes a combination of two types of texture
features, the gray-level co-occurrence matrix metrics and the long connection
length emphasis [15] binary texture features. Eighteen tree species in 90 images
are classified using the k-NN classifier. The support vector machine classifier and
multiscale rotationally invariant LBP features are used in [16]. The multi-class
classification problem is solved using the one versus all scheme. The method is
verified on two general texture datasets and the AFF bark dataset [5]. A com-
parison of the usefulness of the run-length method (5 features), co-occurrence
correlation method (100) features for the bark k-NN classification into nine cat-
egories with 15 samples per category is presented in [19]. The method [5] uses
support vector machine classifier with radial basis function kernel applied with
four (contrast, correlation, homogeneity, and energy) gray-level co-occurrence
matrices (GLCM), SIFT based bag-of-words, and wavelet features. The bark
dataset (AFF bark dataset) consists of 1183 images of the eleven most common
Austrian trees (Sect. 4). Color descriptor based on three-dimensional adaptive
sum and difference histograms was applied BarTex textures in [13,14].

The majority of the published methods suffer from neglecting spectral infor-
mation and using discriminative and thus approximate textural features only.
Few attempts to use multispectral information [8,9,11,19] independently apply
monospectral features on each spectral band or apply the color LBP features
[7,12]. Most methods use private and very restricted bark databases, thus the
published results are mutually incomparable and of limited information value.
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Fig. 1. The paths of the two “spirals” in an image. Left: octagonal, right: rectangular.
The numbers designate the order in which the pixels r, i.e., Ics

r neighborhoods are
traversed and the red square means the center pixel. (Color figure online)

2 Spiral Markovian Texture Representation

The spiral adaptive 2D causal auto-regressive random (2DSCAR) field model
is a generalization of the 2DCAR model [6]. The model’s functional contextual
neighbour index shift set is denoted Ics

r . The model can be defined in the
following matrix equation:

Yr = γZr + er, (1)

where γ = [a1, . . . , aη] is the parameter vector, η = cardinality(Ics
r ), r = [r1, r2]

is spatial index denoting history of movements on the lattice I, er denotes driving
white Gaussian noise with zero mean and a constant but unknown variance σ2,
and Zr is a neighborhood support vector of Yr−s where s ∈ Ics

r .
All 2DSCAR model statistics can be efficiently estimated analytically [6].

The Bayesian parameter estimation (conditional mean value) γ̂ can be accom-
plished using fast, numerically robust and recursive statistics [6], given the known
2DSCAR process history Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1}:

γ̂T
t−1 = V −1

zz(t−1)Vzy(t−1), (2)

Vt−1 = Ṽt−1 + V0, (3)

Ṽt−1 =
(∑t−1

u=1 YuY T
u

∑t−1
u=1 YuZT

u∑t−1
u=1 ZuY T

u

∑t−1
u=1 ZuZT

u

)
=

(
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
, (4)

where t is the traversing order index of the sequence of multi-indices, r is based
on the selected model movement in the lattice I (see Fig. 1), V0 is a positive
definite initialization matrix (see [6]). The optimal causal functional contextual
neighbourhood Ics

r can be solved analytically by a straightforward general-
isation of the Bayesian estimate in [6]. The model can be easily applied also
to numerous synthesis applications. The 2DSCAR model pixel-wise synthesis is
simple direct application of (1) for any 2DSCAR model.
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2.1 Spiral Models

The 2DSCAR model’s movement r on the lattice I takes the form of circular
or spiral like paths as seen in Fig. 1. The causal neighborhood Ic

r has to be
transformed to be consistent for each direction in the traversed path to. The
paths used can be arbitrary as long as they keep transforming the causal neigh-
borhood into Ics

r in such a way that all neighbors of a control pixel r have
been visited by the model in the previous steps. We shall call all these paths as
spirals further on. We present two types of paths - octagonal (Fig. 1 on the left)
and a rectangular spiral (Fig. 1 - right). During our experiments they exhibited
comparable results with the octagonal path being faster thanks to its consisting
of fewer pixels for the same radius.

After the whole path is traversed, the parameters for the center pixel (shown
as red square in Fig. 1) of the spiral are estimated. Contrary to the stan-
dard CAR model [6], since this model’s equations do not need the whole
history of movement through the image but only the given one spiral, the
2DSCAR models can be easily parallelized. If the spiral paths used have circu-
lar shape, the 2DSCAR models exhibit rotational invariant properties thanks to
the CAR model’s memory of all the visited pixels. The spiral neighborhood Ics

r

(Fig. 1 - right) is rotationally invariant only approximately. Additional contextual
information can be easily incorporated if every initialization matrix V0 = Vt−1,
i.e., if this matrix is initialized from the previous data gathering matrix.

Fig. 2. Examples of images from the individual datasets. Top to bottom (rightwards):
AFF (ash, black pine, fir, hornbeam, larch, mountain oak, Scots pine, spruce, Swiss
stone pine, sycamore maple, beech), BarkTex (betula pendula, fagus silvatica, picea
abies, pinus silvestris, quercus robur, robinia pseudacacia), Trunk12 (alder, beech,
birch, ginkgo biloba, hornbeam, horse chestnut, chestnut, linden, oak, oriental plane,
pine, spruce).

2.2 Feature Extraction

For feature extraction, we analyzed the 2DSCAR model around pixels in each
spectral band with vertical and horizontal stride of 2 to speed up the compu-
tation. The following illumination invariant features originally derived for the
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2DCAR model [6] were adapted for the 2DSCAR:

α1 = 1 + ZT
r V −1

zz Zr, (5)

α2 =
√∑

r

(Yr − γ̂Zr)
T

λ−1
r (Yr − γ̂Zr), (6)

α3 =
√∑

r

(Yr − μ)T
λ−1

r (Yr − μ), (7)

where μ is the mean value of vector Yr and

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1).

As the texture features, we also used the estimated γ parameters, the posterior
probability density [6]

p(Yr|Y (r−1), γ̂r−1) =
Γ (β(r)−η+3

2
)

Γ (β(r)−η+2
2

) π
1
2 (1 + XT

r V −1
x(r−1)Xr)

1
2 |λ(r−1)| 12(

1 +
(Yr − γ̂r−1Xr)

T λ−1
(r−1)(Yr − γ̂r−1Xr)

1 + XT
r V −1

x(r−1)Xr

)− β(r)−η+3
2

, (8)

and the absolute error of the one-step-ahead prediction

Abs(GE) =
∣∣∣E {

Yr|Y (r−1)
}

− Yr

∣∣∣ = |Yr − γ̂r−1Xr| . (9)

Fig. 3. Flowchart of our classification approach.

3 Bark Texture Recognition

To speed up the feature extraction part, we first subsample the images to the
height of 300px (if the image is larger), keeping aspect ratio. This subsampling
ratio depends on an application data, i.e., a compromise between the algorithm
efficiency and its recognition rate. The features are then extracted as described
in Sect. 2. The feature space is assumed to be approximated by the multivariate
Gaussian distribution, the parameters of which are then stored for each training
sample image.
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N (θ|μ,Σ) =
1√

(2π)N |Σ|e
(− 1

2 (θ−μ)TΣ−1(θ−μ)).

During the classification stage, the parameters of the Gaussian distribution
are estimated for the classified image as in the training step (the flowchart of
our approach can be seen in Fig. 3). They are then compared with all the distri-
butions of the training samples using the Kullback-Leibler (KL) divergence. The
KL divergence is a measure of how much one probability distribution diverges
from another. It is defined as:

D(f(x)||g(x))
def
=

∫
f(x) log

f(x)
g(x)

dx .

For the Gaussian distribution data model, the KL divergence can be solved
analytically:

D(f(x)||g(x)) =
1
2

(
log

|Σg|
|Σf | + tr(Σ−1

g Σf ) − d + (μf − μg)T Σ−1
g (μf − μg)

)
.

We use the symmetrized variant of the Kullback-Leibler divergence known
as the Jeffreys divergence

Ds(f(x)||g(x)) =
D(f(x)||g(x)) + D(g(x)||f(x))

2
.

The class of the training sample with the lowest divergence from the image
being recognized is then selected as the final result. The advantage of our app-
roach is that the training database is heavily compressed through the Gaussian
distribution parameters (as we extract only about 40 features, depending on
the chosen neighborhood, we only need to store 40 numbers for the mean and
40 × 40 numbers for the covariance matrix) and the comparison with the train-
ing database is extremely fast, enabling us to compare hundreds of thousands of
image feature distributions per second on an ordinary computer.

4 Experimental Results

The proposed method is verified on three publicly available bark databases
and our own bark dataset (not demonstrated here). Examples of images of the
datasets can be seen in Fig. 2. We have used the leave-one-out approach for the
classification rate estimation.

The AFF bark dataset provided by Osterreichische Bundesforste, Austrian
Federal Forests (AFF) [5], is a collection of the most common Austrian trees.
The dataset contains 1182 bark samples belonging to 11 classes, the size of each
class varying between 7 and 213 images. AFF samples are captured at different
scales, and under different illumination conditions.

The Trunk12 dataset ([17], http://www.vicos.si/Downloads/TRUNK12)
contains 393 images of tree barks belonging to 12 different trees that are found
in Slovenia. The number of images per class varies between 30 and 45 images.

http://www.vicos.si/Downloads/TRUNK12
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Table 1. AFF bark dataset results of the presented method (MO - Mountain oak, SP
- Scots pine, SSP - Swiss stone pine, SM - Sycamore maple).

Ash Beech Black

pine

Fir Horn-

beam

Larch MO SP Spruce SSP SM Sensitivity

[%]

Ash 22 0 0 1 0 0 0 0 0 0 1 91.7

Beech 0 7 0 0 0 0 0 0 0 0 0 100

B. pine 0 0 139 0 0 9 0 8 0 1 0 88.5

Fir 0 0 0 105 0 6 0 5 2 0 0 89.0

Horn. 0 0 1 0 32 0 0 0 0 0 0 97.0

Larch 0 0 6 0 0 156 0 27 0 2 0 81.7

MO 0 0 0 0 0 1 59 0 3 5 0 86.8

SP 0 0 9 1 0 28 0 142 1 0 0 78.5

Spruce 1 0 3 4 0 6 2 4 181 3 0 88.7

SSP 0 0 5 2 0 7 9 0 4 60 0 69.0

SM 1 0 0 0 3 0 3 0 0 3 2 16.7

Precision [%] 91.7 100 85.3 92.9 91.4 73.2 80.8 76.3 94.8 81.1 66.7 Accuracy
83.6

Bark images are captured under controlled scale, illumination and pose condi-
tions. The classes are more homogeneous than those of AFF in terms of imaging
conditions.

The BarkTex dataset [10] contains 408 samples from 6 bark classes, i.e., 68
images per class. The images have small (256 × 384) resolution and they have
unequal natural illumination and scale.

We have achieved the accuracy of 83.6% on the AFF dataset (Table 1), 91.7%
on the BarkTex database (Table 2) and 92.9% on the Trunk12 dataset (Table 3).
In all the three tables, the name of the row indicates the actual tree type whereas
the column indicates the predicted class. The comparison with other methods

Table 2. BarkTex dataset results of the presented method (BP - Betula pendula, FS
- Fagus silvatica, PA - Picea abies, PS - Pinus silvestris, QR - Quercus robur, RP -
Robinia pseudacacia).

BP FS PA PS QR RP Sensitivity [%]

Betula pendula 64 0 0 2 2 0 94.1

Fagus silvatica 0 68 0 0 0 0 100.0

Picea abies 3 0 62 0 3 0 91.2

Pinus silvestris 0 0 1 67 0 0 98.5

Quercus robur 1 2 7 9 48 1 70.6

Robinia pseudacacia 1 0 0 1 1 65 95.6

Precision [%] 92.8 97.1 88.6 84.8 88.9 98.5 Accuracy 91.7
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Table 3. Trunk12 dataset results of the presented method (A - Alder, Be - Beech, Bi
- Birch, Ch - Chestnut, GB - Ginkgo biloba, H - Hornbeam, HC - Horse chestnut, L -
Linden, OP - Oriental plane, S - Spruce).

A Be Bi Ch GB H HC L Oak OP Pine S Sensitivity

[%]

Alder 33 0 1 0 0 0 0 0 0 0 0 0 97.1

Beech 0 29 0 0 0 1 0 0 0 0 0 0 96.7

Birch 0 0 36 1 0 0 0 0 0 0 0 0 97.3

Chestnut 2 0 0 24 0 0 0 0 4 0 2 0 75.0

Ginkgo biloba 0 0 0 0 30 0 0 0 0 0 0 0 100

Hornbeam 0 2 0 0 0 28 0 0 0 0 0 0 93.3

Horse chestnut 0 0 1 0 0 1 27 3 0 0 1 0 81.8

Linden 0 0 0 1 0 0 4 25 0 0 0 0 83.3

Oak 1 0 0 0 0 0 0 0 29 0 0 0 96.7

Oriental plane 0 0 0 1 0 0 1 0 0 30 0 0 93.8

Pine 0 0 0 0 0 0 0 0 0 0 30 0 100

Spruce 1 0 0 0 0 0 0 0 0 0 0 44 97.8

Precision [%] 89.2 93.5 94.7 88.9 100 93.3 84.4 89.3 87.9 100 90.9 100 Accuracy
92.9

Table 4. Comparison with the state-of-the-art. ‘x’ denotes lack of results in the par-
ticular article on the given dataset.

Dataset [%] Our results [3] [5] [16] [7] [11] [12] [14] [13]

AFF 83.6 60.5 69.7 96.5 - - - - -

BarkTex 91.7 84.6 - - 81.4 84.7 81.4 82.1 89.6

Trunk12 92.9 62.8 - - - - - - -

is presented in Table 4. We can see that our approach vastly outperforms all
compared methods on the BarkTex and Trunk12 datasets and has the second
best results on the AFF dataset.

5 Conclusion

The presented tree bark recognition method uses an underlying descriptive tex-
tural model for the classification features and outperforms the state-of-the-art
alternative methods on two public bark databases and is the second best on the
AFF database. Our method is rotationally invariant, benefits from information
from all spectral bands and can be easily parallelized or made fully illumination
invariant. We have also executed our method without any modification on the
AFF dataset’s images of needles and leaves, with results exceeding 94% accuracy.
This will be a subject of our further research.
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