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Abstract—This paper introduces a novel multidimensional
statistical model for realistic modeling, enlargement, editing, and
compression of the recent state-of-the-art bidirectional texture
function (BTF) textural representation. The presented multispec-
tral compound Markov random field model (CMRF) efficiently
fuses a non-parametric random field model with several paramet-
ric random fields models. The primary purpose of our modeling
texture approach is to reproduce, compress, and enlarge a given
measured natural or artificial texture image so that ideally both
natural and synthetic texture will be visually indiscernible for
any observation or illumination directions. However, the model
can be easily applied for BFT material texture editing as well.
The CMRF model consists of several parametric sub-models
each having different characteristics along with an underlying
switching structure model which controls transitions between
these sub models. The proposed model uses the non-parametric
random field for distributing local texture models in the form of
analytically solvable wide-sense BTF Markov representation for
single regions among the fields of a mosaic approximated by the
random field structure model. The non-parametric control field
of BTF-CMRF is reiteratively generated to guarantee identical
region-size histograms for all material sub-classes present in the
target example texture. The local texture regions (not necessarily
continuous) are represented by analytical BTF models modeled
by the adaptive 3D causal auto-regressive (3DCAR) random field
model which can be analytically estimated as well as synthesized.
The visual quality of the resulting complex synthetic textures
generally surpasses the outputs of the previously published
simpler non-compound BTF-MRF models. The model allows
reaching huge compression ratio incomparable with any standard
image compression method.

I. INTRODUCTION

A real material surface reflectance is a very complex, cur-
rently unfeasible to measure or to mathematically model, func-
tion of 16 variables [1]. Its state-of-the-art approximation BTF
allows expressing spectral, spatial, illumination angle, and
observation angle visual dependencies of a measured material
texture. Static BTF texture modeling based on probabilistic
models requires complex seven-dimensional models. It is far
from being a straightforward generalization of any 3D model
(required for usual static three-dimensional color textures)
with just adding four additional dimensions. Every additional
data space dimension multiplies difficulties encountered within
all basic modeling steps [1], i.e., optimal model selection,
robust parameters’ estimation from always limited learning
data, stability, and synthesis. A realistic reliable full 7D
BTF model has not yet been developed, thus we use two

factorization levels which are conceivable approximation for
acceptable visual quality.

Compound Markov random field models (CMRF) consist
of several sub-models each having different characteristics
along with an underlying structure model which controls
transitions between these sub models [2]. CMRF models were
successfully applied to image restoration [2]–[5], segmentation
[6], or modeling [7]–[11]. However, these models always re-
quire demanding numerical solutions with all their well-known
drawbacks. The exceptional CMRF [7], [9], [10] models allow
analytical synthesis at the cost of a slightly compromised
compression rate due to the non-parametric control field data.
Methods based on different Markov random fields [12]–[16]
combine an estimated range-map with synthetic multiscale
smooth texture using Markov models. The measured BTF
data are analyzed for their intrinsic dimensionality [1] and
factorized into BTF and subsequently also spatial factors. The
original registered BTF illumination / view measurement space
is segmentation into several subspace images using the K-
means algorithm in the perceptually uniform CIE Lab color-
space using color cumulative histograms features.

We propose a hierarchical BTF-CMRFNPi3AR model which
combines a non-parametric Markov random field (MRF)
model with local parametric MRF models [17], [18]. The
parametric MRF models can be analytically solved, while
the other is synthesized using a proposed fast iterative method
for its synthesis.

II. COMPOUND MARKOV MODEL

Let us denote a multiindex r = (r1, r2), r ∈ I, where I is
a discrete 2-dimensional rectangular lattice and r1 is the row
and r2 the column index, respectively. Xr ∈ {1, 2, . . . ,K}
is a random variable with natural number value (a positive
integer), Yr is the multispectral pixel at location r and
Yr,j ∈ R is its j-th spectral plane component. Both random
fields (X,Y ) are indexed on the same M×N lattice I . Let us
assume that each multispectral observed texture Ỹ (composed
of d spectral planes, e.g., d = 3 for color textures) and indexed
on the M̃ × Ñ lattice Ĩ (usually Ĩ ⊆ I) can be modeled by a
compound Markov random field model, where the principal
Markov random field (MRF) X controls switching to a
regional local MRF model Y =

⋃K
i=1

iY . Single K regional
sub-models iY are defined on their corresponding lattice
subsets iI, iI ∩ jI = ∅ ∀i 6= j and they are of the same
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Fig. 1. The granite control field synthesis. The target texture control field, initialization, and selected iteration steps rightwards.

MRF type. These models differ only in their contextual support
sets iIr and corresponding parameters sets iθ. The BTF-
CMRFNPi3AR model has posterior probability

P (X,Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ ) (1)

and the corresponding optimal MAP solution is:

(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX ,ΩY are the corresponding configuration spaces for
both random fields (X,Y ). To avoid an iterative MCMC MAP
solution, we proposed the following two-step approximation
[7]:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) , (2)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) . (3)

This approximation significantly simplifies the BTF-
CMRFNPi3AR estimation because it allows us to take
advantage of an analytical estimation of all regional MRF
models iY in (3).

A. Non-Parametric Control Field

The control random field X (Fig.1 - left upper row) is
assumed to be independent on illumination and observa-
tion angles, i.e., it is identical for all possible combinations
φi, φv, θi, θv azimuthal and elevation illumination / viewing
angles, respectively. This assumption does not compromise
the resulting BTF space quality, because it influences only a
material texture macro-structure which is independent on these
angles for 2D BTF textures.

The control random field X̆ is estimated using simple
K-means clustering of Ỹ in the RGB color space into
predefined number of K classes, where cluster indices ωi
are X̆r ∀r ∈ I estimates. The number of classes K
can be estimated using the Kullback-Leibler divergence and
considering sufficient amount of data necessary to reliably
estimate all local Markovian models. The clustering resulting
thematic map is used to compute region size histograms h̃i
for all i = 1, . . . ,K classes. Let us order classes according the
decreasing number of pixels ñi belonging to each class, i.e.,
ñ1 ≥ ñ2 ≥ . . . ≥ ñK . Histograms h̃i are the only parameters
required to store for the control field.

1) Iterative Control Field Synthesis: The iterative algorithm
(Fig.1) is based on a data structure which describes for each
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pixel a membership in the region, for each region the class
membership, a size of the region and the requested number
of regions of its size, all border pixels from both sides of the
border, possibility to decrease or increase of the region, and for
all classes the histogram and regions, which can be increased
or decreased. After any change in a pixel class assignment this
structure has to be updated.

0. The synthesized M × N required control field is
initialized to the largest class and all histograms
cells are rescaled using the scaling factor MN

M̃Ñ
,

i.e., X(0)
r = ω1 ∀r ∈ I and h̃i → hi for

i = 1, . . . ,K. Starting from the second largest class
ω2 till the smallest size class ωK , a lattice multiindex
r is randomly generated. Class index Xr is changed
to new value Xr = ωi only if its previous value was
Xr = ω1 and the total number of control field pixels
with class indicator ωi is smaller than its final value
ni. After this initialization step all classes have their
correct required number of pixels but not yet their
correct region size histograms.

1. Pixels r and s are randomly selected with the follow-
ing properties: The pixel r from the class ωi is on
the border between region ↓ ωAi (a region A which
can be decreased) and a region ↑ ωBj (a region B
which can be increased). The pixel s from the class
ωj is on the border between region ↓ ωCj (a region C
which can be decreased) and a region ↑ ωDi (a region
D which can be increased). These regions have to be
distinct, i.e., A∩D = ∅ and B∩C = ∅. If such pixels
r, s exist go to the step 5. If not repeat this step once
more.

2. Gradually check all class couples starting from
ω1, ω2, . . . , ωK to find pixels r, s which meet con-
ditions in step 1. All regions corresponding to the
chosen classes ωi and ωj are selected randomly. If
such pixels r, s exist go to the step 5.

3. Randomly select a region from class ωi which has
two neighbouring regions of class ωj such as one can
be decreased and another increased. If there exist two
border pixels r, s in region ωj , where r is a border
pixel with a region to be increased and s with a
region to be decreased, go to the step 5.

4. Gradually check all classes with incorrect histogram,
starting from ω1, ω2, . . . , ωK , for every class ωi
gradually check all its regions ↑ ωAi which can be
increased, for each region ↑ ωAi check every region
neighbouring border pixel r from class ωj and
region ↓ ωBj (a region B which can be decreased)
and find pixel s with the following properties: pixel
s is from the class ωi and region ↓ ωCi (a region C
which can be decreased), pixel s is on the boarder
of the region ↑ ωDj from class ωj (a region which
can be increased). These regions have to be distinct,
i.e., A ∩ C = ∅ and B ∩ D = ∅. If such pixels do
not exist go to step 7.

5. Xr = ωj , Xs = ωi update the data structure.
6. If the number of iterations is less than a selected

limit go to 1.
7. Store the resulting control field and stop.
The steps 1.,2. allow simultaneous improvement of four

regions while the step 3. improves two regions only. The
algorithm converges to the correct class histograms hi i =
1, . . . ,K.

Fig. 2. The granite texture synthesis, target texture (left upper row), its
synthesis and enlargement right and bottom, respectively.

B. Local BTF Markov Models

Local i-th texture region (not necessarily continuous) is
represented by the adaptive 3D causal auto-regressive random
(3DCAR) field model [17], [18]. This model can be analyti-
cally estimated as well as easily synthesized. The model can
be defined in the following matrix equation (i-th model index
is further omitted to simplify notation):

Yr = γ Zr + εr , (4)

where Zr = [Y Tr−s : ∀s ∈ Ir]
T is the η d × 1 data

vector with multiindices r, s, t, γ = [A1, . . . , Aη] is
the d × d η unknown parameter matrix with parametric
sub-matrices As. The model functional contextual neighbour
index shift set is denoted Ir and η = cardinality(Ir) .
All 3DCAR model statistics can be efficiently estimated
analytically [17]. Given the known 3DCAR process history
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Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the param-
eter estimation γ̂ can be accomplished using fast, numerically
robust and recursive statistics [17]:

γ̂Tt−1 = V −1
zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

(∑t−1
u=1 YuY

T
u

∑t−1
u=1 YuZ

T
u∑t−1

u=1 ZuY
T
u

∑t−1
u=1 ZuZ

T
u

)
=

(
Ṽyy(t−1) Ṽ Tzy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

where V0 is a positive definite matrix (see [17]). Although,
an optimal causal functional contextual neighborhood Ir can
be solved analytically by a straightforward generalization of
the Bayesian estimate in [17], we use faster approximation
which does not need to evaluate statistics for all possible
Ir configurations. This approximation is based on spatial
correlations. Starting from the causal part of a hierarchical
non-causal neighborhood, neighbors locations corresponding
to spatial correlations larger than a specified threshold (> 0.6)
are selected. The i-th model pixel-wise synthesis is simple di-
rect application of (4) for all 3DCAR models. 3DCAR models
provide better spectral modeling quality than the alternative
spectrally decorrelated 2D models for motley textures at the
cost of small increase of the number of parameters to be stored.

Parameters of the selected local subspace BTF Markov mod-
els are estimated and stored in a small parametric database.
These spectral models are finally fused with the estimated
range map. The BTF range map estimate could benefit from
tens of ideally mutually registered BTF measurements, thus it
is advantageous to use the over-determined photometric stereo
from among the possible estimation alternatives of the range
map. The required synthetic factors are generated on request,
the factorization process of the synthetic BTF subspace is
inverted, and then this inversion is used in a virtual scene
mapping. Finally, the overall BTF texture’s visual appearance
during changes of viewing and illumination conditions is
simulated using the displacement mapping technique [1].

III. RESULTS

Automatic texture quality evaluation is important but still
unsolved difficult problem and qualitative evaluation is for now
possible only using impractical and expensive visual psycho-
physics. We have recently tested [19] several published state-
of-the-art image quality measures and also a dedicated texture
measure (STSIM) [20] in several variants or our textural
qualitative criterion based on the generative Markovian texture
model statistics ζ [21], which slightly outperforms the best
alternative - the STSIM fidelity criterion, on our texture fi-
delity benchmark (http://tfa.utia.cas.cz). These results clearly
demonstrate that neither the standard image quality criteria
(MSE [22], VSNR [23], VIF [24], SSIM [25], CW-SSIM
[26]) nor the STSIM texture criterion can be reliably used
for texture quality validation (see for details [19]). It is easy

Fig. 3. The clay texture synthesis, target texture (left upper row), its synthesis
and enlargement right and bottom, respectively.

to manifest failure counterexamples for each of these quality
criteria. Thus, our results can be checked only visually. Figs.2-
5 demonstrate various natural (granite, clay, rusty plate, and
lichen) texture synthesis results using the proposed model.
Due to space constraint we present only one texture from
each corresponding BTF measurement space. Fig.6 shows
the texture editing capability of the model. Its top row are
measured natural bark and begonia textures and the middle
row contains their corresponding synthesis results. Finally, the
bottom texture was created by combing an estimated control
field from the bark texture with local Markovian models (4)
estimated from the begonia texture.

IV. CONCLUSION

The presented BTF-CMRFNPi3AR method exhibits very
good results on the selected texture categories, i.e., textures
with random type of their macro-structure. It can be easily
modified by changing the underlying mosaic generation model,
which is now performed by iterative modification of class
region histograms, to fit better with different random texture
types. The proposed BTF-CMRFNPi3AR model is well suited
to model various types of natural materials surfaces such as
lichens, stones, barks, rusty materials, or meadows. The model
allows for seamless multispectral texture synthesis and en-
largement with an extremely high compression rate (1 : 106
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Fig. 4. The rusty plate texture synthesis, target texture (left upper row), its
synthesis and enlargement right and bottom, respectively.

relative to our measured BTF samples size) independent of
the size of the desired resulting texture. The model does
not generate any repetitions contrary to the most sampling
alternatives. The data needed to be stored consists of only
several dozens of parameters. Using a simple modification of
the method we can use it for texture editing (by changing
the local texture models for several indexes of the control
field), we can use it for modeling BTF textures or even the syn-
thesis of new, unmeasured textures by manually assigning
the model’s parameters. The visual quality of the resulting
complex synthetic textures generally surpasses the outputs of
the previously published simpler non-compound BTF-MRF
models.
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[11] M. Haindl and V. Havlı́ček, “Two compound random field texture
models,” in 2016 the 21st IberoAmerican Congress on Pattern
Recognition (CIARP 2016), ser. Lecture Notes in Computer Science,
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