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Abstract—We propose a substantial speed up a modification
to our recently published novel multidimensional statistical
model for realistic modeling, enlargement, editing, and com-
pression of the recent state-of-the-art Bidirectional Texture
Function (BTF) textural representation. The multispectral com-
pound Markov random field model (CMRF) efficiently fuses
a non-parametric random field model with several parametric
Markovian random fields models. The principal application of
our model is physically correct and realistic synthetic imitation
of material texture, its enlargement, and huge compression. So
that ideally, both natural and synthetic texture of a given mea-
sured natural or artificial texture will be visually indiscernible
for any observation or illumination directions. The presented
model can be easily applied also for BTF material texture
editing to model non-measured or unmeasurable but still
realistic material textures. The CMRF model consists of several
parametric sub-models each having different characteristics
along with an underlying switching structure model which
controls transitions between these submodels. The proposed
model uses the non-parametric random field for distributing
local texture models in the form of analytically solvable wide-
sense BTF Markov representation for single regions among
the fields of a mosaic approximated by the random field
structure model. The non-parametric control field of the BTF-
CMREF is iteratively generated to guarantee identical region-
size histograms for all material sub-classes present in the target
example texture. The present iterative algorithm significantly
cuts the number of iterations to converge in comparison
with our previous iterative method and even sometimes skip
all iteration due to its ingenious initialization. The local
texture regions (not necessarily continuous) are represented
by analytical BTF models modeled by the adaptive 3D causal
auto-regressive (3DCAR) random field model which can be
analytically estimated as well as synthesized. The visual quality
of the resulting complex synthetic textures generally surpasses
the outputs of the previously published simpler non-compound
BTF-MRF models and allows to reach tremendous compression
ratio incomparable with any standard image compression
method.

Keywords-BTF texture model; compound Markov random
field; BTF texture synthesis;

I. INTRODUCTION

A physically correct real materials surface reflectance
is a very complex, currently unfeasible to measure or to
mathematically model, the function of at least 16 variables
[1]. The Bidirectional Texture Function (BTF) is its state-
of-the-art approximation which allows to express spectral,
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spatial, illumination angle, and observation angle visual
dependencies of a measured material texture what signif-
icantly improves the visual realism of a modeled object
at the expense of non-trivial measurements and mathemat-
ical modeling of these huge BTF data spaces. Static BTF
texture modeling based on probabilistic models requires
complex seven-dimensional models. It is far from being a
straightforward generalization of any 3D model (required
for usual static three-dimensional color textures) with just
adding four additional dimensions. On the contrary, every
extra model dimension multiplies difficulties encountered
within all necessary modeling steps [1], i.e., optimal model
selection, robust parameters estimation from always limited
learning data, stability, and synthesis. A practical, reliable
full 7D BTF model has not yet been developed. Thus
we use two factorization levels which are the conceivable
approximation for acceptable visual quality.

Compound Markov random field models (CMRF) consist
of several sub-models each having different characteristics
along with an underlying structure model which controls
transitions between these submodels [2]. CMRF models
were already applied to the image restoration [2]-[5], seg-
mentation [6], or image or texture modeling [7]-[10]. Un-
fortunately, Markovian models generally require demanding
numerical solutions for learning as well as for synthesis with
all their well-known drawbacks. The exceptional CMRF
[7]1, [9] models allow analytical synthesis at the cost of
a slightly compromised compression rate due to the non-
parametric control field data. Methods based on different
Markov random fields [11]-[16] combine an estimated
range-map with synthetic multiscale smooth texture using
Markov models. The measured BTF data are analyzed for
their intrinsic dimensionality [1] and factorized into BTF
and subsequently also spatial factors. The original registered
BTF illumination-/-view measurement space is segmentation
into several subspace images using the K-means algorithm
in the perceptually uniform CIE Lab color-space using color
cumulative histograms features.

In this paper, we propose a significant speed-up mod-
ification of our previous BTF-CMRFYNP#B3A4E model [16].
This new iterative procedure allows cutting the number of
iterations to converge to be about 20% of the previous
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Figure 1.
214 cycles, while the older algorithm [16] needs 32 523 cycles.

algorithm. We propose a hierarchical BTF-CMRFN P/i3AR
model which combines a non-parametric Markov random
field (MRF) model with local parametric MRF models
[17], [18]. The parametric MRF models can be analytically
solved, while the other is synthesized using a newly pro-
posed faster iterative method for its synthesis.
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3 10% [16]

32 523 [16]

Comparison of the granite control field synthesis [16] and its proposed speed up version. The proposed control field iteration converges at 19

II. COMPOUND MARKOV MODEL

Let us denote a multiindex r = (ry,72), r € I, where
I is a discrete 2-dimensional rectangular lattice and 7
is the row and 179 the column index, respectively.
X, € {1,2,...,K} is a random variable with natural
number value (a positive integer), Y,. is the multispectral



pixel at location 7 and Y,.; € R is its j-th spectral
plane component. Both random fields (X,Y’) are indexed
on the same M x N lattice /. Let us assume that each
multispectral observed texture Y (composed of d spectral
planes, e.g., d = 3 for colour textures) and indexed on the
M x N lattice I (usually I C I) can be modeled by a
compound Markov random field model, where the principal
Markov random field (MRF) X controls switching to
a regional local MRF model Y = JX, Y. Single K
regional sub-models ‘Y are defined on their corresponding
lattice subsets ‘I, ‘INJI = Vi # j and they are
of the same MRF type. These models differ only in their
contextual support sets ‘I, and corresponding parameters
sets ‘f. The BTF-CMRFV'/#334R model has the posterior
probability

P(X,Y|Y)=P(Y|X,Y)P(X|Y) e))
and the corresponding optimal MAP solution is:

PY|X,Y)P(X|Y) ,

max
€EQx,YEQy

X,Y)=

(X,Y) =arg
where (1x,€)y are the corresponding configuration spaces
for both random fields (X,Y). To avoid an iterative
MCMC MAP solution, which cannot be managed in the
huge BTF data space, we proposed the following two step

approximation [7]:

X) = P(X|Y 2
(X) arg max P(X|Y) ©)
V) = PY|X,Y) .

(Y) arg max P(Y'|X,Y) ©)
This approximation substantialy simplifies the BTF-

CMRENPFBAR agtimation because it allows us to take

advantage of an analytical estimation of all regional MRF
models *Y in (3).

A. Non-Parametric Control Field

The control random field X (Fig.1 - left upper row) is
assumed to be independent on illumination and observation
angles, i.e., it is identical for all possible combinations
i, Ov, 0;, 0, azimuthal and elevation illumination / viewing
angles, respectively. This assumption does not compromise
the resulting BTF space quality, because it influences only
a material texture macro-structure which is independent on
these angles.

The control random field X is estimated using simple
K-means clustering of Y in the RGB colour space into
predefined number of K classes, where cluster indices w;
are )v(,n Vr € I estimates. The number of classes K
can be estimated using the Kullback-Leibler divergence and
considering a sufficient amount of data necessary to reliably
estimate all local Markovian models. The clustering resulting
thematic map is used to compute region size histograms 5h;
for all = 1,..., K classes. Let us order classes according
the decreasing number of pixels 7, belonging to each class,
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ie., nmy > ng > ... > nx. Histograms iLZ are the only
parameters required to store for the control field.

1) Iterative Control Field Synthesis: The iterative algo-
rithm (Fig.1) is based on a data structure which describes
for each pixel a membership in the region. For each region
the class membership, a size of the region and the requested
number of regions of it’s size, all border pixels from both
sides of the border, possibility to decrease or increase of the
region, and for all classes the histogram and regions, which
can be increased or decreased. After any change in a pixel
class assignment, this structure has to be updated.

0. The synthesized M x N required control field is
initialized to the value wq it means, that pixel was
not assigned to any class w; fori =1,..., K.
All histograms cells are rescaled using the scaling

factor %%, ie., Xﬁo) =w; VYreland h; — h;
for ¢ = 1,..., K. All regions from all classes
t = 1,...,K are sorted by region size. Starting

from the biggest region A; till the smallest region
Apr, where M is number of all regions, a lattice
multiindex 7 is randomly generated. First pixel X,
of the region A; where j = 1,..., M and class
w; 1s randomly selected and is changed to new
value X, = w; only if its previous value was
X, = wo All neighbours X, of the pixel X,
which fulfil conditions Xy = wy and pixel X
has no neighbour from the class w; are added to
the queue (. Till the size of region A; is higher
than number of actually added pixels, next pixel
X, is randomly selected from the queue () the
values is changed to X, = w; and its neigbours
are added to the queue @ if they meets mentioned
conditions. If the queue () is empty and size of the
region A; is higher than the number of actually
assigned pixels, the rest of the pixels is randomly
assigned to the class w; after the initialization of
the last region Aj;. After this initialization step, all
classes have their correct required number of pixels
but not yet their correct region size histograms.

1. Pixels r and s are randomly selected with the
following properties: The pixel r from the class
w; is on the border between region | wi' (a region
A which can be decreased) and a region 1 wJB (a
region B which can be increased). The pixel s
from the class w; is on the border between region
1 ch (a region C' which can be decreased) and a
region T wP (a region D which can be increased).
These regions have to be distinct, i.e., AND =0
and BN C = (. If such pixels r, s exist go to the
step 5. If not repeat this step once more.

2. Gradually check all class couples starting from
wi,ws, ..., wg to find pixels r,s which meet
conditions in step 1. All regions corresponding to



the chosen classes w; and w; are selected randomly.
If such pixels r, s exist, go to step 5.

3. Randomly select a region from class w; which has
two neighbouring regions of class w; such as one
can be decreased and another increased. If there
exist two border pixels 7, s in the region w;, where
r is a border pixel with a region to be increased
and s with a region to be decreased, go to the step
5.

4. Gradually check all classes with incorrect his-
togram, starting from wi,ws,...,wg, for every
class w; gradually check all its regions 1 wf!
which can be increased, for each region 1 sz
check every region neighbouring border pixel 7
from class w; and region | wJB (a region B
which can be decreased) and find pixel s with
the following properties: pixel s is from the class
w; and region | w¢ (a region C' which can be
decreased), pixel s is on the boarder of the region
0 wJD from class w; (a region which can be
increased). These regions have to be distinct, i.e.,
ANC =0 and BN D = (. If such pixels do not
exist go to step 7.

5. X, = wj;, X, = w; update the data structure.

6. If the number of iterations is less than a selected
limit go to 1.

7. Store the resulting control field and stop.

The steps 1.,2. allow simultaneous improvement of four re-
gions while step 3. improves two regions only. The algorithm
converges to the correct class histograms h; i =1,..., K.

Table T
THE NUMBER OF ITERATIONS FOR THE CONTROL FIELD SYNTHESIS FOR
THE CONVERGENCE.

texture 256 x 256 [16]|256 x 256|512 x 512 [16][512 x 512
moss 178 167 3877 392 954|470 022
bark16 40 193 7957 141 683 40 985
bark4 45 796 12 666 128 108 41 924
begonia 198 430 9 961 216 328 74 064
blossoms1 9 043 864 0 400 000 0
floor tile 4792 656 870 000 14 215 445|500 000
floor plastic 9906 941| 1 650 000 12 787 487 500 000
clay06 12 227 0 45 209 0
clayl4 28 073 8 609 99 465 11 885
fabric16 18 603 9 080 77 959 19 542
granite2 32523 19 214 260 779| 171 611
grass38 23 502 18 542 93 131 31 830
lichen9 63 931 9 655 140 146 29 137
marble4 75 374 12 581 480 000 55519
meadow3 67 041 51727 500 000| 500 000
stone90 18 369 4313 66 891 7627
rusty plate 55 065 7175 92 490 48 224
stone28 15 956 0 255 618 200 410
stone29 13 902 4 780 56 803 24 249
median 45 796 9 080 141 683 41 924
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Figure 2. The granite texture synthesis, target texture (left upper row), its
synthesis and enlargement right, middle, and bottom, respectively.

B. Local BTF Markov Models

Local i-th texture region (not necessarily continuous)
is represented by the adaptive 3D causal auto-regressive
random (3DCAR) field model [17], [18]. This model can
be analytically estimated as well as easily synthesised. The
model can be defined in the following matrix equation (¢-th
model index is further omitted to simplify notation):

Yr:fYZT‘}'er 5 4)

where Z,. = [V, L, :Vs € L]T isthe nd x1 data
vector with multiindices r,s,t, v = [Ay,..., A,] is the
d x d n unknown parameter matrix with parametric sub-



matrices As. The model functional contextual neighbour
index shift set is denoted I, and 7 = cardinality(I,) .
All 3DCAR model statistics can be efficiently estimated
analytically [17]. Given the known 3DCAR process his-
tory YO U ={Y; 1,V 0,....Y1,Z, Zs 1,..., 71} the
parameter estimation 4 can be accomplished using fast,
numerically robust and recursive statistics [17]:

’3’tT—1 = Vz;(lt—nvzy(t*l)’

Vit = Vi + Vo,

o - (TR TR
S ZuY Y ZuZy

— ‘N/yy(t—l) Yzz;(t—m
Vey—1)  Vaz—1)
where V[ is a positive definite matrix (see [17]). Although,
an optimal causal functional contextual neighbourhood I,
can be solved analytically by a straightforward generali-
sation of the Bayesian estimate in [17], we use the faster
approximation which does not need to evaluate statistics for
all possible I, configurations. This approximation is based
on spatial correlations. Starting from the causal part of a
hierarchical non-causal neighbourhood, neighbours locations
corresponding to spatial correlations larger than a specified
threshold (> 0.6) are selected. The i-th model pixel-wise
synthesis is the simple, direct application of (4) for all
3DCAR models. 3DCAR models provide better spectral
modelling quality than the alternative spectrally decorrelated
2D models for motley textures at the cost of a small increase
in the number of parameters to be stored.

Parameters of the selected local subspace BTF Markov
models are estimated and stored in a small parametric
database. These spectral models are finally fused with the
estimated range map. The BTF range map estimate could
benefit from tens of ideally mutually registered BTF mea-
surements, thus it is advantageous to use the over-determined
photometric stereo from among the possible estimation
alternatives of the range map. The required synthetic factors
are generated on request, the factorization process of the
synthetic BTF subspace is inverted, and then this inversion
is used in a virtual scene mapping. Finally, the overall BTF
texture’s visual appearance during changes of viewing and
illumination conditions is simulated using the displacement
mapping technique [1].

III. RESULTS

The ideal synthetic texture should be visually indis-
cernible for any observation or illumination directions from
the given measured natural texture, but pixelwise identical.
Such visual similarity between a synthetic and measured
BTF space would ideally be measured by some mathemat-
ical criterion. Unfortunately, an automatic texture quality
evaluation is important but still unsolved difficult problem,
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Figure 3. The clay texture synthesis, target texture (left upper row), its
synthesis and enlargement right and bottom, respectively.

and qualitative evaluation is, for now, possible only us-
ing impractical and expensive visual psycho-physics. We
have recently tested [19] on our texture fidelity benchmark
(http://tfa.utia.cas.cz) several published state-of-the-art im-
age quality measures and also a dedicated texture measure
(STSIM) [20] in several variants or our textural qualitative
criterion based on the generative Markovian texture model
statistics ¢ [21] which slightly outperforms the best alterna-
tive - the STSIM fidelity criterion.

These results demonstrate that neither the standard image
quality criteria (MSE [22], VSNR [23], VIF [24], SSIM
[25], CW-SSIM [26]) nor the STSIM texture criterion can
be reliably used for texture quality validation (see for details
[19]). It is easy to manifest failure counterexamples for each
of these published quality criteria. Thus our results can be
checked only visually.

Fig.1 visualizes a comparison between our previous [16]
iterative control field synthesis and the presented one on the
granite control field. It possible to note an important initial-
ization improvement and the overall convergence speed up to
59% of previously required cycles. This speed up depends on
the texture. Tab.I shows the required number of cycles for the



measurement synthesis

Figure 4. The floor tile texture synthesis, target texture (left upper row),
its synthesis and enlargement right and bottom, respectively.

convergence for nineteen materials, two texture sizes, and
the previous and presented iterative methods. Even for three
textures (blossomsl, clay06 Fig.3, stone28), the initialization
is sufficient, and there is no need for any iterations. The
median speed up between both methods is one-fifth of
previous cycles. The number of convergence cycles (Tab.I)
is linearly dependent on the required control field size in
average.

Figs.2,5 allow to compare synthesis results for the pre-
vious [16] and presented methods on granite and lichen
textures, respectively. Although both methods produce high-
quality results, they differ. The presented method tends to
create large convex regions, if possible. Both figures also
illustrate a negligible visual difference between the original
measurement and its synthetic version if the control field
was just estimated and not synthesized (upper rows right).
This is another demonstration of the high model quality as
well as its huge compression capability.

Figs.2-6 demonstrate various natural (granite, clay, floor
tile, lichen, grass, and begonia) texture synthesis results
using the proposed model. Due to space constraint, we
present only one texture from each corresponding BTF mea-
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Figure 5. The lichen texture synthesis, target texture (left upper row), its
synthesis and enlargement right, middle, and bottom, respectively.

surement space. For some textures (lichen, grass, begonia)
we do not have BTF measurements. Thus they illustrate
the modeling application of our model on standard color
textures. However, even these non-BTF textures can be used
as control field learning data for BTF space editing if the
parametric models Y are estimated from some BTF data
space.

Figs.6,7 show the texture editing capability of the model.
Its top row are measured natural lichen and begonia or grass
textures and the bottom row contains their corresponding
editing results. The bottom texture was created by combing
an estimated control field from the lichen texture with local



X lichen & Y begonia

Figure 6. The measured bark (source of the control field) and begonia
textures (upper row), their synthesis (middle), and edited texture synthesis
with the bark control field and local begonia models.

Markovian models (4) estimated from the begonia or grass
texture. Although the edited textures change their appear-
ance, they still look convincingly and physically correct.

IV. CONCLUSION

The presented BTF-CMRFV ' /#34R method exhibits very
good results on the selected texture categories, i.e., textures
with the random type of their macro-structure. The model
combines the iteratively solved non-parametric random field
for distributing local texture models with the analytically
solvable wide-sense BTF Markovian submodels. The median
speed up between the presented and our previous method
for the non-parametric control field synthesis is one-fifth
of the required cycles to converge. For some textures, the
control field synthesis even does not need any iterations.
The synthetic texture can be easily modified by changing
the underlying mosaic generation model, which is now
performed by fast iterative modification of class region
histograms, to fit better with different random texture types.
The proposed BTF-CMRFNP/3AR model is well suited to
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grass measurement

PN et

:
lichen & Y grass

Figure 7. The measured bark (source of the control field) and grass textures
(upper row), their synthesis (middle), and edited texture synthesis with the
bark control field and local grass models.

model various types of natural materials surfaces such as
clay, lichens, stones, barks, rusty materials, or meadows.
The model allows for seamless multispectral texture syn-
thesis and enlargement with an extremely high compression
rate independent of the size of the desired resulting texture.
The model does not generate any repetitions contrary to the
most sampling alternatives. The data needed to be stored
comprised of only several dozens of parameters and few
region size histograms. Using a simple modification of
the method, we can use it for texture editing (by changing
the local texture models for several indexes of the control
field), we can use it for modeling BTF textures or even
the synthesis of new, unmeasured textures by manually or
automatically assigning the model’s parameters. The visual
quality of the resulting complex synthetic textures generally
surpasses the outputs of the previously published simpler
non-compound BTF-MRF models.
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