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Abstract—We propose a substantial speed up a modification
to our recently published novel multidimensional statistical
model for realistic modeling, enlargement, editing, and com-
pression of the recent state-of-the-art Bidirectional Texture
Function (BTF) textural representation. The multispectral com-
pound Markov random field model (CMRF) efficiently fuses
a non-parametric random field model with several parametric
Markovian random fields models. The principal application of
our model is physically correct and realistic synthetic imitation
of material texture, its enlargement, and huge compression. So
that ideally, both natural and synthetic texture of a given mea-
sured natural or artificial texture will be visually indiscernible
for any observation or illumination directions. The presented
model can be easily applied also for BTF material texture
editing to model non-measured or unmeasurable but still
realistic material textures. The CMRF model consists of several
parametric sub-models each having different characteristics
along with an underlying switching structure model which
controls transitions between these submodels. The proposed
model uses the non-parametric random field for distributing
local texture models in the form of analytically solvable wide-
sense BTF Markov representation for single regions among
the fields of a mosaic approximated by the random field
structure model. The non-parametric control field of the BTF-
CMRF is iteratively generated to guarantee identical region-
size histograms for all material sub-classes present in the target
example texture. The present iterative algorithm significantly
cuts the number of iterations to converge in comparison
with our previous iterative method and even sometimes skip
all iteration due to its ingenious initialization. The local
texture regions (not necessarily continuous) are represented
by analytical BTF models modeled by the adaptive 3D causal
auto-regressive (3DCAR) random field model which can be
analytically estimated as well as synthesized. The visual quality
of the resulting complex synthetic textures generally surpasses
the outputs of the previously published simpler non-compound
BTF-MRF models and allows to reach tremendous compression
ratio incomparable with any standard image compression
method.

Keywords-BTF texture model; compound Markov random
field; BTF texture synthesis;

I. INTRODUCTION

A physically correct real materials surface reflectance

is a very complex, currently unfeasible to measure or to

mathematically model, the function of at least 16 variables

[1]. The Bidirectional Texture Function (BTF) is its state-

of-the-art approximation which allows to express spectral,

spatial, illumination angle, and observation angle visual

dependencies of a measured material texture what signif-

icantly improves the visual realism of a modeled object

at the expense of non-trivial measurements and mathemat-

ical modeling of these huge BTF data spaces. Static BTF

texture modeling based on probabilistic models requires

complex seven-dimensional models. It is far from being a

straightforward generalization of any 3D model (required

for usual static three-dimensional color textures) with just

adding four additional dimensions. On the contrary, every

extra model dimension multiplies difficulties encountered

within all necessary modeling steps [1], i.e., optimal model

selection, robust parameters estimation from always limited

learning data, stability, and synthesis. A practical, reliable

full 7D BTF model has not yet been developed. Thus

we use two factorization levels which are the conceivable

approximation for acceptable visual quality.

Compound Markov random field models (CMRF) consist

of several sub-models each having different characteristics

along with an underlying structure model which controls

transitions between these submodels [2]. CMRF models

were already applied to the image restoration [2]–[5], seg-

mentation [6], or image or texture modeling [7]–[10]. Un-

fortunately, Markovian models generally require demanding

numerical solutions for learning as well as for synthesis with

all their well-known drawbacks. The exceptional CMRF

[7], [9] models allow analytical synthesis at the cost of

a slightly compromised compression rate due to the non-

parametric control field data. Methods based on different

Markov random fields [11]–[16] combine an estimated

range-map with synthetic multiscale smooth texture using

Markov models. The measured BTF data are analyzed for

their intrinsic dimensionality [1] and factorized into BTF

and subsequently also spatial factors. The original registered

BTF illumination-/-view measurement space is segmentation

into several subspace images using the K-means algorithm

in the perceptually uniform CIE Lab color-space using color

cumulative histograms features.

In this paper, we propose a significant speed-up mod-

ification of our previous BTF-CMRFNPi3AR model [16].

This new iterative procedure allows cutting the number of

iterations to converge to be about 20% of the previous
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target texture 0 [16] 0

104 [16] 104 204 [16]

19 103 3 104 [16] 32 523 [16]

Figure 1. Comparison of the granite control field synthesis [16] and its proposed speed up version. The proposed control field iteration converges at 19
214 cycles, while the older algorithm [16] needs 32 523 cycles.

algorithm. We propose a hierarchical BTF-CMRFNPfi3AR

model which combines a non-parametric Markov random

field (MRF) model with local parametric MRF models

[17], [18]. The parametric MRF models can be analytically

solved, while the other is synthesized using a newly pro-

posed faster iterative method for its synthesis.

II. COMPOUND MARKOV MODEL

Let us denote a multiindex r = (r1, r2), r ∈ I, where

I is a discrete 2-dimensional rectangular lattice and r1
is the row and r2 the column index, respectively.

Xr ∈ {1, 2, . . . ,K} is a random variable with natural

number value (a positive integer), Yr is the multispectral
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pixel at location r and Yr,j ∈ R is its j-th spectral

plane component. Both random fields (X,Y ) are indexed

on the same M × N lattice I . Let us assume that each

multispectral observed texture Ỹ (composed of d spectral

planes, e.g., d = 3 for colour textures) and indexed on the

M̃ × Ñ lattice Ĩ (usually Ĩ ⊆ I) can be modeled by a

compound Markov random field model, where the principal

Markov random field (MRF) X controls switching to

a regional local MRF model Y =
⋃K

i=1
iY . Single K

regional sub-models iY are defined on their corresponding

lattice subsets iI, iI ∩ jI = ∅ ∀i �= j and they are

of the same MRF type. These models differ only in their

contextual support sets iIr and corresponding parameters

sets iθ. The BTF-CMRFNPfi3AR model has the posterior

probability

P (X,Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ ) (1)

and the corresponding optimal MAP solution is:

(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX ,ΩY are the corresponding configuration spaces

for both random fields (X,Y ). To avoid an iterative

MCMC MAP solution, which cannot be managed in the

huge BTF data space, we proposed the following two step

approximation [7]:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) , (2)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) . (3)

This approximation substantialy simplifies the BTF-

CMRFNPfi3AR estimation because it allows us to take

advantage of an analytical estimation of all regional MRF

models iY in (3).

A. Non-Parametric Control Field

The control random field X (Fig.1 - left upper row) is

assumed to be independent on illumination and observation

angles, i.e., it is identical for all possible combinations

φi, φv, θi, θv azimuthal and elevation illumination / viewing

angles, respectively. This assumption does not compromise

the resulting BTF space quality, because it influences only

a material texture macro-structure which is independent on

these angles.

The control random field X̆ is estimated using simple

K-means clustering of Ỹ in the RGB colour space into

predefined number of K classes, where cluster indices ωi

are X̆r ∀r ∈ I estimates. The number of classes K
can be estimated using the Kullback-Leibler divergence and

considering a sufficient amount of data necessary to reliably

estimate all local Markovian models. The clustering resulting

thematic map is used to compute region size histograms h̃i

for all i = 1, . . . ,K classes. Let us order classes according

the decreasing number of pixels ñi belonging to each class,

i.e., ñ1 ≥ ñ2 ≥ . . . ≥ ñK . Histograms h̃i are the only

parameters required to store for the control field.

1) Iterative Control Field Synthesis: The iterative algo-

rithm (Fig.1) is based on a data structure which describes

for each pixel a membership in the region. For each region

the class membership, a size of the region and the requested

number of regions of it’s size, all border pixels from both

sides of the border, possibility to decrease or increase of the

region, and for all classes the histogram and regions, which

can be increased or decreased. After any change in a pixel

class assignment, this structure has to be updated.

0. The synthesized M × N required control field is

initialized to the value ω0 it means, that pixel was

not assigned to any class ωi for i = 1, . . . ,K.

All histograms cells are rescaled using the scaling

factor MN
M̃Ñ

, i.e., X
(0)
r = ω1 ∀r ∈ I and h̃i → hi

for i = 1, . . . ,K. All regions from all classes

i = 1, . . . ,K are sorted by region size. Starting

from the biggest region A1 till the smallest region

AM , where M is number of all regions, a lattice

multiindex r is randomly generated. First pixel Xr

of the region Aj where j = 1, . . . ,M and class

ωi is randomly selected and is changed to new

value Xr = ωi only if its previous value was

Xr = ω0 Ȧll neighbours Xs of the pixel Xr

which fulfil conditions Xs = ω0 and pixel Xs

has no neighbour from the class ωi are added to

the queue Q. Till the size of region Aj is higher

than number of actually added pixels, next pixel

Xr is randomly selected from the queue Q the

values is changed to Xr = ωi and its neigbours

are added to the queue Q if they meets mentioned

conditions. If the queue Q is empty and size of the

region Aj is higher than the number of actually

assigned pixels, the rest of the pixels is randomly

assigned to the class ωi after the initialization of

the last region AM . After this initialization step, all

classes have their correct required number of pixels

but not yet their correct region size histograms.

1. Pixels r and s are randomly selected with the

following properties: The pixel r from the class

ωi is on the border between region ↓ ωA
i (a region

A which can be decreased) and a region ↑ ωB
j (a

region B which can be increased). The pixel s
from the class ωj is on the border between region

↓ ωC
j (a region C which can be decreased) and a

region ↑ ωD
i (a region D which can be increased).

These regions have to be distinct, i.e., A ∩D = ∅
and B ∩ C = ∅. If such pixels r, s exist go to the

step 5. If not repeat this step once more.

2. Gradually check all class couples starting from

ω1, ω2, . . . , ωK to find pixels r, s which meet

conditions in step 1. All regions corresponding to
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the chosen classes ωi and ωj are selected randomly.

If such pixels r, s exist, go to step 5.

3. Randomly select a region from class ωi which has

two neighbouring regions of class ωj such as one

can be decreased and another increased. If there

exist two border pixels r, s in the region ωj , where

r is a border pixel with a region to be increased

and s with a region to be decreased, go to the step

5.

4. Gradually check all classes with incorrect his-

togram, starting from ω1, ω2, . . . , ωK , for every

class ωi gradually check all its regions ↑ ωA
i

which can be increased, for each region ↑ ωA
i

check every region neighbouring border pixel r
from class ωj and region ↓ ωB

j (a region B
which can be decreased) and find pixel s with

the following properties: pixel s is from the class

ωi and region ↓ ωC
i (a region C which can be

decreased), pixel s is on the boarder of the region

↑ ωD
j from class ωj (a region which can be

increased). These regions have to be distinct, i.e.,

A ∩ C = ∅ and B ∩D = ∅. If such pixels do not

exist go to step 7.

5. Xr = ωj , Xs = ωi update the data structure.

6. If the number of iterations is less than a selected

limit go to 1.

7. Store the resulting control field and stop.

The steps 1.,2. allow simultaneous improvement of four re-

gions while step 3. improves two regions only. The algorithm

converges to the correct class histograms hi i = 1, . . . ,K.

Table I
THE NUMBER OF ITERATIONS FOR THE CONTROL FIELD SYNTHESIS FOR

THE CONVERGENCE.

texture 256× 256 [16] 256× 256 512× 512 [16] 512× 512
moss 178 167 3 877 392 954 470 022
bark16 40 193 7 957 141 683 40 985
bark4 45 796 12 666 128 108 41 924
begonia 198 430 9 961 216 328 74 064
blossoms1 9 043 864 0 400 000 0
floor tile 4 792 656 870 000 14 215 445 500 000
floor plastic 9 906 941 1 650 000 12 787 487 500 000
clay06 12 227 0 45 209 0
clay14 28 073 8 609 99 465 11 885
fabric16 18 603 9 080 77 959 19 542
granite2 32 523 19 214 260 779 171 611
grass38 23 502 18 542 93 131 31 830
lichen9 63 931 9 655 140 146 29 137
marble4 75 374 12 581 480 000 55 519
meadow3 67 041 51 727 500 000 500 000
stone90 18 369 4 313 66 891 7 627
rusty plate 55 065 7 175 92 490 48 224
stone28 15 956 0 255 618 200 410
stone29 13 902 4 780 56 803 24 249
median 45 796 9 080 141 683 41 924

measurement synthesis with original X

synthesis [16] BTF-CMRFNPfi3AR

Figure 2. The granite texture synthesis, target texture (left upper row), its
synthesis and enlargement right, middle, and bottom, respectively.

B. Local BTF Markov Models

Local i-th texture region (not necessarily continuous)

is represented by the adaptive 3D causal auto-regressive

random (3DCAR) field model [17], [18]. This model can

be analytically estimated as well as easily synthesised. The

model can be defined in the following matrix equation (i-th
model index is further omitted to simplify notation):

Yr = γ Zr + εr , (4)

where Zr = [Y T
r−s : ∀s ∈ Ir]

T is the η d × 1 data

vector with multiindices r, s, t, γ = [A1, . . . , Aη] is the

d × d η unknown parameter matrix with parametric sub-
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matrices As. The model functional contextual neighbour

index shift set is denoted Ir and η = cardinality(Ir) .

All 3DCAR model statistics can be efficiently estimated

analytically [17]. Given the known 3DCAR process his-

tory Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the

parameter estimation γ̂ can be accomplished using fast,

numerically robust and recursive statistics [17]:

γ̂T
t−1 = V −1

zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

(∑t−1
u=1 YuY

T
u

∑t−1
u=1 YuZ

T
u∑t−1

u=1 ZuY
T
u

∑t−1
u=1 ZuZ

T
u

)

=

(
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

where V0 is a positive definite matrix (see [17]). Although,

an optimal causal functional contextual neighbourhood Ir
can be solved analytically by a straightforward generali-

sation of the Bayesian estimate in [17], we use the faster

approximation which does not need to evaluate statistics for

all possible Ir configurations. This approximation is based

on spatial correlations. Starting from the causal part of a

hierarchical non-causal neighbourhood, neighbours locations

corresponding to spatial correlations larger than a specified

threshold (> 0.6) are selected. The i-th model pixel-wise

synthesis is the simple, direct application of (4) for all

3DCAR models. 3DCAR models provide better spectral

modelling quality than the alternative spectrally decorrelated

2D models for motley textures at the cost of a small increase

in the number of parameters to be stored.

Parameters of the selected local subspace BTF Markov

models are estimated and stored in a small parametric

database. These spectral models are finally fused with the

estimated range map. The BTF range map estimate could

benefit from tens of ideally mutually registered BTF mea-

surements, thus it is advantageous to use the over-determined

photometric stereo from among the possible estimation

alternatives of the range map. The required synthetic factors

are generated on request, the factorization process of the

synthetic BTF subspace is inverted, and then this inversion

is used in a virtual scene mapping. Finally, the overall BTF

texture’s visual appearance during changes of viewing and

illumination conditions is simulated using the displacement

mapping technique [1].

III. RESULTS

The ideal synthetic texture should be visually indis-

cernible for any observation or illumination directions from

the given measured natural texture, but pixelwise identical.

Such visual similarity between a synthetic and measured

BTF space would ideally be measured by some mathemat-

ical criterion. Unfortunately, an automatic texture quality

evaluation is important but still unsolved difficult problem,

measurement synthesis

Figure 3. The clay texture synthesis, target texture (left upper row), its
synthesis and enlargement right and bottom, respectively.

and qualitative evaluation is, for now, possible only us-

ing impractical and expensive visual psycho-physics. We

have recently tested [19] on our texture fidelity benchmark

(http://tfa.utia.cas.cz) several published state-of-the-art im-

age quality measures and also a dedicated texture measure

(STSIM) [20] in several variants or our textural qualitative

criterion based on the generative Markovian texture model

statistics ζ [21] which slightly outperforms the best alterna-

tive - the STSIM fidelity criterion.

These results demonstrate that neither the standard image

quality criteria (MSE [22], VSNR [23], VIF [24], SSIM

[25], CW-SSIM [26]) nor the STSIM texture criterion can

be reliably used for texture quality validation (see for details

[19]). It is easy to manifest failure counterexamples for each

of these published quality criteria. Thus our results can be

checked only visually.

Fig.1 visualizes a comparison between our previous [16]

iterative control field synthesis and the presented one on the

granite control field. It possible to note an important initial-

ization improvement and the overall convergence speed up to

59% of previously required cycles. This speed up depends on

the texture. Tab.I shows the required number of cycles for the
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measurement synthesis

Figure 4. The floor tile texture synthesis, target texture (left upper row),
its synthesis and enlargement right and bottom, respectively.

convergence for nineteen materials, two texture sizes, and

the previous and presented iterative methods. Even for three

textures (blossoms1, clay06 Fig.3, stone28), the initialization

is sufficient, and there is no need for any iterations. The

median speed up between both methods is one-fifth of

previous cycles. The number of convergence cycles (Tab.I)

is linearly dependent on the required control field size in

average.

Figs.2,5 allow to compare synthesis results for the pre-

vious [16] and presented methods on granite and lichen

textures, respectively. Although both methods produce high-

quality results, they differ. The presented method tends to

create large convex regions, if possible. Both figures also

illustrate a negligible visual difference between the original

measurement and its synthetic version if the control field

was just estimated and not synthesized (upper rows right).

This is another demonstration of the high model quality as

well as its huge compression capability.

Figs.2-6 demonstrate various natural (granite, clay, floor

tile, lichen, grass, and begonia) texture synthesis results

using the proposed model. Due to space constraint, we

present only one texture from each corresponding BTF mea-

measurement synthesis with original X

synthesis [16] BTF-CMRFNPfi3AR

Figure 5. The lichen texture synthesis, target texture (left upper row), its
synthesis and enlargement right, middle, and bottom, respectively.

surement space. For some textures (lichen, grass, begonia)

we do not have BTF measurements. Thus they illustrate

the modeling application of our model on standard color

textures. However, even these non-BTF textures can be used

as control field learning data for BTF space editing if the

parametric models Y are estimated from some BTF data

space.

Figs.6,7 show the texture editing capability of the model.

Its top row are measured natural lichen and begonia or grass

textures and the bottom row contains their corresponding

editing results. The bottom texture was created by combing

an estimated control field from the lichen texture with local
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lichen measurement begonia measurement

X lichen & Y begonia

Figure 6. The measured bark (source of the control field) and begonia
textures (upper row), their synthesis (middle), and edited texture synthesis
with the bark control field and local begonia models.

Markovian models (4) estimated from the begonia or grass

texture. Although the edited textures change their appear-

ance, they still look convincingly and physically correct.

IV. CONCLUSION

The presented BTF-CMRFNPfi3AR method exhibits very

good results on the selected texture categories, i.e., textures

with the random type of their macro-structure. The model

combines the iteratively solved non-parametric random field

for distributing local texture models with the analytically

solvable wide-sense BTF Markovian submodels. The median

speed up between the presented and our previous method

for the non-parametric control field synthesis is one-fifth

of the required cycles to converge. For some textures, the

control field synthesis even does not need any iterations.

The synthetic texture can be easily modified by changing

the underlying mosaic generation model, which is now

performed by fast iterative modification of class region

histograms, to fit better with different random texture types.

The proposed BTF-CMRFNPfi3AR model is well suited to

lichen measurement grass measurement

X lichen & Y grass

Figure 7. The measured bark (source of the control field) and grass textures
(upper row), their synthesis (middle), and edited texture synthesis with the
bark control field and local grass models.

model various types of natural materials surfaces such as

clay, lichens, stones, barks, rusty materials, or meadows.

The model allows for seamless multispectral texture syn-

thesis and enlargement with an extremely high compression

rate independent of the size of the desired resulting texture.

The model does not generate any repetitions contrary to the

most sampling alternatives. The data needed to be stored

comprised of only several dozens of parameters and few

region size histograms. Using a simple modification of

the method, we can use it for texture editing (by changing

the local texture models for several indexes of the control

field), we can use it for modeling BTF textures or even

the synthesis of new, unmeasured textures by manually or

automatically assigning the model’s parameters. The visual

quality of the resulting complex synthetic textures generally

surpasses the outputs of the previously published simpler

non-compound BTF-MRF models.
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