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Abstract—Automatic texture fidelity assessment that would
correspond to the human visual perception is an important, but
still unsolved computer vision problem with numerous useful
applications in the various vision application areas such as im-
age compression and modeling, video streaming or fast image
database retrieval. The problem is not satisfyingly solved even
for the most simple static monospectral texture representation
thus progress in the automatic assessment of texture fidelity is
required. We propose improved multiresolution texture fidelity
measure based on Markovian random field texture model,
which correlates well with human texture fidelity evaluation
obtained from texture fidelity benchmark.
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I. INTRODUCTION

The texture fidelity is an appearance similarity between

the original target texture and its synthetic or natural alter-

native. The pair of high fidelity textures does not need to

be pixelwise identical, but both textures should be visually

indiscernible from each other, whatever the observation

conditions might be. There are a lot of applications of texture

fidelity assessment. Be it image compression, inpainting,

and restoration, content-based image retrieval, searching for

optimal image (texture) model parameters or comparison of

different mathematical models. Such an assessment can be

done through psycho-physical experiments [1], where a large

number of humans need to evaluate image or texture fidelity

or quality manually. It requires long experiment design,

strictly controlled laboratory conditions and the experiment

itself is very time-consuming. It is impractical and not

feasible to perform such experiments in real-time situations

on a daily basis.

This is a reason for the need of new texture measure that

would evaluate quality automatically. There are published

attempts to measure subjectively defined texture properties

such as regularity [2], roughness, coarseness, directionality

[3], etc. Others tries to test general texture quality [4]–

[10]. In our previous work, we tested several state-of-

the-art image quality and texture fidelity measures [11].

Measures we tested were - the mean-squared error (MSE)

[12], the visual signal-to-noise-ratio [13] (VSNR), the struc-

tural similarity (SSIM) index [14], the complex wavelet

- structural similarity (CW-SSIM) index [15], the visual

information fidelity (VIF) methods [16], and the structural

texture similarity measure (STSIM-1, STSIM-2) [5]. All of

these measures consider only gray-scale images, but our

previously published measure ζ also uses multi-spectral

information [10]. We have shown that all of the tested state-

of-the-art image quality evaluation methods corresponds

poorly to human perception and cannot be used at all for

texture fidelity assessment. The only one aimed directly on

textures is STSIM [5]. While it performs better than other

image quality measures, its results are still not satisfying

enough.
Both STSIM and our ζ measure display significantly

higher correlation with human perception [10], [11], thus

we compare our new proposed fidelity measure to these two

measures.

A. Structural Texture Similarity Measure
The STSIM measures are based on a set of statistics com-

puted for each texture subband factor. They are extensions

of the CW-SSIM measure [15] in three versions, STSIM-

1, STSIM-2, and STSIM-M [5]. STSIM-1 is created from

CW-SSIM by replacing the ’structural’ term with terms that

compare first-order auto-correlations of corresponding sub-

band coefficients ρmY (0, 1) in the horizontal and ρmY (1, 0)

in the vertical direction. Y, Ỹ are the target and a compared

textures. Yr is a pixel at location r ∈ I , where I is a

discrete two-dimensional rectangular lattice, the multiindex

r = [r1, r2] is composed of r1 row and r2 column index,

respectively. In the equations for a single subband m, the

p is typically set to p = 1,
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where lα
Y,˜Y

is a luminance, μα
Y is a mean value of the

α-th subband of the texture Y , σα
Y is its standard deviation,

∗ denotes the complex conjugate, α = β = m, and C0, C1

are small positive constants.

STSIM-2 [5] adds cross-band correlation coefficient

ρm,n
Y (0, 0) between subbands m and n and αi =

mi, βi = ni

STSIM-2(Y, Ỹ ) =

∑Nb

m=1 STSIM-1m(Y, Ỹ )

Nb +Nc
+

∑Nc

i=1 c
αi,βi

Y,˜Y
(0, 0)

Nb +Nc
, (2)

where Nb is the number of subbands and Nc is the number

of possible cross-band correlations. STSIM-1, STSIM-2 ∈
〈0; 1〉 with 1 being the best value. STSIM-M (STSIM-

Mahalanobis) [5] chooses another approach. Rather than

combining aforementioned terms into a single measure, it

uses them to create feature vectors fY and f
˜Y and then

calculates the Mahalanobis distance between the feature

vectors. Therefore, to compute the distance between two

textures, STSIM-M requires statistics based on the whole

set and the results are relative only to this set, which is

unfavorable for our cause and therefore the STSIM-M was

not included in our tests.

B. ζ Texture Similarity Measure

The previously published [10] measure ζ measures cross-

prediction error when using data from the original texture

Y and estimated parameters γ̃ (5) from the synthetic texture

Ỹ

ζ(Y, Ỹ ) =
1

|I|
∑
∀r∈I

|Yr − γ̃r−1Zr| . (3)

This measure is based on the similar multispectral, but

single-scale and unnormalized, texture model (3DCAR, see

explanation in section II-A) as the newly proposed measure.

II. TEXTURE FIDELITY MEASURE

The proposed texture fidelity measure is derived from the

generative multispectral textural model from the wide-sense

Markovian random field family.

A. Generative Textural Model

Let us assume that multispectral texture image is com-

posed of d spectral planes (e.g., d = 3 for simple colour

textures). Yr = [Yr,1, . . . , Yr,d]
T is the multispectral pixel

at location r ∈ I , where I is discrete two dimensional

rectangular lattice, the multiindex r = [r1, r2] is composed

of r1 row and r2 column index, respectively. The spectral

planes are modeled by 3-dimensional Causal Auto-regressive

Random (3DCAR) model. The 3DCAR representation as-

sumes that the multispectral texture pixel Yr can be modeled

as a linear combination of its neighbors:

Yr = γZr + εr , (4)

Zr = [Y T
r−s : ∀s ∈ Ir]

T

where Zr is the dη×1 data vector with multiindices r, s,

γ = [A1, . . . , Aη] is the d×d η unknown parameter matrix

with square sub-matrices As . Some selected contextual

causal or unilateral neighbor index shift set is denoted Ir
and η = cardinality(Ir) . A unilateral neighborhood Ir
(the left upper orientation) is defined as Ir ⊂ IUr = {s :
s1 < r1 or (s1 = r1, s2 < r2)} and similarly ( [17]) its

subset - the causal neighborhood. The neighborhood order

is based on the Euclidean distance from r. The white noise

vector εr has normal density with zero mean and unknown

covariance matrix Σ, same for each pixel. The texture is

analyzed in a chosen direction, where multi-index t changes

according to the movement on the image lattice. Parameter

estimation of a 3DCAR model using either the maximum

likelihood, or the least square or Bayesian methods can be

found analytically. The Bayesian parameter estimates γ̂ of

the 3DCAR model using the normal-gamma parameter prior,

given the known history of the random process Y (t−1) =
{Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} for the given pixel

position can be computed using the following statistics [17]:

γ̂T
t−1 = V −1

zz(t−1) Vzy(t−1) , (5)

Σ̂r−1 =
λ(r−1)

β(r)− dη + d+ 1
, (6)

Vt−1 =

(∑t−1
u=1 YuYu

T ∑t−1
u=1 YuZu

T∑t−1
u=1 ZuYu

T ∑t−1
u=1 ZuZu

T

)
+ V0

(7)

=

(
Vyy(t−1) V T

zy(t−1)

Vzy(t−1) Vzz(t−1)

)
,

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1)Vzy(t−1) ,

where β(r) = β(0) + r − 1 , β(0) is an initialization

constant, and the positive definite matrix V0 represents a

prior knowledge (see [17] for details). Moreover, the pa-

rameter estimates (5),(6) can be efficiently computed for all

659



pixel positions using a numerically robust recursive formula

[17], which is advantageous for texture segmentation ap-

plications. Finally, the optimal contextual neighborhood Ir
can be found analytically by maximizing the corresponding

posterior probability [17]. The posterior probability density

p(Yr |Y (r−1), γ̂r−1) of the model can be easily evaluated

as well [17] and used for the optimal model selection.

The conditional mean value predictor of the one-step-ahead

predictive posterior density for the normal-gamma parameter

prior is

E
{
Yr |Y (r−1)

}
= γ̂r−1Zr . (8)

Figure 1. Functional neighborhood Ir . The white square is the central
pixel r, black squares are its neighbors (s ∈ Ir) and the numbers are
the pixel distances between neighbors.

B. Contextual Neighborhood

Initially, we tried to use unilateral part of the classical

hierarchical or simple square neighborhood. The results were

not satisfying. Moreover, the order of such neighborhood had

to be small because of the time complexity of the model

estimation.

This is the reason we used a functional neighborhood

Ir created by manually selecting 12 neighbors from the

unilateral part of the square neighborhood (Fig. 1). With

such neighborhood, we were able to use significantly higher

neighborhood order without compromising the time com-

plexity. The results show that this approach allowed to

keep some information from the whole neighborhood. The

neighborhood used in our measure is defined on the 65×65
window. Although such an optimal neighborhood can be

estimated using, for example, a Bayesian statistics for each

texture, we chose a universal sub-optimal neighborhood

applicable for a wide range of our benchmark textures.

C. Measure

Before the calculation of the measure, we downsampled

the textures twice by the factor of two. Then we upsampled

the two images back to the original size and combined

these images with the original one together, essentially

creating a 9-spectral (d = 9) image. The idea was to

add more information from lower frequencies. This approach

proved successful, for results were better than using the

original texture resolution only. Our new cross-prediction-

based measure (CPM) is, similarly to the measure (3) [10],

based on a cross-prediction but using the 3DCAR model.

It measures the difference between prediction and cross-

prediction

CPM(Y, Ỹ i) = max
{
β(Y, γ, γ̃), β̃(Ỹ i, γ, γ̃)

}
, (9)

β(Y, γ, γ̃) =
1

2ld

d∑
i=1

αi(Y, γ, γ̃) ,

β̃(Ỹ i, γ, γ̃) =
1

2ld

d∑
i=1

α̃i(Ỹ
i, γ, γ̃) ,

α(Y, γ, γ̃) =

∑
∀r∈I{s} (γ̃r−1 Zr − γr−1 Zr)

|I{s}| ,

α̃(Ỹ i, γ, γ̃) =

∑
∀r∈I{s}

(
γr−1

˜iZr − γ̃r−1
˜iZr

)
|I{s}| ,

where l is a number of bits per spectral band, I{s} ⊂ I is

some window identical on both textures Y, Ỹ i, Y, Zr, γ are

data and parameters (5) from the original texture Y , while

Ỹ i, ˜iZr, γ̃ are data and parameters (5) from the synthetic (or

compared) i-th texture. Due to the pixel range normalization

CPM(Y, Ỹ i) ∈ 〈0; 1〉 with 0 being the best value as it is a

specific kind of an error measure.

The most significant difference from the ζ (3) [10] mea-

sure is that it calculates the cross-prediction from both ”di-

rections,” it is normalized and takes the maximum. The idea

behind this is that the higher the difference (i.e., the error),

the more descriptive the ”direction” on the current pair of

textures. With this approach, the measure was performing

better than the previous similar ζ criterion, regardless of

parameters.

III. TEST DATA

The measures are verified on the data gathered from the

texture fidelity benchmark [11], which has been created

to help the validation of texture fidelity measures. The

benchmark contains six real and one handmade artificial

( [18]) color texture and their grayscale versions as target

textures. Grayscale versions of textures number 2, 4 and 6

(i.e., 9, 11, and 13) were not included in the tests, because

there were not enough data for these textures after human

testing. The benchmark (test) textures are mathematically

synthesized using various random field type models ( [1],

[19], [20]). We aimed to choose for the benchmark the

whole range of synthetic textures with gradually decreasing

texture quality as illustrated in Figure 2. Thus the Markovian
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Figure 2. Examples of the original (left column) and synthetic textures (no. 1 upper row - textile, no. 5 middle row - wood, bottom row - the handmade
artifical color texture [18]) .

models ( [1], [19], [20]) were modified to have an inferior

parameters setting and the observers would be able to rank

their quality in the psychophysical evaluation. Each texture

has up to 17 synthesized variants. Four examples of the

benchmark synthetic textures can be seen in Figure 2. For

more information about the benchmark and human ranking

see [11].

IV. RESULTS

We observed the consistency between human and

measure-based ranking for each texture fidelity measure. The

Spearman’s rank correlation coefficient (Tab.I) is used to

compare human quality ranks obtained from the benchmark

with the ranks stemming from the STSIM-1, STSIM-2, ζ,

and our proposed measure. We only compare here results

from the leading STSIM and ζ measures because they are
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Table I
SPEARMAN’S RANK CORRELATION ρ BETWEEN THE HUMAN RANK AND

THE MEASURES RESULTS. TEXTURE SETS 1–7 CONTAIN COLOR

IMAGES, WHILE THE REMAINING HAVE GRAYSCALE TEXTURES.

texture no. CPM ζ STSIM-1 STSIM-2
1 0.765 0.866 0.483 -0.539
2 0.706 0.797 0.505 0.400
3 0.723 0.801 0.860 0.571
4 0.797 0.363 0.857 0.813
5 0.782 0.721 0.636 0.370
6 0.859 0.600 0.767 0.767
7 0.534 0.670 0.420 0.174
8 0.711 0.566 0.608 -0.385
10 0.797 0.909 0.892 0.654
12 0.745 0.794 0.782 0.321
14 0.560 0.456 0.662 0.530
ρ̄ 0.725 0.686 0.679 0.334

min{ρ} 0.534 0.363 0.420 -0.539

Table II
THE MEASURES VALUES, MEAN MEASURE VALUES (�), THE

DISTANCES OF THE MEAN MEASURE VALUE FROM THE OPTIMUM (δ∗),
AND MEASURE VARIANCES, FOR THE GRAYSCALE TEXTILE TEXTURE

NO. 10. THE FIRST COLUMN IS A LIST OF VARIOUS QUALITY MODELING

EXPERIMENTS.

texture no. 10
synthesis CPM ζ STSIM-1 STSIM-2

1 0.052 4.5820 0.871 0.918
2 0.055 5.7472 0.873 0.892
3 0.035 5.5038 0.834 0.913
4 0.040 4.3384 0.901 0.930
5 0.062 4.8765 0.881 0.912
6 0.057 4.8806 0.902 0.926
7 0.031 4.5872 0.875 0.930
8 0.075 4.0194 0.922 0.934
9 0.063 4.8738 0.928 0.898

10 0.022 3.8918 0.937 0.943
11 0.092 4.5845 0.924 0.919
12 0.036 4.2380 0.927 0.899
13 0.044 4.5893 0.921 0.910
14 0.124 3.7684 0.951 0.940
15 0.032 3.8319 0.966 0.960
16 0.035 3.6978 0.958 0.952
17 0.109 3.7283 0.927 0.927
� 0.057 4.455 0.912 0.924
δ∗ 0.057 - 0.088 0.076
var 0.001 0.347 0.001 0.0004

the best existing texture fidelity measures known to us.

Comparison with other, inferior, alternative measures (MSE,

PSNR, VSNR, VIF, SSIM, CW-SSIM) can be consulted

in [11]. Tab.I shows correlations of tested measures on all

14 texture sets. The ζ results, presented in [10], show

that it performs equally well or better than STSIM. It can

be seen, that CPM outperforms ζ and STSIM measures,

as it has higher both average and minimum correlations.

CPM values for a single pair of textures are normalized

to 〈0; 1〉, which is another advantage over ζ. CPM is the

error measures. Thus its value for two identical textures

is zero. The measures variance comparison between CPM

Table III
MEASURES VARIANCES FOR ALL 14 INDIVIDUAL BENCHMARK

TEXTURE SETS.

texture no. CPM ζ STSIM-1 STSIM-2
1 0.0016 132.5659 0.0006 0.0003
2 0.0005 30.7192 0.0017 0.0006
3 0.0006 4.8728 0.0012 0.0003
4 0.0008 2.6779 0.0011 0.0003
5 0.0003 1.5416 0.0002 0.0002
6 0.0013 1.9117 0.0015 0.0001
7 0.0010 12.2320 0.0007 0.0001
8 0.0007 0.6327 0.0006 0.0003

10 0.0008 0.3471 0.0012 0.0004
12 0.0002 0.1025 0.0002 0.0001
14 0.0002 0.7608 0.0007 0.0002

median var 0.0007 1.9117 0.0007 0.0003

and STSIM for the texture no. 10 can be seen in Tab. II.

The texture set no. 10. was chosen because the STSIM-1

results for this set have the highest variance of all benchmark

texture sets and the set is grayscale. Hence our measure

loses its multispectral advantage. Both CPM and STSIM-1

have similar variance. Tab. III presents the variances for all

fourteen texture sets. The CPM median variance is the same

with STSIM-1, even though STSIM-1 has slightly higher

average variance value overall benchmark sets.

V. CONCLUSIONS

The presented CPM texture fidelity measure is the only

genuine multispectral and multiresolution texture qualitative

measure. CPM is based on the robust and recursively es-

timated generative Markovian texture model statistics. The

measure is computed analytically and outperforms the best

alternatives - STSIM or the previously published ζ fidelity

measures. The Spearman’s rank correlation illustrates the

good correlation between human texture quality ranking and

the proposed measure which is verified on the texture fidelity

benchmark. The CPM measure has the highest minimum

and average correlation from all four tested texture fidelity

measures. The criterion values for individual textures also

show a higher variance than STSIM-2 which we consider

being an advantage for quality ranking between subtly dis-

tinguishable synthetic texture realizations. The measure can

be favorably used also in various analytical applications such

as texture classification or content-based image retrieval.

Finally, most authors, including [5], separate color from

the structural information when testing texture fidelity. We

believe that the color cannot be omitted in a universal texture

fidelity measure without compromising its performance and

reliability.
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