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Abstract. We show that the set of ergodic invariant measures of a shift space
with a safe symbol (this includes all hereditary shifts) is arcwise connected
when endowed with the d-bar metric. As a consequence the set of ergodic
measures of such a shift is also arcwise connected in the weak-star topology,
and the entropy function over this set attains all values in the interval between
zero and the topological entropy of the shift (inclusive). The latter result is

motivated by a conjecture of A. Katok.

A shift space X over the alphabet Λ = {0, 1, . . . , n − 1} for some n ≥ 2 is
hereditary if x ∈ X and y ≤ x (coordinate-wise) imply y ∈ X. Hereditary shifts
were introduced by Kerr and Li in [20, p. 882], and their basic properties are
presented in [25]. We say that a ∈ Λ is a safe symbol for a shift space X ⊂ ΛZ (see
[31]) if for every z ∈ ΛZ obtained by replacing some entries in y ∈ X by a, we have
that z ∈ X. By definition 0 is a safe symbol for every hereditary shift.

The family of hereditary shifts includes: spacing shifts, beta shifts, bounded
density shifts, B-admissible shifts; also, many examples of B-free shifts and some
shifts of finite type are hereditary. All classes on that list have been extensively
studied, with the B-free shifts attracting much attention recently (see Section 4
for more details). In the setting of actions of Z, as in our paper, shifts with a safe
symbol seem to be less important. The notion is useful in the context of higher
dimensional shifts (Zd actions with d ≥ 2; see [31] and references therein). It is
easy to find examples of shift spaces over {0, 1, 2} which have 0 as a safe symbol
but are not hereditary.

It should come as no surprise that there are very few theorems applicable to all
members of such a diverse family of shift spaces. Nevertheless, the main result of
this note implies that there is a common feature of all hereditary shift spaces: for
any hereditary shift X and for every t ≥ 0 the set of ergodic invariant measures

with entropy less than or equal to t, denoted M(t)
σ (X), and endowed with the d-bar
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metric d̄M is arcwise connected (Theorem 6). In fact, we only need to assume
that there exists a safe symbol, and our proof actually shows that there is a d̄Ω-
continuous arc in X consisting of generic points for ergodic measures from the arc

in M(t)
σ (X). This is a single orbit result very much in the spirit of [41]. Here d̄Ω

is a pseudometric on X given by the upper asymptotic density of the set of indices
where two sequences in X differ.

The d-bar metric d̄M induces a stronger topology than the usual weak∗ topology
on the space of ergodic invariant measures. It follows that in the latter topological
space the set of ergodic invariant measures with entropy less than or equal to t is
also arcwise connected for every t ≥ 0 (Corollary 7). The same holds for sets of
ergodic measures with entropy strictly less than t. Furthermore, since the entropy
function h taking an ergodic measure μ to its metric entropy h(μ) is d̄M-continuous,
it has the Darboux (intermediate-value) property over every arc in d̄M. Denoting
the topological entropy of a shift space X by htop(X) we say that X has the
intermediate entropy property over ergodic measures if for every α ∈ [0, htop(X)]
there is an ergodic measure μ with h(μ) = α. In particular, every shift with a safe
symbol has the intermediate entropy property, and its set of ergodic measures is
either a singleton or is uncountable (Corollary 8). The former case occurs if and
only if htop(X) = 0 (Corollary 9).

Our result about the intermediate entropy property is motivated by the following
conjecture due to A. Katok: If r > 1 and F : M → M is a Cr diffeomorphism of
a smooth compact manifold M , then for every α ∈ [0, htop(F )), there is an F -
invariant ergodic measure μ such that the metric entropy of F with respect to μ
equals α. Katok proved that this is the case if M is a compact surface where every
ergodic measure of positive entropy is hyperbolic ([18]; for a detailed proof see
[19, Theorem S.5.9]). Katok’s result was extended to certain skew product cases
by Sun [38,39]. The conjecture also holds for every ergodic linear automorphism of
the torus as a result of work of Quas and Soo [29] and for some partially hyperbolic
diffeomorphism by Ures [40].

The approach presented here is different from the methods used in [18,29,38–40].
After publishing this paper on the arXiv we learned that similar techniques were
applied in [28].

We also describe the construction of some examples illustrating that our main
theorem may not hold without the assumption that the shift space is hereditary. By
the same examples one can see that the conclusions of Corollary 7 and Corollary
8 are independent: neither of them implies the other. This is a manifestation
of the well-known fact that the metric entropy function h on the set of invariant
measuresMσ(X) of a shift space X endowed with the weak∗ topology is, in general,
only upper semi-continuous. On the other hand every Polish topological space is
homeomorphic to a set of ergodic measures of some shift space endowed with the
weak∗ topology (see [9, Theorem 5] and [17]). This suggests that there should be
plenty of examples of shift spaces without the intermediate entropy property. It is
obvious that this is the case if the shift space has at most countably many ergodic
invariant measures. It is less obvious if the set of ergodic measures is arcwise
connected in the weak∗ topology. Using a characterization of possible entropy
functions due to Downarowicz and Serafin [10] we show that for every non-trivial
Polish topological space P there is a shift space X whose set of ergodic measures
Me

σ(X) endowed with the weak∗ topology is homeomorphic with P and the entropy
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ARCWISE CONNECTEDNESS 3427

function has an isolated positive value (see Theorem 11). By the same technique,
we show that for every uncountable Polish topological space P (not necessarily
connected!) there is a shift space X with Me

σ(X) = P and a non-constant entropy
function with the intermediate entropy property (see Theorem 12).

Finally, our first proof of Theorem 6 was based on a relative version of the
Furstenberg unique ergodicity theorem (Theorem 16 below). We no longer need
this to prove our main theorem, but as we hope it is a result of independent interest
we attach it with a proof in Appendix A.

1. Definitions

By a dynamical system we mean a pair (X,T ), where X is a compact metric
space and T : X → X is a homeomorphism. If (Y, S) is another dynamical system
and π : X → Y is a continuous map onto with π ◦T = S ◦π, then we call π a factor
map, Y a factor of X, and X an extension of Y .

The set of all Borel probability measures on X is denoted by M(X). The usual
weak∗ topology makes M(X) a compact metrizable space.

Let MT (X) denote the set of T -invariant measures in M(X). We write Me
T (X)

for the set of all ergodic measures in MT (X), and h(μ) denotes the Kolmogorov-
Sinai entropy of μ. For each μ ∈ MT (X) we call the triple (X,T, μ) a measure-
preserving system. Note that this is more restrictive than the usual definition.

A point x ∈ X is generic for a measure μ ∈ MT (X) if for each continuous
function ϕ : X → R we have

lim
N→∞

1

N

N−1∑
j=0

ϕ(T j(x)) =

∫
X

ϕdμ.

The set of all generic points for μ is denoted by GenT (μ). We write Gen(X,T ) for
the set of points that are generic for some T -invariant measure. For x ∈ Gen(X,T )
we denote by μ̂(x) the measure for which x is generic.

Fix n ≥ 2 and let Λ be a finite set with n elements; without loss of generality
we assume that Λ = {0, 1, . . . , n − 1}. Let Ω = ΛZ be the set of all two-sided
Λ-valued sequences. We equip Ω with the product (Tikhonov) topology induced
by the discrete topology on Λ. The shift map σ : Ω → Ω is given by σ(x)i = xi+1.
By a shift space (for short a shift) we mean any non-empty closed set X ⊂ Ω such
that σ(X) = X.

2. Disjointness and spectral theory

In this section we will review some basic facts from the spectral theory of Koop-
man operators. Since these results are classical we have not attempted to document
the source of every one of them (see [16,26]). We need them for a proof of Theorem
4, which may be known among aficionados, but we were unable to find it in the
literature.

Using the map ψ(t) = exp(2πit) we identify the quotient group T1 = R/Z
equipped with addition mod 1 and the circle, that is, the multiplicative group S1 =
{z ∈ C : |z| = 1}. By λ we denote the Lebesgue measure on T1 and its image
(pushforward) through ψ on S1. Given α ∈ R \Q the map Rα : T

1 → T1 given by
Rα(t) = t+ α mod 1 is called an irrational rotation of the circle. It is well known
that λ is the unique invariant measure for Rα.
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Given a measure-preserving system (X,T, μ) we define the Koopman operator
UT : L2(X,μ) → L2(X,μ) by UT (f) = f ◦ T . The Koopman operator is unitary;
hence for each f ∈ L2 the bi-infinite sequence rn = 〈Un

T (f), f〉 is a positive defi-
nite sequence of complex numbers. By the Herglotz theorem the positive definite
sequence 〈Un

T (f), f〉 determines uniquely a finite non-negative Borel measure on
circle T1, called the spectral measure of f and denoted by σf .

A cyclic subspace determined by f ∈ L2(X,μ), denoted by Z(f), is the closure
of the linear span of {Un(f) : n ∈ Z}. A cyclic subspace is maximal if it is not
contained in any larger cyclic subspace. The spectral theorem for unitary operators
allows us to define the spectral type σT , which is (up to equivalence) the spectral
measure determined by any vector determining a maximal cyclic subspace. The
spectral type σT can be written as σT = σd+σc, where σd is purely atomic measure
and σc is a continuous (non-atomic) measure.

The point spectrum of a measure-preserving transformation (X,T, μ) is the set
of eigenvalues for the Koopman operator UT (f) = f ◦ T , i.e.,

H(T, μ) = {λ ∈ C : λf = f ◦ T for some f ∈ L2(X,μ) with f 
= 0}.
The point spectrum is a subset of the unit circle S1 ⊂ C. Since L2(X,μ) is sep-
arable, the point spectrum is at most countable and, in the ergodic case, it forms
a multiplicative subgroup of S1. Furthermore, the spectral measure of each eigen-
vector is discrete. The purely atomic part of the spectral type is closely connected
with spectral measures associated to eigenvectors; in particular, σd is supported on
H(T, μ).

Let (X,T, μ) and (Y, S, ν) be measure-preserving systems. A joining of (X,T, μ)
and (Y, S, ν) is a T × S-invariant measure η on X × Y with marginals μ and ν.
We write J(μ, ν) for the set of all joinings of (X,T, μ) and (Y, S, ν). We say that
(X,T, μ) and (Y, S, ν) are disjoint if μ× ν is the only joining of these two systems.

We will also use in the proofs of our theorems the description of the spectrum
for rotations and the characterization of the ergodicity of the product of two trans-
formations via their spectra. If Rα is an irrational rotation, then the spectrum
H(Rα, λ) with respect to the invariant Lebesgue measure λ is generated by e2πiα,
i.e.,

H(Rα, λ) = {exp(2πikα) : k ∈ Z}.
Furthermore, the spectral type of the Koopman operator associated with (T1, Rα, λ)
is purely atomic.

Lemma 1. The product of two ergodic measure-preserving systems (X,T, μ) and
(Y, S, ν) is ergodic if and only if their point spectra have trivial intersection, i.e.,
H(T, μ) ∩H(S, ν) = {1}.

This fact might not be a part of classical textbooks on ergodic theory, but can
be found e.g. in [26, p. 46, Exercise 2]. In a similar spirit, we have the following
criterion for disjointness.

Theorem 2 (Theorem 6.28 in [16]). If (X,T, μ) and (Y, S, ν) are measure-preserving
systems whose spectral types are mutually singular except for the common atom at
1, then (X,T, μ) and (Y, S, ν) are disjoint.

The following lemma was suggested to us by Lemańczyk and Przytycki.

Lemma 3. Let α ∈ R \ Q. The measure-preserving systems (T1, Rα, λ) and
(X,T, μ) are disjoint if (and only if ) exp(2πikα) /∈ H(T, μ) for k ∈ Z \ {0}.
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Proof. For the “if ” direction, the assumptions imply thatH(T, μ)∩H(Rα, λ) = {1}.
Since the spectral type of Rα is purely atomic and the purely atomic part of the
spectral type of T is supported on H(T, μ), the spectral types of (X,T, μ) and
(T1, Rα, λ) are mutually singular (except the common atom at 1). By Theorem 2,
this implies that (T1, Rα, λ) and (X,T, μ) are disjoint. For the “only if ” direction,
we first use Lemma 1 to note that if exp(2πikα) ∈ H(T, μ) for some k ∈ Z \ {0},
then λ × μ is not ergodic. This implies that the systems (T1, Rα, λ) and (X,T, μ)
cannot be disjoint because the product of ergodic and disjoint systems is always
ergodic by Theorem 6.2 in [16]. �

Theorem 4. For every ergodic measure-preserving system (X,T, μ) there exists an
irrational α such that (T1, Rα, λ) and (X,T, μ) are disjoint.

Proof. The point spectrum of (X,T, μ) is a countable subgroup of the circle; hence
there is an α ∈ R\Q such that exp(2πikα) /∈ H(T, μ) for all k ∈ Z\{0}. It remains
to apply Lemma 3. �

3. Arcwise connectedness

In this section we prove our main result. But first we prepare some notation and
state an auxiliary lemma.

Let Z be a topological space and let x, y ∈ Z. A path (resp. arc) from x to y
in Z is a continuous function (resp. homeomorphism onto the image) γ : [0, 1] → Z
such that γ(0) = x and γ(1) = y. The space Z is pathwise connected (resp. arcwise
connected) if for every x, y ∈ Z there is a path (resp. an arc) from x to y.

By d̄(A) we denote the upper asymptotic density of a set A ⊂ Z. Recall that

d̄(A) = lim sup
n→∞

|A ∩ {1, . . . , n}|
n

.

Given x, y ∈ Ω = ΛZ with x = (xj)j∈Z and y = (yj)j∈Z the formula

d̄Ω(x, y) = d̄ ({n ∈ N | xn 
= yn})
defines a pseudometric on Ω. Note that d̄Ω(x, y) = 0 implies that x and y differ on
a set of coordinates of zero upper asymptotic density. The d-bar pseudometric d̄Ω
is closely connected with a metric on the set of shift-invariant measures Ω stronger
than the usual metric determining the weak∗ topology. This metric, denoted by
d̄M, is defined for μ, ν ∈ Mσ(Ω) by

d̄M(μ, ν) = inf
η∈J(μ,ν)

η({(x, y) ∈ Ω× Ω : x0 
= y0}),

whereas in the previous section J(μ, ν) denotes the set of all joinings of μ and ν (see
[34, Theorem I.9.7]). The link between the d-bar metric d̄M on measures and the
pseudometric d̄Ω on generic points needed here is the following corollary of Lemma
I.9.8 in [34]:

(1) d̄M(μ̂(x), μ̂(y)) ≤ d̄Ω(x, y), x, y ∈ Gen(Ω, σ).

For x ∈ Ω and y ∈ {0, 1}Z we denote by x ∗ y the coordinate-wise product:
(x ∗ y)j = xj · yj . If X ⊂ Ω and Y ⊂ {0, 1}Z are shift spaces, then we denote the
image of X × Y ⊂ Ω through ∗ as X ∗ Y . Observe that 0 is a safe symbol for a
shift space X over {0, 1, . . . , n− 1} if and only if X ∗ {0, 1}Z = X. It is clear that
∗ : X × Y → X ∗ Y is a factor map of (X × Y, σ × σ) onto (X ∗ Y, σ). It follows
that if (x, y) ∈ Gen(X × Y, σ × σ), then x ∗ y ∈ Gen(X ∗ Y, σ). Unfortunately, it
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is not always the case that if x and y are generic points, then (x, y) is generic; see
[13, p. 22]. But it holds if we assume that the corresponding measures are disjoint.
The proof follows the same lines as the proof of Theorem I.6 in [13].

Lemma 5. If (X,T, μ) and (Y, S, ν) are disjoint measure-preserving systems, x ∈
GenT (μ), and y ∈ GenS(ν), then (x, y) ∈ GenT×S(μ× ν).

Finally, given a shift space and t ≥ 0 we write M(t)
σ (X) for the set of ergodic

measures on X with entropy less than or equal to t, that is, M(t)
σ (X) = {μ ∈

Me
σ(X) : h(μ) ≤ t}. This was the last piece we needed for the proof of our main

result.

Theorem 6. If X is a shift space with a safe symbol (in particular, if X is a

hereditary shift) and t ≥ 0, then M(t)
σ (X) endowed with d̄M is arcwise connected.

Proof. Without loss of generality we assume that 0 is a safe symbol for X. By
[42, Cor. 31.6] every pathwise connected Hausdorff space is also arcwise connected.
Therefore it suffices to show that for any μ ∈ Me

σ(X) there exists a path from μ
to the Dirac measure δ0, where 0 denotes the bi-infinite sequence of 0’s. That is,
we need to define a continuous function Φ̂ : [0, 1] → Me

σ(X) with Φ̂(0) = δ0 and

Φ̂(1) = μ which is continuous when we endow Me
σ(X) with the d̄M metric. To

do that we construct a d̄Ω-continuous path of generic points. Since the topology
introduced by d̄Ω on X is not Hausdorff we consider an equivalence relation on X
defined by x ≡ y if d̄Ω(x, y) = 0. The resulting set of equivalence classes endowed
with the metric induced by d̄Ω is called the Besicovitch space of X and is denoted
XB. It is easy to see that a d̄Ω continuous path in X leads to a path in XB and
the arc in XB leads to a d̄Ω-continuous arc in X. Hence it remains to define a
d̄Ω-continuous path of generic points of ergodic measures in X.

For α, β ∈ [0, 1], define the point yα,β ∈ Ω by

yα,β =
(
χ[0,β)(jα mod 1)

)
j∈Z

∈ Ω,

where χ[0,β) denotes the characteristic function of [0, β). Note that yα,0 = 0 and
yα,1 = 1, where 1 denotes the bi-infinite sequence of 1’s. Write Yα,β for the closure
of the orbit of yα,β with respect to σ.

It is a well-known fact that if α is irrational and 0 < β < 1, then the dynamical
system (Yα,β , σ) is minimal and has a unique invariant measure, which we denote
by να,β . Furthermore, the measure-preserving system (Yα,β , σ, να,β) is isomorphic
(in the category of measure-preserving systems) to the circle rotation (T1, Rα, λ).
In addition, let να,0 = δ0 be the Dirac measure concentrated on 0 and similarly
να,1 = δ1. With this notation yα,β is generic for να,β for any β ∈ [0, 1]. Therefore,
for β ∈ (0, 1), measure-preserving systems (Y, S, ν) and (Yα,β , σ, να,β) are disjoint
if and only if (Y, S, ν) and (T1, Rα, λ) are disjoint.

Fix the choice of an irrational α ∈ [0, 1] such that (X, σ, μ) and (T1, Rα, λ)
are disjoint, whose existence is assured by Theorem 4. By Lemma 5, for any μ-
generic point x ∈ X and any β ∈ [0, 1], the point (x, yα,β) is generic for the ergodic
measure μ×να,β . It follows that x∗yα,β is a generic point for some ergodic measure
μβ = μ̂(x ∗ yα,β) for β ∈ [0, 1]. Furthermore, x ∗ yα,0 = 0 and x ∗ yα,1 = x; hence
μ0 = δ0 and μ1 = μ. Note that h(μ × να,β) = h(μ); thus h(μβ) ≤ h(μ) ≤ t for all
0 ≤ β ≤ 1.
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For 0 ≤ β < β′ ≤ 1 we have (yα,β)j 
= (yα,β′)j if and only if Rj
α(0) ∈ [β, β′).

Therefore

d̄Ω(yα,β , yα,β′) = d̄({j ∈ Z : (yα,β)j 
= (yα,β′)j}) = d̄({j ∈ Z : Rj
α(0) ∈ [β, β′)}).

Since Rα is a uniquely ergodic transformation, we have

d̄({j ∈ Z : Rj
α(0) ∈ [β, β′)}) = λ([β, β′)) = β′ − β.

It follows that the map Φ: [0, 1] � β �→ x ∗ yα,β ∈ Ω is d̄Ω-continuous, because

d̄Ω(x ∗ yα,β , x ∗ yα,β′) ≤ d̄Ω(yα,β , yα,β′) = |β − β′|.
Furthermore since 0 is a safe symbol for X we have Φ(X) ⊂ X. Hence, by (1), the

map Φ̂: [0, 1] � β �→ μβ = μ̂ ◦ Φ(β) ∈ M(t)
σ (X) ⊂ Me

σ(X) is also d̄M-continuous

and establishes a path from Φ̂(0) = μ̂(0) = δ0 to Φ̂(1) = μ̂(x) = μ in M(t)
σ (X). �

By [32, Thm. 7.7] the topology of d̄M metric is stronger than the weak∗ topology
on Me

σ(Ω). Together with Theorem 6 it yields the following result:

Corollary 7. If X is a shift space with a safe symbol (in particular, if X is a

hereditary shift), then for any t ≥ 0 the set M(t)
σ (X) (in particular, Me

σ(X)) is
arcwise connected in the weak∗ topology.

As the entropy function on Me
σ(Ω) endowed with the d̄M metric is continuous

(see [32, Theorem, 7.9] or [34, Theorem, I.9.16]) we conclude also the following:

Corollary 8. If X is a shift space with a safe symbol (in particular, if X is a
hereditary shift), then {h(μ) : μ ∈ Me

σ(X)} = [0, htop(X)] (possibly degenerate to
a point).

If X is a hereditary shift, then the bi-infinite sequence of 0’s denoted by 0 is
a fixed point for the shift map and belongs to X. Hence the atomic measure δ0
carried by 0 is invariant for X. There are hereditary shifts for which δ0 is the
only invariant measure and the existence of another invariant measure has many
consequences (see [25] for more details). Thus we divide all hereditary shifts into
two disjoint classes:

I. uniquely ergodic hereditary shifts (δ0 is the unique invariant measure),
II. non-uniquely ergodic hereditary shifts.

Hereditary shift spaces in class (I) are characterized as those in which for every
point x ∈ X the symbols other than 0 appear in x on a set of coordinates of zero
asymptotic density. Class (I) coincides also with the hereditary shifts having zero
topological entropy. Although this is not stated explicitly in [25], the proof applies
verbatim to shift spaces with a safe symbol. Hence we may note the following
corollary.

Corollary 9. A shift space with a safe symbol (in particular, a hereditary shift) has
positive topological entropy if and only if it has uncountably many ergodic measures.

4. Examples of hereditary shifts

Here we list some notable examples of hereditary shifts to which our main result
can be applied.

The primary example of a B-free shift is the square-free shift considered by
Sarnak [33], that is, a shift space whose structure reflects the statistical properties
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of square-free numbers. Recall that n ∈ N is square-free if there is no prime
number p such that p2 divides n. Let η be the characteristic function of the square-
free numbers treated as a point in {0, 1}Z. The square-free shift is the closure of
the orbit of η with respect to the shift map, and it turns out that it is hereditary
[27, 33]. The study of the square-free shift has been recently extended [1, 5] to the
general B-free shifts Xb induced in the same manner by the characteristic function
b of B-free numbers, that is, integers with no factor in a given set B ⊂ N. If B is
an Erdős set, that is, it consists of pairwise co-prime integers and

∑
b∈B 1/b < ∞,

then the B-free shift is also hereditary; see [1]. In general this is not the case, but
the smallest hereditary shift containing Xb still has some interesting properties (see
[5]). These systems were also investigated by Avdeeva [2], Cellarosi and Sinai [6],
Ku�laga-Przymus, Lemańczyk, and Weiss [21, 22], and Peckner [27].

Another shift space related to B-free integers is the B-admissible shift [5]. We
say that a sequence x = (xj)j∈Z ∈ {0, 1}Z is B-admissible if for every b ∈ B the
set {j ∈ Z : xj = 1} is disjoint with a set bZ+ r for some 0 ≤ r < b. It is not hard
to see that the set of B-admissible sequences in Ω is a hereditary shift space XB

called the B-admissible shift. Because b is clearly a B-admissible sequence we see
immediately that Xb ⊂ XB and the equality holds if B is an Erdős set.

Beta shifts introduced by Rényi [30] are related to number theory, tilings, and
dynamics of discontinuous transformations. For β > 1 the beta shift Ωβ is the
closure of the set of sequences in {0, 1, . . . , �β�}N arising as greedy β-expansions of
numbers from [0, 1]. All beta shifts are hereditary (see [25]).

Spacing shifts were introduced by Lau and Zame in [23]. A spacing shift ΩP ,
where P ⊂ N, is the set of all x = (xi) ∈ {0, 1}Z such that xi = xj = 1 and i 
= j
imply |i − j| ∈ P . Spacing shifts were studied in [3, 4]. It is easy to see that they
are hereditary.

Bounded density shifts were recently introduced by Stanley [37]. They are de-
fined by fixing a function f : N → [0,∞) and considering the set of all bi-infinite
sequences such that for each p ∈ N the sum of the entries of any finite subword of
length p does not exceed f(p). Since for any word coordinate-wise smaller than a
given word the sum of the entries can only decrease, these shifts are hereditary.

5. Intermediate entropy property vs. arcwise connectedness

The following results show that the conclusions of Corollary 7 and Corollary
8 are independent of each other.1 Recall that for every dynamical system (X,T )
the set MT (X) endowed with the weak∗ topology has the structure of a Choquet
simplex (see [11]). We say that a non-empty metrizable convex compact subset K
of a locally convex topological vector space is a Choquet simplex if every point of
K is the barycenter of a unique probability measure supported on the set extK of
extreme points of K.

Lemma 10. Let K be a convex subset of a vector space (over R or C). If P is a
closed subset of the set extK of extreme points of K, then its characteristic function
χP is upper semi-continuous and convex; that is, for x, y ∈ K and 0 < α < 1 we
have χP (αx+ (1− α)y) ≤ αχP (x) + (1− α)χP (y).

1We are grateful to Tomasz Downarowicz for drawing our attention to the theory presented in
[11] and generously sharing his insight on these matters.
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Proof. The upper semi-continuity is obvious. For the proof of convexity, note that
if x, y ∈ K, x 
= y, and 0 < α < 1, then αx+ (1− α)y is not an extreme point, so
χP (αx+ (1− α)y) = 0. �

Theorem 11. For every Polish topological space P there exists a minimal shift
space X (a Toeplitz shift) such that Me

σ(X) with the weak∗ topology and P are
homeomorphic and there is a unique measure μ ∈ Me

σ(X) with positive metric
entropy. (In particular, if P has more than one point, then X does not have the
intermediate entropy property.)

Proof. Let KP be the Choquet simplex whose set of extreme points extKP is
homeomorphic to P (such a Choquet simplex exists by [17]). Fix an extreme point
z ∈ extKP . Let δz denote the Dirac measure concentrated on {z} and let χ{z}
denote the characteristic function of {z} ⊂ extKP . Given a point x ∈ KP , we
denote by ξx the unique probability measure concentrated on extKP such that x
is the barycenter of ξx; that is, x is equal to the Pettis integral of the identity with
respect to ξx:

x =

∫
extKP

y dξx(y).

(See Appendix in [11] for more details.) We define a function ϕ : KP → R by

ϕ(x) =

∫
extKP

χ{z}(y) dξ
x(y) = ξx({z}) .

This function is the harmonic prolongation of χ{z} [11, Definition A.2.18]. The char-
acteristic function of a closed set is upper semi-continuous and convex by Lemma
10. By [11, Fact A.2.10] every upper semi-continuous harmonic function on a
Choquet simplex is affine. Therefore, ϕ is bounded, affine, non-negative, upper
semi-continuous on KP , and ϕ|extKP

= χ{z}.
By [10, Theorem 1], there exists a minimal Toeplitz shift (X, σ) and an affine

(onto) homeomorphism ψ : KP → Mσ(X) such that for every x ∈ KP , ϕ(x) =
h(ψ(x)), where h denotes the entropy function. This proves the proposition with
μ = ϕ(z). �

Theorem 12. For every uncountable Polish topological space P there exists a min-
imal shift space X (a Toeplitz shift) such that Me

σ(X) with the weak∗ topology and
P are homeomorphic and the metric entropy function h restricted to Me

σ(X) is not
constant and has the Darboux (intermediate value) property.

Proof. Assume that P is uncountable. Then there is C ⊂ P homeomorphic to the
usual Cantor set in [0, 1] [36, Theorem 3.2.7]. Let g : P → [0, 1] be any continuous
function such that g|C maps C onto [0, 1] (say, use the Tietze extension theorem
to extend the Devil’s staircase function on C to the whole P ). Then take η =
g · χC where χC is the characteristic function of C in P . The function η : P →
[0, 1] is upper semi-continuous and has the Darboux (intermediate-value) property.
Reasoning as above, we can find a Toeplitz minimal shift (X,T ) such that (up to
affine homeomorphism) MT (X) = KP and η = h|Me

T (X). �

6. Final remarks

We find the following question intriguing: Let μ denote the Möbius function
extended to Z in an obvious way (say μ(0) = 0 and μ(−n) = μ(n) for n ∈ N). Let
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XM be the orbit closure of μ in {−1, 0, 1}Z. Is 0 the safe symbol for XM? Recall
that the study of the square-free system in [33] was motivated by questions about
Möbius function μ.

Some special cases of our results were known to hold for some time. It follows
from the general theory of Choquet simplices that if the set of ergodic measures
is dense in the simplex of all invariant measures in the weak∗ topology, then it
is an arcwise connected set [24]. Therefore the set of ergodic measures is arcwise
connected in the weak∗ topology for all hereditary B-free shifts Xb , as Me

σ(Xb) =
Mσ(Xb) by [5,22]. For a concrete example of a shift space with dense set of ergodic
measures but without the intermediate entropy property see [15]. Ku�laga-Przymus,
Lemańczyk, and Weiss showed also in [22] that ergodic measures need not be dense
among all invariant measures for a general hereditary system, but must be arcwise
connected by our result. This phenomenon was previously observed in the Dyck
shift by Climenhaga [7].

All the results stated in this work remain valid for unilateral shift spaces, that
is, closed σ-invariant subsets of ΛN. This follows directly from [8, Proposition 2.1].

After we finished writing this paper Ayşe Şahin kindly shared with us the ar-
ticle [28], where d̄Ω continuous arcs of ergodic measures are constructed for some
examples of Z and Z2 shift spaces. Anthony Quas observed that one can use the
construction from [29] (loosely related to the “grand coupling” that shows up in
probability theory) to get another proof of Theorem 6 for the case t = htop(X), that
is, for Me

σ(X). This approach does not work for smaller t. The reader interested in
the result about the measures only can also use the idea from [28] and coupling with
irrational rotations to simplify the proof of Theorem 6 at the cost of loosing the
explicit construction of generic points. The latter result is in the spirit of “single
orbit dynamics” (see remarks about differences between almost everywhere results
and single orbit theorems in [41, pp. 8 and 89]), and we hope the reader will also
find it interesting. Besides, it gives some information about topological properties
of the Besicovitch space of the shift (see the proof of Theorem 6). We are grateful
to Anthony Quas for sharing his idea with us.

Added in proof. We note that by Corollary 7, Theorem A from Shinoda’s paper
[35] applies to any shift space with a safe symbol. This yields the following corollary:

Corollary 13. If X is a non-trivial shift space with a safe symbol, then there exists
a dense set of continuous functions D ⊂ C(X) such that for every f ∈ D there exist
uncountably many ergodic maximizing measures; that is, the set

Mmax(f) = {μ ∈ Mσ(X) :

∫
f dμ = max

ν∈Mσ(X)

∫
f dν}

is uncountable.

Appendix A. Uniquely ergodic extensions

Originally, we proved Theorem 6 using tools developed in this section. After a
talk one of us presented of these results during a seminar at the Institute of Math-
ematics of the Polish Academy of Sciences, Professors Lemańczyk and Przytycki
kindly suggested another approach for this proof. As we feel that the following
observations might be of independent interest and allow us to show Theorem 6
avoiding spectral theory of unitary operators we decided to attach them here.
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Suppose that (X,T ) is a topological factor of (Y, S) and π : Y → X is a factor
map. Let μ ∈ Me

T (X). We say that (Y, T ) is a uniquely ergodic extension of (X,T )
over μ if there is a unique measure ν ∈ Me

S(Y ) such that π∗(ν) = μ. We also say
that (Y, S, ν) uniquely extends (X,T, μ) through π : Y → X. The following lemma
and its corollary explain our interest in uniquely ergodic extensions.

Lemma 14 (Weiss, [41], Proposition 3.4). If the ergodic system (Y, S, ν) uniquely
extends (X,T, μ) over π : Y → X, x0 ∈ GenT (μ), and y0 ∈ π−1({x0}), then y0 ∈
GenS(ν).

The lemma above implies a useful criterion for genericity of a pair of generic
points with respect to a product measure.

Corollary 15. Let (X,T, μ) and (Y, S, ν) be two ergodic systems with ergodic prod-
uct. If (X ×Y, T ×S, μ× ν) uniquely extends (X,T, μ) over the projection onto the
first coordinate π : X × Y → X, then for every x0 ∈ GenT (μ) and y0 ∈ Y the pair
(x0, y0) is generic for μ× ν.

Note that in the situation of the above corollary, (Y, S, ν) is necessarily uniquely
ergodic, so GenS(ν) = Y . Lemma 14 was used in place of Lemma 5 in the first
version of our proof of Theorem 6.

The following relative version of the unique ergodicity theorem of Furstenberg
can be used to show that certain extensions are uniquely ergodic over group ro-
tations. The proof can be obtained through an easy modification of the standard
argument, which can be found in e.g. [12, Theorem 4.21]; we include it here for the
convenience of the reader.

Theorem 16. Assume that T : X → X is a homeomorphism of a compact metric
space and μ ∈ Me

T (X). Let G be a compact group, let λG be the Haar measure for
G, and let ϕ : X → G be a continuous map. Define Y = X ×G and S : Y → Y by
S(x, g) = (T (x), ϕ(x)g). If S is ergodic with respect to μ× λG, then (Y, S, μ× λG)
uniquely extends (X,T, μ) over the projection π : Y � (x, g) �→ x ∈ X.

Proof. The S-invariance of μ×λG is an immediate consequence of Fubini’s theorem,
since for any f ∈ C(Y ) we have∫

Y

f ◦ S d(μ× λG) =

∫
X

∫
G

f(Tx, ϕ(x)g) dλG(g)dμ(x)

=

∫
G

∫
X

f(Tx, g)dμ(x) dλG(g) =

∫
Y

f d(μ× λG).

Assume that (Y, S, μ × λG) is an ergodic measure-preserving system. We claim
that for every h ∈ G the set GenS(μ × λG) is invariant under the map Rh : Y �
(x, g) �→ (x, gh) ∈ Y . Note that (x, g) ∈ GenS(μ × λG) if and only if for every
continuous function f : Y → R we have

(2) lim
N→∞

1

N

N−1∑
n=0

f(Sn(x, g)) =

∫
Y

f d(μ× λG).

We fix f ∈ C(Y ) and h ∈ G. We want to show that (2) holds with (x, gh) in place
of (x, g). First note that

(3) lim
N→∞

1

N

N−1∑
n=0

f(Sn(x, gh)) = lim
N→∞

1

N

N−1∑
n=0

f ◦Rh(S
n(x, g)).
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Now use the fact that (x, g) is generic to conclude that the right hand side of (3)
converges to∫

Y

f ◦Rh d(μ× λG) =

∫
Y

f d((Rh)∗(μ× λG)) =

∫
Y

f d(μ× λG),

where the last equality holds because μ×λG is Rh invariant. This shows that for all
h ∈ G we have Rh(GenS(μ× λG)) ⊂ GenS(μ× λG). Repeating the same argument
with h−1 in place of h yields the reverse inclusion, and hence for any h ∈ G we have

Rh(GenS(μ× λG)) = GenS(μ× λG).

This completes the proof of our claim.
Let E1 ⊂ X be the projection of GenS(μ×λG) onto the first coordinate. Clearly,

μ(E1) = 1. If (x, g) ∈ GenS(μ × λG) and g′ ∈ G, then taking h = g−1g′ and
using our claim we get that (x, gh) = (x, g′) ∈ GenS(μ × λG). This shows that
GenS(μ× λG) = E1 ×G.

Let ν be an ergodic S-invariant measure such that π∗(ν) = μ. Let E2 =
π(GenS(ν)). Then μ(E2) = 1; hence μ(E1 ∩ E2) = 1, and in particular there
exists x0 ∈ E1 ∩ E2. Let y0 ∈ GenS(ν) be such that π(y0) = x0. But then
y0 ∈ {x0} ×G ⊂ GenS(μ× λG), and y0 is generic for both ν and μ× λG, implying
that ν = μ× λG. �

Theorem 16 yields the following corollary, which may replace Theorem 4 in the
proof of our main result.

Corollary 17. If T : X → X is a homeomorphism of a compact metric space
and μ ∈ Me

T (X), then there exists α ∈ R \ Q such that the product system (T ×
Rα, X × T1, μ × λ) is a uniquely ergodic extension of (X,T, μ) over the projection
π : X×T1 → X, where Rα is the rotation by α and λ denotes the Lebesgue measure
on T1 .

Proof. By Theorem 16, it is enough to find α ∈ R \Q such that T ×Rα is ergodic
with respect to μ × λ. To this end, using spectral theory discussed in Section 2,
it will suffice to ensure that the only common element of H(T, μ) and H(Rα, λ) =
{exp(2πikα) : k ∈ Z} is 1. Because H(T, μ) is at most countable, this will be the
case for all but countably many choices of α. �
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