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1. INTRODUCTION

Quantiles fully describe univariate probability distributions and may be very useful
for statistical inference. Scalar random variables and their quantiles can often be expected
to depend on some influential factors whose precise impact can be analyzed in the quantile
regression framework, introduced in [23] and surveyed in [22]. Under weak moment assump-
tions, it models the entire conditional distribution of interest and not only its mean as the
least squares approach. Therefore, it can reliably reveal even subtle changes in the condi-
tional distribution that usually remain hidden in a conventional statistical analysis despite
their possibly very important consequences. In fact, it is the tails of such conditional distribu-
tions that often contain much useful information and are thus very interesting for researchers
in various fields such as finance and insurance, meteorology and climatology, labor and public
economics, reliability and quality management, developmental studies, and medicine.

The everyday reality is usually intrinsically multivariate, and its successful analysis
thus asks for multivariate quantiles. Unfortunately, they cannot be defined in a universally
acceptable way because there exists no canonical way of ordering multivariate points and
because all the attractive properties of univariate quantiles cannot be met simultaneously
in a single multivariate quantile concept. Consequently, there already exist dozens of dif-
ferent multivariate quantile proposals that are usually based on data depth or spatial ranks,
norm minimization or M-estimation, inversion of mappings, gradients, or generalized quantile
processes; see, e.g., [33] for an overview.

Despite the abundance of the literature on multivariate quantiles (also called location
quantiles), their regression generalizations are still scarce; see [18]. They may be either para-
metric (when the overall regression dependence is supposed to have a particular functional
form), or nonparametric (when the overall dependence pattern is unknown). In the latter
case, it is often possible to assume that the regression dependence is locally polynomial, which
opens the door to the spline or locally polynomial (or, kernel) approach. Therefore, it makes
perfect sense to call multivariate regression quantiles after the way they were obtained as
parametric, nonparametric, or locally polynomial, for example. On the one hand, the para-
metric regression approach requires relatively strong assumptions regarding the particular
form of regression dependence, on the other hand, it allows for general designs and implies
standard consistency rates of related estimators (unlike its nonparametric competitors).

Most of the existing definitions of multivariate regression quantiles follow a directional
strategy. They first define directional regression quantiles as simple objects (typically points
or hyperplanes) and then use the directional objects for all directions to construct the result-
ing multivariate regression quantile (contour or region). The promising parametric proposals
presented in [15, 16] and [29] are quite representative of this category and lead to the same
multivariate regression quantile regions. Therefore, they will be considered as an established
parametric golden standard and used as a benchmark hereinafter. They define a polyhedral
multivariate regression quantile as the intersection of all directional regression quantile halfs-
paces of the same quantile level. They are implementable by means of [30, 31] and [2, 3], and
applied, e.g., in [34] and [35]. The other proposals with directional flavor include [8], [25], [6],
[9], [37], [26], [14], [7] and [4].

The alternative approach is not directional but direct (or, global) because it defines
multivariate regression quantiles and related contours and regions directly, i.e., without any
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auxiliary directional construction. Apart from the very recent (but not affine equivariant)
proposal of [5] inspired by [10], this category mainly includes various regression extensions
of the two proposals of multivariate quantiles with elliptical shapes (or, elliptical quantiles)
that were presented in [20] and [21]. The former proposal was motivated by linear quantile
regression, included even a heuristic definition of locally constant elliptical quantiles, and
employed only convex optimization that turned out very useful for its analysis. Unfortunately,
it could not be extended within its convex optimization setting to include robust or flexible
parametric regression quantiles, which is why the latter generalized multivariate elliptical
quantile concept was proposed as a remedy in [21]. It could not rely on convex optimization
any more, but, on the other hand, it was very general and even covered the former approach
as a special case, after a suitable reparametrization.

Now the parametric regression extension of the generalized multivariate elliptical quan-
tiles of [21] is discussed, investigated, and illustrated here in a very general nonlinear het-
eroscedastic framework. An important particular case with unique features has been briefly
introduced in [17] together with its examination by means of convex analysis. It is nicely
complemented with the general theory derived in this article.

It should also be mentioned for the sake of completeness, that the generalized parametric
elliptical regression quantiles considered here bear some similarity to multivariate regression
S-estimators and their modifications (see, e.g., [1], [36], and [32]) that are not used for defining
multivariate regression quantiles but also result from some location-scale or regression-scale
models where the determinant of the shape-defining matrix plays a crucial role.

As the parametric elliptical regression quantiles also roughly order the regression space,
they remotely resemble the depth-like notions for regression observations (see, e.g., [15], [29],
[34], and [14]).

In [21], the generalized multivariate elliptical quantiles have been shown useful for
symmetric distributions and highly competitive with the benchmark introduced above for
elliptical distributions. Their parametric regression extensions appear to preserve most of
their properties, but they should also be used only if their conditionally elliptical shape is
acceptable and, ideally, if the conditional distribution is at least centrally symmetric, which
is fortunately the case of all widely used error distributions. Then they are roughly on par
with the benchmark in terms of natural nestedness, equivariance properties, and the ability
to change with the quantile level and to capture the symmetry or ellipticity of the underlying
conditional distribution.

However, the generalized parametric elliptical regression quantiles then also excel in
other important aspects. Indeed, unlike the benchmark,

(1) they can easily incorporate homoscedasticity and many other types of a priori
information regarding their conditional scales, shapes, and centers,

(2) their quantile levels can correspond directly to their probability content,

(3) they can be parametrized flexibly and very naturally by means of their conditional
centers, shape matrices, and inflation (scaling) factors (whose estimates seem very
useful for goodness-of-fit tests or for statistical inference regarding conditional
location, dispersion, symmetry, or ellipticity),

(4) they can be quite robust to outliers,
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(5) they can work well even in complicated cases involving nonlinear trend or het-
eroscedasticity, and

(6) their computation can be feasible even in the sample cases involving moderate
dimensions and large data sets.

In fact, their development seems motivated by the lack of a multivariate regression quantile
concept with such a combination of favorable properties. Of course, some of them hold only
under certain assumptions on the joint distribution of responses and regressors and on the
parametrization of the model. Nevertheless, (1), (3), and (6) are totally out of reach of any
directional multivariate quantile regression method.

Most of the following text only clarifies and demonstrates the vaguely stated properties
of the generalized elliptical regression quantiles (and the conditions of their validity). As
they generally do not result from convex optimization, their computation in the sample case
may be quite complicated and their uniqueness may not be guaranteed. Nevertheless, they
must be unique in certain special cases including those of [17], and such a possible ambiguity
is common to many popular robust or nonlinear estimators. It might even be viewed as a
positive feature in some cases involving multimodal conditional distributions that may arise
easily in the context of mixtures; see, e.g., [12]. Until the uniqueness issues are satisfactorily
resolved, it is nevertheless recommended to use the generalized parametric elliptical regression
quantiles cautiously, to experiment with various initial values for their computation in the
sample case, and to prefer linearity in their parametrization whenever possible.

Although the generalized parametric elliptical regression quantiles presented here are
still somewhat rigid due to the ellipticity woven into their definition, they are definitely worthy
of wide attention and careful investigation because there is apparently no other multivariate
quantile regression methodology enabling joint parametric nonlinear modeling of both trend
and heteroscedasticity without any specific distributional assumptions. It seems that the
parametric elliptical quantile regression presented here has great potential and that it could be
used with benefits for vector responses in the same fields as the univariate quantile regression
or wherever else the whole conditional response distributions or their tails or covariance
structures are of interest. That is to say that (various) multivariate regression quantiles have
already proved very useful in several instances, e.g., in investigating the dependence

(1) of a few kinds of expenditures on the total income [5],

(2) of both systolic and diastolic blood pressures on age [6] or on age and BMI [9],

(3) of sales growth and sales profitability on the creativity test score in evaluating the
performance of salespersons [6],

(4) of weight and height on age [37, 26],

(5) of a few product characteristics on the time of production to take the tool wear
into consideration in the definition of a precision index [35],

(6) of length/height or weight and head circumference on age [27],

(7) of female thigh and calf maximum girths on age, height, weight or BMI [15, 14],

(8) of male life expectancy and death rate on the GNP per capita [29], or

(9) of a few financial time series [11, 4].

Some of the cited articles describe the application and its benefits in detail and should be
consulted in case of any remaining doubts.
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This article further proceeds as follows. Section 2 presents necessary notation and
introduces the definition of generalized elliptical regression quantiles, Section 3 studies their
basic properties in the population case, Section 4 discusses their parametrization, Section 5
uses them to classify multivariate heteroscedasticity, Section 6 deals with their computation in
the sample case, Section 7 proposes some tools for their validation, Section 8 illustrates them
with a few carefully designed demo examples, Section 9 applies them to a referential biometric
dataset, and concluding Section 10 comments on the previous results and achievements.
Applied statisticians reading the article for the first time may skip the text after Definition 2.1
and go directly to Section 4 or 8.

2. DEFINITIONS AND NOTATION

Consider a general regression setup where an m-variate stochastic vector of responses
Y =

(
Y (1), ..., Y (m)

)′ ∈ Rm is to be explained with the aid of the corresponding p-variate
regressor Z ∈ Rp, and (Y ′,Z ′)′ has an absolutely continuous distribution with a density
differentiable almost everywhere.

Recall that the standard location and regression quantiles of [23] can be defined for any
τ ∈ (0,1) by means of the non-negative convex real-valued check function ρτ (t) = t

(
τ− I(t<0)

)
= max

{
(τ −1)t, τ t

}
with a unique minimum. This function was also used in [20, 21] for

defining two types of location elliptical quantiles. Here the second proposal is extended to a
general parametric regression setup.

The next definition is rather complicated because it deals with the whole class of para-
metric elliptical regression quantiles indexed by quantile levels (τ) and certain monotone
functions (g), and because the natural parameters characterizing the shape of possible ellipti-
cal regression quantile contours (εg,τ ) themselves depend on a common parameter vector (θ).
Only its optimal value (θτ ) resulting from a minimization problem is used in the definition.

Definition 2.1. For any τ ∈ (0, 1) and any function g specified below, the para-
metric elliptical regression τ -g-quantile (contour) εg,τ (Y ,Z) and the corresponding lower
and upper parametric τ -g-quantile regression regions E−g,τ (Y ,Z) and E+

g,τ (Y ,Z) can be de-
fined by means of the shape (matrix), trend (vector), and scale (scalar) quantile parameters
Aτ (θ,z) ∈ Rm×m, sτ (θ,z) ∈ Rm, and cτ (θ,z) ∈ R depending on z ∈ Rp as well as on a com-
mon parameter vector θ = (θ1, ..., θq)′ ∈ Rq:

εg,τ (Y ,Z) =
{

(y,z) ∈ Rm+p : hτ (θτ ,y,z) = 0
}

,

E−g,τ (Y ,Z) =
{

(y,z) ∈ Rm+p : hτ (θτ ,y,z) < 0
}

,

E+
g,τ (Y ,Z) =

{
(y,z) ∈ Rm+p : hτ (θτ ,y,z) ≥ 0

}
,

where
hτ (θ,y,z) = g

((
y − sτ (θ,z)

)′ Aτ (θ,z)
(
y − sτ (θ,z)

))
− cτ (θ,z) ,

g(t) : [0,∞) 7→ [0,∞) is a suitable strictly increasing smooth function such that g(0) = 0, and
θτ minimizes the objective function

(OF) Ψτ (θ) = E ρτ

(
hτ (θ,Y ,Z)

)
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over the whole parametric space Θτ ⊂ Rq, Θτ = Θ◦
τ , subject to a regularity constraint on Aτ

ensuring that Aτ (θ,z) ∈ Rm×m is always symmetric positive definite (its choice is discussed
below). The definition also tacitly assumes that the expectation in (OF) is finite and that its
partial derivatives with respect to θ are exchangeable with the expectation sign.

The sets εg,τ (Y ,Z) ∩
{
(y,z) ∈ Rm+p : z = z0

}
, defined for any fixed z0 ∈ Rp, will be

conveniently called elliptical τ -g-quantile z0-cuts.

As far as the terminology is concerned, all the quantile-related adjectives, prefixes,
indices, and arguments may be omitted on condition that they are either clear from the
context or irrelevant to the statement being made.

Note that all the regression τ -g-quantile z0-cuts are ellipsoids and that their definition
resembles that of multivariate elliptical quantiles of [21] if Aτ , sτ , and cτ are independent of
z and the regularity constraint is of the form det Aτ (θ,z) = 1. This constraint seems optimal
for achieving the best possible equivariance properties of the resulting elliptical regression
τ -quantile entities and also from the statistical point of view, see [28], which is why it is
exclusively considered here. This does not necessarily imply complete uselessness of all the
other possible regularizations based on the eigenvalues of either Aτ itself or of its product
with a positive regressor-dependent scale factor; see [20] for some alternatives.

The definition of multivariate elliptical regression τ -g-quantiles is obviously very gen-
eral. First of all, it allows for very general trend and heteroscedastic patterns with possible
nonlinearity in unknown parameters and with arbitrary τ -dependence of g, q, Θτ , and the
specifications for Aτ , sτ , and cτ . It also permits quite general interdependencies between Aτ ,
sτ , and cτ thanks to their common dependence on the same parametric vector. Nevertheless,
it is recommended that practitioners invoke simplicity and linearity whenever possible and
reduce the use of interdependencies to the absolute minimum.

Of course, if there is any information regarding θτ available in advance, then it can be
used advantageously in the optimization of (OF). This might also give rise to some multipliers
that could be useful for statistical inference like θτ , Ψτ (θτ ), Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z),
possibly considered as functions of τ and g. That is to say that the choice of g matters in
general and may have a huge impact on required moment assumptions as well as on the
robustness and rigidity of the resulting elliptical regression quantile contours. In fact, the
parametrization of quantile characteristics Aτ , sτ , and cτ is so important that it is repeatedly
discussed throughout the next sections.

Unfortunately, the parametric elliptical regression τ -quantiles are not uniquely defined
in the instances when Ψτ (θ) attains multiple global minima, which is typical of all nonlinear
regression estimators; see [21] for a slightly more detailed discussion of that in the generic
multivariate case.

If the lack of robustness is not an issue, then gI(t) = t seems the best choice because it
can often be reasonably expected to minimize the number of local minima of (OF) as well as
the overall computational burden. This choice also produces the very special uniquely defined
elliptical regression quantiles described and illustrated in [17]. If robustness is of high priority,
then one should choose either g(t) = tα for α < 1 to preserve affine equivariance or perhaps g

equal to a simple, bounded, and easy to compute function behaving like the identity function
close to zero. However, if α < 0.5 or g is bounded, then the objective function (OF) may
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easily become misbehaving. This is why such choices cannot be recommended before such
behavior and its consequences are fully clarified.

Obviously, the elliptical regression quantiles handle response outliers better than the de-
sign ones, because their robustness to design outliers may remain in question even for a bounded
g due to the possible negative impact of cτ (θ,z). This defect is unpleasant although cτ (θ,z)
unbounded in z need not always spoil the robustness too much and although it can be bounded
easily by means of a suitable parametrization; see Figure 3 for a result of such an attempt.

The definition of the parametric elliptical regression quantiles is so general that one can
hardly say anything special about them without further assumptions. The next section at-
tempts to point out some of their favorable properties without sacrificing too much generality.
The following terminology then comes in handy.

Definition 2.2. The parametrization of the elliptical regression τ -g-quantiles is called:

• separable if θ = (θ′s,θ
′
A,θ′c)

′ and sτ (θ), Aτ (θ), and cτ (θ) really depend solely on
θs, θA, and θc, respectively;

• reducible in sτ if sτ (θ,z) = s0
τ + s1

τ (θ,z) where s1
τ is some function, and s0

τ is an
m-dimensional subvector of θ in which Aτ (θ), cτ (θ), and s1

τ (θ) are constant;

• reducible in cτ if cτ (θ,z) = c0
τ + c1

τ (θ,z) where c1
τ is some function, and c0

τ is a
scalar subvector of θ in which sτ (θ), Aτ (θ), and c1

τ (θ) are constant;

• admissible if there exists θ0
τ ∈ Θτ such that

sτ (θ0
τ ,z) = s0

τ (z), Aτ (θ0
τ ,z) = A0

τ (z), and cτ (θ0
τ ,z) = c0

τ (z)

for almost all z where s0
τ (z), A0

τ (z), and c0
τ (z) describe a multivariate elliptical

τ -g-quantile of the conditional distribution of Y given Z = z, as defined in [21].
It means that s0

τ (z), A0
τ (z), and c0

τ (z) jointly minimize the expectation (with respect
to the conditional distribution)

EY |Z=z ρτ

(
g
(
(Y −s)′A(Y −s)

)
− c
)

subject to the constraints that A is positive semidefinite and det(A) = 1.

The parametrization is therefore admissible if there exists θ0
τ ∈ Θτ such that the z-cuts

of the corresponding elliptical regression τ -g-quantile are equal to multivariate τ -g-quantiles
of the conditional distributions of Y given Z = z for almost all z.

Example 2.1. Consider τ ∈ (0, 1) and (Y ′,Z ′)′ with a multivariate normal distribu-
tion or with a multivariate elliptical distribution having all required moments finite. Then
any separable parametrization of elliptical regression τ -g-quantiles such that

1. Aτ (θ,z), θ ∈ Θτ , does not depend on z and may become any positive definite
matrix with unit determinant,

2. sτ (θ,z), θ ∈ Θτ , includes any affine function of z, and

3. cτ (θ), θ ∈ Θτ , does not depend on z and may attain any positive value,

is admissible for any permitted g if it leads to the uniquely defined elliptical regression
τ -g-quantile; see [13] and Theorem 3.5 below.
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3. BASIC PROPERTIES

The justification for elliptical regression quantiles is based on their good properties
in the special location case, resulting from the necessary gradient conditions of [21]. The
conditions play such a prominent role that they deserve to be paraphrased below using current
terminology:

Theorem 3.1. Consider the special location case (without regressors) when (Y ′,Z ′) =
Y ′ and the parameters sτ , Aτ , and cτ are constant. Then the elliptical τ -g-quantiles must

satisfy the necessary conditions (1) to (4) of [21] that translate to

1 = det(Aτ ) ,(3.1)

0 = P
(
(Y ′,Z ′)′ ∈ E−g,τ

)
− τ ,(3.2)

0 =
1

1− τ
E
[
γRτ I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
γRτ I[(Y ′,Z′)′∈E−g,τ ]

]
,(3.3)

and

Lτ
det(Aτ )
τ(1− τ)

A−1
τ =

1
1− τ

E
[
γRτR

′
τ I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
γRτR

′
τ I[(Y ′,Z′)′∈E−g,τ ]

]
,(3.4)

where Aτ is assumed symmetric positive semidefinite, Lτ is the Lagrange multiplier cor-

responding to the constraint −det(Aτ ) + 1 = 0, Rτ = Y − sτ , ġ(t) := ∂g(t)/∂t, and γ =
ġ(R′

τAτRτ ).

The probability interpretation of the location elliptical quantiles then results from (3.2).
If g = gI , then γ = 1 and the conditions simplify considerably and become easy to interpret;
see [21] for further details.

In the general regression context considered here, sτ , Aτ , and cτ may depend on z

and on the common underlying parameter θ. Consequently, one should derive (OF) as a
compound function and the derivatives of sτ , Aτ , and cτ with respect to θ should also enter
the scene.

If the properties of elliptical regression quantiles should naturally generalize those of
the location ones, then only separable parametrizations reducible both in cτ and sτ should
be considered.

The next theorem summarizes some obvious special cases.

Theorem 3.2. If the parametrization of the elliptical regression τ -quantiles

• is reducible in cτ , then (3.2) holds;

• is reducible in sτ with z-independent Aτ , then (3.3) holds;

• is separable and cτ = θ′Lz + cI
τ (θc,z) where θL is a subvector of θc in which cI

τ is

constant, then

0 =
1

1− τ
E
[
Z I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
Z I[(Y ′,Z′)′∈E−g,τ ]

]
.



Parametric Elliptical Regression Quantiles 265

Assume that all the three conditions are satisfied. Then the population parametric
elliptical regression quantiles have a clear probability interpretation, E−g,τ is nonempty for
τ > 0, and the centers of probability mass of E−g,τ (Y ,Z) and E+

g,τ (Y ,Z) have the same
z-coordinates. The second claim then meaningfully links the probability mass centers of
scaled residuals γ(Y − sτ (θτ ,Z)) corresponding to the regression observations in E−g,τ (Y ,Z)
and E+

g,τ (Y ,Z).

Every reasonable multivariate quantile regression concept should also exhibit good
equivariance properties. The parametric elliptical quantile regression need not be an ex-
ception in this regard. What really matters is how sτ (θτ ), Aτ (θτ ), and cτ (θτ ) change with
the transformations of Y , and this follows directly from the location case of [21].

Definition 3.1. The parametrization of elliptical regression τ -g-quantiles is called
affine equivariant if g(t) = tr for some r > 0 and if, for any a ∈ Rm, any regular m×m

matrix B (with determinant d), and any θ ∈ Θτ , there exists θB,a,d ∈ Θτ such that

Aτ (θB,a,d,z) = d2
(
B−1

)′Aτ (θ,z) B−1 ,(3.5)

sτ (θB,a,d,z) = a + Bsτ (θ,z) ,(3.6)
and

cτ (θB,a,d,z) = g
(
d2g−1

(
cτ (θ,z)

))
(3.7)

for all z. If (3.5), (3.6) and (3.7) hold for d = 1, then the parametrization is called shift and
rotation equivariant, even if g is not a polynomial.

Theorem 3.3. If the parametrization of elliptical regression τ -quantiles is affine equiv-

ariant, then the resulting elliptical regression τ -quantiles are affine equivariant. If it is shift

and rotation equivariant, then the resulting elliptical regression τ -quantiles are shift and

rotation equivariant.

Proof: If θ ∈ Θτ minimizes (OF) for random vector (Y ′,Z ′)′ ∈ Rm+p, then corre-
sponding θB,a,d ∈ Θτ from the above definition of the equivariant parametrization obviously
minimizes (OF) for random vector

(
(a + BY )′,Z ′)′ ∈ Rm+p for any a ∈ Rm and any regular

m×m matrix B with determinant d.

In other words, if the elliptical regression τ -quantile of (Y ′,Z ′)′ is parametrized with
Aτ , sτ , and cτ by means of an affine equivariant parametrization, then the elliptical regres-
sion τ -quantile of

(
(a + BY )′,Z ′)′ can be parametrized with d2

(
B−1

)′AτB−1, a + Bsτ , and
g
(
d2g−1

(
cτ (θ,z)

))
.

The graph of Ψτ (θ) crucially influences the process of optimization. The following
consequences of convex calculus might serve as a guidance for choosing g and minimizing the
troubles with the optimization of Ψτ (θ).

Theorem 3.4. Assume a separable parametrization of the elliptical regression

τ -g-quantiles with θ = (θ′s,θ
′
A,θ′c)

′.

• If g = gI , then Ψτ is convex in Aτ .

• If cτ is linear in θc, then Ψτ (θ) is convex in θc.
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In fact, g = gI may easily lead to uniquely defined parametric elliptical regression quan-
tiles; see [17].

Generally speaking, the good properties of multivariate elliptical quantiles extend to
the elliptical regression quantiles with admissible and affine equivariant parametrizations.

Theorem 3.5. Let τ ∈ (0, 1) and f(y,z) = f1(y|z) f2(z) be the density of (Y ′,Z ′)′ ∈
Rm+p where f2(z) is the marginal density of Z and f1(y|z) is the regularized version of the

density of the conditional distribution of Y given Z = z that is assumed to exist.

If the parametrization Aτ (θ,z), sτ (θ,z), and cτ (θ,z) of the elliptical regression

τ -quantile is admissible, then there exists θτ ∈ Θτ minimizing (OF). If for any orthonormal

matrix O there exists θ̃τ (O) ∈ Θτ such that Aτ (θ̃τ (O),z) = O′Aτ (θτ ,z) O, cτ (θ̃τ (O),z) =
cτ (θτ ,z), and sτ (θ̃τ (O),z) = µ(z) + O′(sτ (θτ ,z)−µ(z)

)
for the particular µ appearing be-

low, and

[1] if f1(y|z) = f1

(
µ(z) + O(y−µ(z)) |z

)
for some function µ = (µ1, ..., µm)′ and

for an orthonormal matrix O = O−1′ , then there exists an elliptical regression

τ -quantile parametrized with Aτ (θ̃τ (O),z), sτ (θ̃τ (O),z), and cτ (θ̃τ (O),z).

If the elliptical regression τ -quantile is moreover uniquely defined, then

[2] if sτ (θτ ,z) = (s1, ..., sm)(z)′, Aτ (θτ ,z) = (aij(z))m
i,j=1, and f1(y|z) = f1

(
µ(z) +

J(y − µ(z)) |z
)

for all z and a sign-change matrix J = J′ = J−1 = diag(j1, ..., jm)
with diagonal elements ±1, then si(z) = µi(z) whenever ji = −1, i ∈ {1, ...,m},
and aij(z) = 0 whenever ji jj =−1, i, j ∈ {1, ...,m};

[3] if all the conditional distributions of Y given Z = z are centrally symmetric around

their center of symmetry µ(z), then sτ (θτ ,z) = µ(z);

[4] if all the conditional distributions of Y given Z = z centered with µ(z) are sym-

metric around a common hyperplane H, then sτ (θτ ,z)− µ(z) lies on H;

[5] if all the conditional distributions of Y given Z = z centered with µ(z) are sym-

metric along a common axis o, then sτ (θτ ,z)− µ(z) lies on that axis.

Proof: As for [1], the assumed admissible parametrization guarantees that there exists
θτ ∈Θτ such that Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z) minimize Φz

τ (A,s,c) := EY |Z=z ρτ

(
g
(
(Y−s)′

A(Y −s)
)
− c
)

for almost all z. Therefore, they minimize (OF) as well. The assumption on
the conditional density further implies Φz

τ (Aτ , sτ , cτ ) = Φz
τ

(
O′AτO,µ(z)+O′(sτ−µ(z)), cτ

)
,

and thus O′Aτ (θτ ,z) O, µ(z)+O′(sτ (θτ ,z)−µ(z)
)

and cτ (θτ ,z) also minimize not only the
same conditional expectation for almost all z, but also (OF) as well, and, therefore, they also
describe an elliptical regression τ -quantile thanks to the assumed existence of θ̃τ (O).

As for [2], it follows directly from [1] because matrix J is orthonormal. Only the two
elliptical regression τ -quantiles from [1] must now coincide due to the uniqueness assumption.
This fact implies si(z) = µi(z) whenever ji = −1, and aij(z) = 0 whenever ji jj = −1, i, j ∈
{1, ...,m}. Furthermore, [2] implies [3] for J = −I. The rest ([4] and [5]) analogously results
from [1] and [2] for certain orthonormal matrices.
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Note 3.1. In [1], [2], and [3], it would be enough to assume the existence of θ̃τ (O) ∈ Θτ

only for the particular orthonormal matrices O considered there. In fact, the statements [2] to
[5] could be proved directly by generalizing the location case with similar behavior regarding
symmetry, only with the requirement of an admissible parametrization and without any need
of θ̃τ (O) for some orthonormal matrices O.

Note 3.2. The somewhat analogous Theorem 1 of [21] and its proof unfortunately
contain a couple of misprints and one error. First, any occurrence of Osτ should be replaced
with O′sτ there. Second, the proof should apply (2) to (6), not (2)–(6). And most impor-
tantly, the natural behavior of generalized elliptical quantiles under affine transformations of
the response vector, postulated by Theorem 1 (1), is there falsely interpreted as full affine
equivariance for any function g, which invalidates the proofs of further statements (3), (4),
(5), and (10). While the generalized elliptical quantiles are always shift and rotation equiv-
ariant, they are certain to be fully affine equivariant only for g(t) = tα, α > 0. Consequently,
the statements (3), (4), (5), and (10) there hold only for such functions g or for spherical
distributions. The claims (6)–(9) there really require only rotation and shift equivariance
and, therefore, remain valid for any function g as they stand.

The uniqueness assumption used in Theorem 3.5 is not as severe as it might seem at first
sight. That is to say that what really matters is only the uniqueness of Aτ (θτ ,z), sτ (θτ ,z)
and cτ (θτ ,z) in the population case.

Any admissible parametrization by definition guarantees the existence of such θ0 ∈
Θτ that (for almost all z) minimizes the (non-negative finite) conditional expectation of
ρτ (hτ (θ,Y ,Z)) (with respect to the conditional distribution of Y given Z = z). This im-
plies that the same θ0 also minimizes its unconditional (finite) expectation (OF). Therefore,
the parameter vector θ0 ∈ Θτ also defines an elliptical regression τ -quantile that is uniquely
defined if all the purely multivariate elliptical τ -quantiles of L(Y |Z = z) are uniquely de-
fined. The uniqueness of multivariate elliptical τ -quantiles has been studied in [20, 21] and
established for g(t) = t under very mild conditions. Consequently, the aforementioned consid-
erations extend the uniqueness result even to elliptical regression quantiles with g(t) = t and
admissible parametrizations. This is why g(t) = t is generally preferred to other possibilities
for the time being.

Unfortunately, ill-specified models for elliptical regression quantiles generally need not
lead to a unique solution even for g(t) = t. This is typical of all nonlinear regression methods.
Nevertheless, there exist certain natural parametrizations with g(t) = t that lead to unique
elliptical regression quantiles even if the model is misspecified; see [17].

4. THE ART OF PARAMETRIZATION

The parametrization of sτ follows directly from available preconceptions regarding the
multivariate trend, and that of cτ also often results from the context quite easily. One choice
can be nevertheless much better than its formal equivalents from the computational point of
view; see Section 6.
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On the contrary, it need not be that clear how to parametrize Aτ to keep it positive
definite with unit determinant so that one could avoid all the restrictions and constrained
optimization. In the case of bivariate responses with m = 2, there are several possibilities at
hand, e.g.

Aτ (θ,z) =
(

a2
11 a12

a12 (1 + a2
12)/a2

11

)
,(4.1)

Aτ (θ,z) =
(

c1 c2

0 1
c1

)′(
c1 c2

0 1
c1

)
=

(
c2
1 c1c2

c1c2 c2
2 + 1

c21

)
,(4.2)

or

Aτ (θ,z) =
(

cos(α) − sin(α)
sin(α) cos(α)

)′(
d2 0
0 1

d2

)(
cos(α) − sin(α)
sin(α) cos(α)

)
,(4.3)

where the obvious dependence of a11, a12, c1, c2, α, and d2 on τ , θ, and z is not emphasized
for the sake of brevity. Of course, one could also consider exp(a11) and exp(d) instead of a2

11

and d2, not to mention other alternatives in the same spirit.

Clearly, (4.1) is the most straightforward possibility but it can hardly be generalized
beyond dimension m = 2 or m = 3. On the other hand, (4.2) follows from the Choleski de-
composition advocated in [21] and it can be easily adjusted to any dimension of the responses.
The third example (4.3) results from the spectral decomposition and it also can be extended
to general multivariate response settings, though in a rather complicated way.

The optimal choice of parametrization for Aτ crucially depends on the type of expected
heteroscedasticity. The spectral decomposition in (4.3) appears very appealing due to its
easy and natural interpretation. Unfortunately, such a parametrization of a positive definite
matrix is not unique without further assumptions regarding the angles and/or the diagonal
elements of the sandwiched matrix. Sometimes one can give up the uniqueness, find a solution,
and then transform it to a canonical form without any harm. One could also use the well-
worn tricks how to enforce one parameter higher than the other or in a certain range. The
choices may depend on the expected model, which shifts the modeling from a boring routine
to sophisticated art.

In the cases of homoscedasticity and multiplicative heteroscedasticity described below
and corresponding to constant Aτ , one can simply avoid all such problems by using the
parametrization based on the Choleski decomposition, which is generally recommended in
such situations.

5. CLASSIFICATION OF HETEROSCEDASTICITY

Assume that a correctly specified elliptical quantile regression model for bivariate re-
sponses leads to a unique solution Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z), with Aτ (θτ ,z) parame-
trized by means of ατ (θτ ,z) and dτ (θτ ,z) as in (4.3). Then it makes sense to speak of
τ -level homoscedasticity when ατ (θτ ,z), cτ (θτ ,z), and dτ (θτ ,z) are all independent of z.
Furthermore, it is possible to distinguish three canonical τ -level heteroscedastic patterns cor-
responding to the cases when only one of the characteristics ατ (θτ ,z), cτ (θτ ,z), and dτ (θτ ,z)
depends on z:
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(1) rotational heteroscedasticity (if only ατ (θτ ,z) is z-dependent),

(2) multiplicative (or scale) heteroscedasticity (if only cτ (θτ ,z) is z-dependent), and

(3) proportional heteroscedasticity (if only dτ (θτ ,z) is z-dependent).

Any type of bivariate heteroscedasticity can then be decomposed into the three canonical
forms. See Figure 1 for an illustration of this classification.

If these heteroscedastic patterns are observed for all τ ∈ (0, 1), then one can speak of
τ -independent heteroscedastic patterns. If they are observed only locally in τ or z, then one
can speak of local heteroscedastic patterns. This terminology can be adopted even informally
when the true underlying model is unknown but its heteroscedastic profile slightly resembles
that of elliptical quantile regression.

The situation becomes more complicated in case of multivariate responses, but even
then the classification can still be used for any couple of their coordinates and the terms like
overall rotational/proportional/multiplicative heteroscedasticity still make perfect sense.

Although the multiplicative heteroscedasticity seems by far the most common, the
others are not necessarily extinct but maybe only hidden because the ways available for
their detection and modeling are rather limited and unpopular, at least for the time being.
For example, the rotational heteroscedasticity may be dormant in the data observed by the
satellites orbiting the Earth. And it is demonstrated below in Section 9 that it might be
present even in biometric data.

6. COMPUTATION

The sample elliptical regression τ -g-quantiles can be obtained directly from the defi-
nition if the expectation in (OF) is taken with respect to the discrete empirical probability
distribution. Consider n responses Yi’s accompanied with corresponding regressor vectors
Zi’s, i = 1, ..., n, from the population distribution assumed above. Even if all the constraints
on Aτ are removed in the way described in Section 4, then it still remains to solve the
unconstrained optimization problem

min
θ

n∑
i=1

ρτ

(
hτ (θ,Yi,Zi)

)
for appropriate hτ where the objective function is generally neither smooth nor convex.
Of course, it could be done with a suitable general solver for non-convex optimization.
Fortunately, this problem can also be viewed as a nonlinear quantile regression task with
zero responses and regressors (Y ′

i ,Z ′
i)
′, i = 1, ..., n, that has already been studied successfully,

see [22], and can be solved for differentiable hτ with the special algorithm developed in [24]
whose Matlab implementation in ipqr.m, available at http://sites.stat.psu.edu/∼dhunter/
code/qrmatlab, had been tuned up and used for the computation of all the sample parametric
elliptical regression g-quantiles presented in the next sections. In other words, the parametric
elliptical regression quantiles can be computed like their location predecessors of [21].

Unfortunately, the algorithm of [24] must be initialized with a preliminary estimate of θτ .

http://sites.stat.psu.edu/~dhunter/code/qrmatlab
http://sites.stat.psu.edu/~dhunter/code/qrmatlab
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This is a stage when any available information about the estimated vector parameter can be
employed advantageously. Of course, one should experiment with several wise choices of initial
parameters and then choose the solution according to the final parameter estimators and cor-
responding values of the minimized objective function. If some not-so-complicated regression
models were considered, then one might also fit each response component by means of single-
response quantile regression and use the resulting parameter estimates to initialize the algo-
rithm. A few multivariate quantile cuts obtained from other multi-response quantile regression
method(s) could also be mined for some information leading to the initial parameter estimates.

The parametrization of the problem also matters as one can lead to the successful end
much more quickly and easily than another. From this point of view, it is strongly recom-
mended to avoid nonlinearities whenever possible. If the Jacobian derived from hτ is singular
from the very beginning or becomes singular or close to singular during the computation, then
insuperable numerical problems can be expected, which also speaks for using well-thought-out
parametrizations and parameter initializations. For example, such a situation may happen
for d2 = 1 if the parametrization (4.3) is used for Aτ .

The computational side of many nonlinear regression methods is not ideal and the
parametric elliptical quantile regression is no exception in this regard. But one can hardly
hope for anything else if the model is genuinely nonlinear and non-convex in its parameters.

7. MODEL VALIDATION

This section suggests a few heuristic ways how to validate the resulting elliptical quantile
regression models before the topic is treated elsewhere in full detail and exactness. The first
two are commonly used in the ordinary least squares regression.

Suppose that n regression observations (Y ′
i ,Z ′

i)
′, i = 1, ..., n, were fitted with a general-

ized parametric elliptical (τ -g-)quantile regression model leading to unique quantile parameter
estimates A(θ̂,z), s(θ̂,z), c(θ̂,z), and to homogenized (pseudo)residuals ri(θ̂) := h(θ̂,Yi,Zi),
i = 1, ..., n; see Definition 2.1 for the origin of h.

One can then use the cross-validation approach to look for outliers or influential obser-
vations. In other words, the impact of some observation(s) can be evaluated by means of the
differences θ̂ − θ̂−, Ψ(θ̂)−Ψ(θ̂−), c(θ̂,z)− c(θ̂−,z), g−1(c(θ̂,z))− g−1(c(θ̂−,z)), s(θ̂,z)−
s(θ̂−,z), A(θ̂,z)−A(θ̂−,z), A−1(θ̂,z)−A−1(θ̂−,z), ri(θ̂)− ri(θ̂−), and their parts or norms
where θ̂− is the quantile coefficient estimate obtained by excluding the suspected observa-
tion(s) from the sample. Of course, the differences of the whole quantile cuts corresponding
to θ̂ and θ̂− could also be investigated. And it would be wise to consult such differences even
in testing various submodels where the role of θ̂− would be played by the optimal estimate
of θ in the restricted model.

One could also inspect various charts to check the behavior of the homogenized (pseudo)
residuals. In a well-specified model, they should be (roughly) mutually independent, iden-
tically distributed, and independent of the covariates (and also of the responses if all the
conditional distributions were elliptical). For example, one may plot ri or r2

i on their lagged
values and (the norms or components of) Yi and Zi, i = 1, ..., n.



Parametric Elliptical Regression Quantiles 271

One could verify as well whether the estimated quantile cuts share their centers, axes,
and hyperplanes of symmetry with the expected conditional distributions. The opposite
might imply that the model assumptions were wrong, owing to Theorem 3.5.

If c(θ̂,z) is unexpectedly negative for common regressor values, then there must be
something wrong with the model specification too.

Finally, one might also validate the model by comparing the resulting quantile cuts with
those obtained with another multivariate quantile regression method that requires even weaker
assumptions and is still applicable to the data. Depending on the context, the benchmark
or the nonparametric proposals of [26], [20], [14] or [4] could often serve the purpose quite well.

8. ILLUSTRATIONS

This section presents some pictures to support the claim that the parametric elliptical
regression g-quantiles are indeed promising candidates for wide dissemination thanks to their
many good properties. For the sake of simplicity, only the most often recommended natural
choice gI(t) = t is considered hereinafter.

Unfortunately, the precise rules for choosing g in different situations are still to be
developed. For the time being, it only seems wise to scale the data properly before their
analysis and then to use gI in the absence of outliers. The choice is also preferable from the
computational point of view.

The examples below testify that the elliptical quantile regression can work well both
for elliptical and non-elliptical underlying error distributions, and also for the number of
observations n as low as 99 and as high as 99 999. For the sake of simplicity and ease of
presentation, the colors of both data points and quantile cuts are changing in dependence
of the corresponding regressor values, and only bivariate responses with scalar regressors are
considered. Nevertheless, there is no intrinsic restriction on the dimension of responses or
regressors involved in the empirical model provided that the number of free model parameters
is low relative to the total number of observations and not too large for the computation to
terminate successfully.

The elliptical regression τ -g-quantiles are parametrized by means of sτ , Aτ , and cτ .
In the examples, Aτ is always considered in its spectral decomposition (4.3) described by d2

τ

and ατ , although less complicated parametrizations of Aτ should be generally preferred for
models with constant Aτ ; see Section 4 for the discussion of some possibilities.

Figure 1 is included to demonstrate that parametric elliptical g-quantile regression is suit-
able for both small and large data sets and for capturing various kinds of heteroscedasticity.

Figure 2 illustrates another key advantage of elliptical regression g-quantiles, namely
their ability to easily incorporate many types of a priori information regarding the model
parameters. Last but not least, Figure 3 indicates that the concept of parametric elliptical
regression quantiles is not bound to linear regression settings and can be used even for fitting
highly complicated nonlinear models.
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Figure 1: Classification of heteroscedasticity in R2. The plots illustrate four basic patterns
of heteroscedasticity in R2 with elliptical regression 0.3-gI -quantile cuts computed
for six equidistant reference points z0 = −0.75,−0.45, ..., 0.75 from n regression ob-
servations (Y1, Y2, Z) generated by the regression model (Y1, Y2)′ = (Z, 0)′ + q(ε),
Z ∼ U([−1, 1]) is independent of ε ∼ U([−1, 1])× U([−2, 2]):
(a) no heteroscedasticity

[
n = 99, q(ε) = ε

]
,

(b) rotational heteroscedasticity
[
n = 999, q(ε) = ε′P where vec(P)′ =

(
cos(πZ/2),

sin(πZ/2),− sin(πZ/2), cos(πZ/2)
)]

,
(c) multiplicative heteroscedasticity

[
n = 9 999, q(ε) = (0.1 + 0.9|Z|) ε

]
, and

(d) proportional heteroscedasticity
[
n = 99 999, q(ε) = ε′P where vec(P)′ =

(
exp(|Z|),

0, 0, exp(−|Z|)
)]

.

The four plots in Figure 1 illustrate all the core types of heteroscedastic behavior
described in Section 5 with different numbers of observations. The elliptical regression
τ -gI -quantiles, τ = 0.3, were always computed from n regression observations (Y1, Y2, Z) gen-
erated by the regression model (Y1, Y2)′ = (Z, 0)′+q(ε) where Z ∼ U([−1, 1]), ε ∼ U([−1, 1])×
U([−2, 2]) is independent of Z (as everywhere below), and q(ε) denotes a transformation of
ε specific to each case. As for their parametrization by means of sτ , dτ , ατ , and cτ , always
sτ = (β1Z, β2)′ and also d2

τ = δ2
1 , ατ = α1, and cτ = γ1 up to the exceptions listed below

together with other specific features unique to individual pictures (a) to (d):
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(a) no heteroscedasticity: n = 99, q(ε) = ε,

(b) rotational heteroscedasticity: n = 999, ατ = πα1Z, q(ε) = ε′P where vec(P)′ =(
cos(πZ/2), sin(πZ/2),− sin(πZ/2), cos(πZ/2)

)
,

(c) multiplicative heteroscedasticity: n = 9999, cτ = γ1 + γ2|Z| + γ3Z
2, q(ε) =

(0.1 + 0.9|Z|) ε, and

(d) proportional heteroscedasticity: n = 99 999, d2
τ = exp(δ1Z), q(ε) = ε′P where

vec(P)′ =
(
exp(|Z|), 0, 0, exp(−|Z|)

)
.

The objective function defining elliptical regression τ -g-quantiles was optimized over
all the scalar parameters occurring in the parametrization, as in all the following exam-
ples. In this case, it was over all θ = (β1, β2, δ1, α1, γ1, γ2, γ3)′ ∈ R7 in case (c) and over
θ = (β1, β2, δ1, α1, γ1)′ ∈ R5 otherwise.

Figure 2 depicts elliptical regression τ -gI -quantiles with the trend, obtained for
τ = 0.5 from n = 9 999 observations following the regression model (Y1, Y2) = (Z,Z2) +
(1 + 3 | sin(πZ/2)|) ε where Z ∼ U(−2, 2) and ε ∼ N(0, 1/4)×N(0, 1/4). They were parame-
trized with sτ = (β1 + β2Z + β3Z

2, β4 + β5Z + β6Z
2)′, d2

τ = δ2
1 , ατ = α1 and

(a) cτ = γ1 or
(b) cτ = γ1 + γ2 | sin(πZ/2)|+ γ3 sin2(πZ/2);

compare it to Figure 5 of [20] that is based on the same data generating model. This figure
reminds you that one can easily enforce homoscedasticity or numerous equality constraints on
model parameters when examining various submodels. In this particular case, the knowledge
of the scale period is used in advance.
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Figure 2: Elliptical regression quantiles and a priori information. The plots show elliptical
regression τ -gI -quantile cuts and their centers, τ = 0.5, obtained for reference points z0 =
−1.9,−1.8, ..., 1.9 from n = 9 999 observations following the regression model (Y1, Y2) =
(Z,Z2) + (1 + 3 | sin(πZ/2)|) ε where Z ∼ U(−2, 2) is independent of ε ∼ N(0, 1/4)×
N(0, 1/4). They assume a general quadratic trend in each component and
(a) homoscedasticity or
(b) the right form of heteroscedasticity.
Both the quantile curves and data points lighten with increasing values of the corre-
sponding regressor.
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Figure 3 is inspired by the well known Lissajous curves and highlights the fact that
the parametric elliptical regression τ -g-quantiles are especially convenient for fitting highly
nonlinear models if one has an idea how to correctly describe the nonlinearity. They are com-
puted for τ ∈ {0.1, 0.3, 0.5, 0.7} and gI from n = 9999 observations coming from a complicated
nonlinear regression model (Y1, Y2)′ =

(
1.5 + sin(Z), 1.5 + sin(2Z)

)′ + q(ε), Z ∼ U([−π, π]),
ε ∼ U([−0.25, 0.25])× U([−0.25, 0.25]), where

(a) q(ε) = ε or

(b) q(ε) = cos(Z) ε.

The quantile parameters were always looked for in the same form with generally τ -dependent
coefficients: sτ =

(
β1 + β2 sin(β3Z), β4 + β5 sin(β6Z)

)′, d2
τ = δ2

1 , ατ = α1, and cτ = γ1 +
γ2

2 cos2(γ3Z).
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Figure 3: Elliptical regression quantiles and nonlinearity. The plots display elliptical
regression τ -gI -quantiles, τ ∈ {0.1, 0.3, 0.5, 0.7}, for 19 equidistant reference points
z0 = −9π/10,−8π/10, ..., 9π/10, computed from n = 9999 observations coming from
a complicated nonlinear regression model (Y1, Y2)′ =

(
1.5 + sin(Z), 1.5 + sin(2Z)

)′ +
q(ε
)
, Z ∼ U([−π, π]) is independent of ε ∼ U([−0.25, 0.25])×U([−0.25, 0.25]), where

(a) q(ε) = ε or
(b) q(ε) = cos(Z)ε.
The quantile curves lighten with increasing z0 and the data points get darker while
the regressor values are decreasing.

The elliptical regression quantile methodology remains under investigation also in the
next section where it is applied to real biometric data.
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9. APPLICATION

For the sake of comparison, the parametric elliptical regression quantile methodology
is tested on the same body girth measurements data of [19] as in [15], namely on n = 260
observations of calf maximum girth Y1 (cm) and thigh (maximum) girth Y2 (cm) of the
physically active women whose age (years), weight (kg), height (cm) and body mass index
(BMI = 10 000 weight/height2) are separately tried as the only regressor Z in the attempts
to explain Y1 and Y2. Although the observations do not constitute a random sample from
any well-defined population, they are considered suitable for illustrating various statistical
concepts.

In this particular case study, the parametric elliptical regression τ -g-quantiles are com-
puted for g = gI . They are plotted only for τ ∈ {0.1, 0.9} and for Z = z0 where z0 is equal
to the empirical p-th quantile of the regressor, p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results are
displayed in the same way as in Figure 7 of [15] to make the comparison as easy as possible.
The only notable difference lies in the colors and quantile levels. That is to say that the
pictures here are only black-and-white and, consequently, they illustrate the elliptical regres-
sion τ -gI -quantiles only for two representative values of τ to stay legible. Note also that the
quantile levels used for indexing the elliptical regression quantiles by their overall probability
coverage are not related to those used by the multiple-output directional quantile regression
of [15] or [29] in any predictable way.

Figure 4 adopts the parametrization sτ = (β1 + β2Z, β3 + β4Z)′, d2
τ = δ2

1 , ατ = α1, and
cτ = γ1 + γ2Z (with possibly different coefficients for each τ) that allows for changes in lo-
cation and scale and thus mimics the model used in [15] quite closely. Not surprisingly,
it also produces similar output. Figures 4(a) and 4(c) clearly reveal certain location shift and
scale increase of plotted τ -quantile cuts caused by increasing weight and BMI, respectively.
Figure 4(b) indicates that age influences only the location and volume of the outer quantile
cuts but not of the inner ones. Figure 4(d) suggests that increasing height shifts both the
inner and outer quantile cuts in mutually orthogonal directions but only affects the volume
of the outer ones. Although all of these patterns can be more or less observed in Figure 7
of [15] as well, they are more clearly articulated through the simple elliptical shapes here.
See also [14] and [17] for other quantile regression fits of the same data and their explanations.

Figure 5 plots the results regarding BMI for the generalized parametrization with
d2

τ = (δ1 + δ2Z)2, ατ = α1 + α2Z, and the other settings left unchanged, as in Figure 4(c).
The modification permits more flexible changes of the regression quantile shape and is able
to detect even the slight rotation of the outer quantile cuts with increasing BMI, observed in
[15].

Although the analysis above is too simplistic to establish anything certain about female
legs, it clearly demonstrates that the generalized parametric elliptical quantile regression is a
powerful and flexible analytical method capable of pointing out even the smallest subtleties
in the data behavior.
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Figure 4: Application to real data I. The plots illustrate the dependence of
female calf maximum girth (Y1) and thigh (maximum) girth (Y2) on
(a) weight,
(b) age,
(c) BMI, or
(d) height
by means of parametric elliptical gI -quantile regression with a single
regressor (Z), constant matrix parameter A, linear inflation factor c,
and linear trend s. The elliptical regression gI -quantiles are dis-
played for both τ = 0.1 (solid line) and τ = 0.9 (dashed line) and
for regressor values z0 equal to the empirical p-th quantile of Z,
p = 0.1, 0.3, 0.5, 0.7, and 0.9. The quantile curves lighten with in-
creasing p and the data points get darker while the regressor values
are decreasing.
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Figure 5: Application to real data II. The plot shows the dependence of female calf
maximum girth (Y1) and thigh (maximum) girth (Y2) on BMI by means of
parametric elliptical quantile regression assuming linear trend and a general
form of heteroscedasticity. The elliptical regression gI -quantiles are displayed
for both τ = 0.1 (solid line) and τ = 0.9 (dashed line) and for regressor values
z0 equal to the empirical p-th quantile of the regressor, p = 0.1, 0.3, 0.5, 0.7,
and 0.9. The quantile curves lighten with increasing p and the data points get
darker while the regressor value is decreasing.

10. CONCLUDING REMARKS

All the presented theory and pictures demonstrate that the generalized parametric
elliptical quantile regression may lead to natural and reasonable fits, even when the assump-
tion of conditional symmetry cannot be relied on, as in Section 9. That is to say that the
conditional central symmetry may simplify model validation and make the results from a
well parametrized model particularly easy to interpret, but it is not strictly required for the
method to work.

Sections 7, 8, and 9 also tacitly assume that the sample estimators of the quantile
coefficients and cuts are consistent. It still has to be proved in full generality although it is
already known in some special cases; see [17].

There is always a risk that the complicated non-convex optimization behind the gener-
alized parametric elliptical quantile regression will terminate without finding the real global
minimum. Nevertheless, this threat can be fought back by using global optimization strate-
gies and model validation tools. And this problem should not theoretically appear at all for
g(t) = t and well-specified or specific models [17], and it is thus not likely to be severe in very
similar situations.

The dependence of generalized parametric elliptical regression quantiles on function g

may rise another concern as it may seem to introduce too much arbitrariness into the model
selection. However, simple fully affine equivariant parametrizations strongly ask for a power
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function g, and then its selection becomes as arbitrary as the choice of p > 0 in the standard
Lp regression. Only L2 and L1 regression methods are usually used because of their simplicity
and easily interpretable results. And the same reasons lead to the choices g(t) = t or g(t) =

√
t

in the generalized parametric elliptical quantile regression, though the latter seems reasonable
only in certain special cases.

This article should be interpreted only as a single step on the long way to the suc-
cessful elliptical quantile regression methodology. The next steps will include nonparametric
generalizations, statistical inference, and a powerful and reliable software support.

It is difficult to predict if the proposed generalized parametric elliptical quantile regres-
sion withstands the test of time but, for the time being, it appears quite promising.
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