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Abstract
Aldous and Bandyopadhyay have shown that each solution to a recursive distribu-
tional equation (RDE) gives rise to a recursive tree process (RTP), which is a sort
of Markov chain in which time has a tree-like structure and in which the state of
each vertex is a random function of its descendants. If the state at the root is mea-
surable with respect to the sigma field generated by the random functions attached to
all vertices, then the RTP is said to be endogenous. For RTPs defined by continuous
maps, Aldous and Bandyopadhyay showed that endogeny is equivalent to bivariate
uniqueness, and they asked if the continuity hypothesis can be removed. We intro-
duce a higher-level RDE that through its n-th moment measures contains all n-variate
RDEs. We show that this higher-level RDE has minimal and maximal fixed points
with respect to the convex order, and that these coincide if and only if the corre-
sponding RTP is endogenous. As a side result, this allows us to answer the question
of Aldous and Bandyopadhyay positively.
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1 Recursive distributional equations

Let S be a Polish space and for k � 1, let Sk denote the space of all ordered sequences
(x1, . . . , xk) of elements of S. Let P(S) denote the space of all probability measures
on S, equipped with the topology of weak convergence and its associated Borel-σ -
field. A measurable map g : Sk → S gives rise to a measurable map ǧ : P(S)k →
P(S) defined as

ǧ(μ1, . . . , μk) := μ1 ⊗ · · · ⊗ μk ◦ g−1, (1.1)

where μ1 ⊗ · · · ⊗ μk denotes product measure and the right-hand side of (1.1) is
the image of this under the map g. A more probabilistic way to express (1.1) is to
say that if X1, . . . , Xk are independent random variables with laws μ1, . . . , μk , then
g(X1, . . . , Xk) has law ǧ(μ1, . . . , μk). In particular, we let Tg : P(S) → P(S)

denote the map

Tg(μ) := ǧ(μ, . . . , μ). (1.2)

Note that Tg is in general nonlinear, unless k = 1.
With slight changes in the notation, the construction above works also for k = 0

and k = ∞. By definition, we let S0 be a set containing a single element, the empty
sequence, and we let S∞ denote the space of all infinite sequences (x1, x2, . . .) of
elements of S, equipped with the product topology and associated Borel-σ -field. It is
well-known that if S is Polish, then so are Sk (0 � k � ∞) and P(S).

Write N := {0, 1, 2, . . .} and N := N ∪ {∞}. Let G be a measurable space whose
elements are measurable maps g : Sk → S, where k = kg ∈ N may depend on g,
and let π be a probability law on G . Then under suitable technical assumptions (to
be made precise in the next section)

T (μ) :=
∫
G

π(dg) Tg(μ)
(
μ ∈ P(S)

)
(1.3)

defines a map T : P(S) → P(S). Equations of the form

T (μ) = μ (1.4)

are called Recursive Distributional Equations (RDEs). A nice collection of exam-
ples of such RDEs arising in a variety of settings can be found in [1]. They include
Galton-Watson branching processes and related random trees, probabilistic analysis
of algorithms as well as statistical physics models.

2 Recursive Tree Processes

We now make our assumptions on the set G and probability measure π from (1.3)
explicit. We fix a Polish space �, equipped with the Borel σ -field, modeling some
source of external randomness. We let κ : � → N be measurable, set �k := {ω ∈
� : κ(ω) = k} (k ∈ N), and let γ be a function such that for each k ∈ N,

�k × Sk � (ω, x) 	→ γ [ω](x) ∈ S is jointly measurable in ω and x. (2.1)
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Note that formally, γ is a function from
⋃

k∈N �k×Sk into S. We let r be a probability
measure on �.

The joint measurability of γ [ω](x) in ω and x implies in particular that γ [ω] :
Sκ(ω) → S is measurable for each ω ∈ �. We assume that the set G from (1.3) is
given by

G := {γ [ω] : ω ∈ �}, (2.2)

which we equip with the final σ -field for the map ω 	→ γ [ω]. We further assume
that the probability measure π from (1.3) is the image of the probab ility measure r

on � under this map.
Let 〈μ, φ〉 := ∫

S
μ(dx) φ(x) denote the integral of a bounded measurable function

φ : S → R w.r.t. a measure μ on S. Then, under the assumptions we have just made,

〈T (μ), φ〉 =
∫
G

π(dg) 〈Tg(μ), φ〉 =
∫

�

r(dω) 〈Tγ [ω](μ), φ〉

=
∑
k∈N

∫
�k

r(dω)

∫
S

μ(dx1) · · ·
∫

S

μ(dxk) φ
(
γ [ω](x1, . . . , xk)

)
. (2.3)

The joint measurability of γ [ω](x) in ω ∈ �k and x ∈ Sk guarantees that
〈Tγ [ω](μ), φ〉, which is defined by repeated integrals over S, is measurable as a func-
tion of ω and hence the integral over � is well-defined. Using this, one can check that
our choice of the σ -field on G guarantees that 〈Tg(μ), φ〉 is measurable as a function
of g, and (2.3) defines a probability measure on S.

Starting from any countable set G of measurable maps g : Sk → S (where k = kg

may depend on g) and a probability law π on G , it is easy to see that one can always
construct �, r , and γ in terms of which G and π can then be constructed as above.
For uncountable G , the construction above not only serves as a convenient techni-
cal set-up that guarantees that the map in (1.3) is well-defined, but also has a natural
interpretation, with ω playing the role of a source of external randomness. This exter-
nal randomness plays a natural role in Recursive Tree Processes as introduced in [1],
which we describe next.

For d ∈ N+ := {1, 2, . . .}, let Td denote the space of all finite words i = i1 · · · it
(t ∈ N) made up from the alphabet {1, . . . , d}, and define T

∞ similarly, using the
alphabet N+. Let ∅ denote the word of length zero. We view T

d as a tree with root
∅, where each vertex i ∈ T

d has d children i1, i2, . . ., and each vertex i = i1 · · · it
except the root has precisely one ancestor i1 · · · it−1. If i, j ∈ T

d with i = i1 · · · is and
j = j1 · · · jt , then we define the concatenation ij ∈ T

d by ij = i1 · · · isj1 · · · jt . We
denote the length of a word i = i1 · · · it by |i| := t and set Td

(t) := {i ∈ T
d : |i| < t}.

For any subtree U ⊂ T, we let ∂U := {i = i1 · · · i|i| ∈ T
d : i1 · · · i|i|−1 ∈ U, i 
∈ U}

denote the outer boundary of U. In particular, ∂Td
(t) = {i ∈ T

d : |i| = t} is the set of
all vertices at distance t from the root.

Fix some d ∈ N+ := N+ ∪ {∞} such that κ(ω) � d for all ω ∈ �, and to
simplify notation write T := T

d . Let (ωi)i∈T be an i.i.d. collection of �-valued
random variables with common law r . Fix t � 1 and μ ∈ P(S), and let (Xi)i∈∂T(t)

be a collection of S-valued random variables such that

(Xi)i∈∂T(t)
are i.i.d. with common law μ and independent of (ωi)i∈T(t)

. (2.4)
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Define (Xi)i∈T(t)
inductively by1

Xi := γ [ωi](Xi1, . . . , Xiκ(ωi)) (2.5)

Then it is easy to see that for each 1 � s � t ,

(Xi)i∈∂T(s)
are i.i.d. with common law T t−s(μ) and independent of (ωi)i∈T(s)

,

(2.6)
where T n denotes the n-th iterate of the map in (1.3). Also, X∅ (the state at the root)
has law T t (μ). If μ is a solution of the RDE (1.4), then, by Kolmogorov’s extension
theorem there exists a collection (ωi, Xi)i∈T of random variables whose joint law is
uniquely characterized by the following requirements:

(i) (ωi)i∈T is an i.i.d. collection of �-valued r.v.’s with common law r ,

(ii) for each t � 1, the (Xi)i∈∂T(t)
are i.i.d. with common law μ

and independent of (ωi)i∈T(t)
,

(iii) Xi := γ [ωi](Xi1, . . . , Xiκ(ωi)) (i ∈ T). (2.7)

We call such a collection (ωi, Xi)i∈T a Recursive Tree Process (RTP) corresponding
to the map γ and the solution μ of the RDE (1.4). We can think of an RTP as a gen-
eralization of a stationary and time reversed Markov chain, where the time index set
T has a tree structure and time flows in the direction of the root. In each step, the new
value Xi is a function of the previous values Xi1, Xi2 . . . , plus some independent ran-
domness, represented by the random variables (ωi)i∈T. Following [1, Definition 7],
we say that the RTP corresponding to a solution μ of the RDE (1.4) is endogenous if
X∅ is measurable w.r.t. the σ -field generated by the random variables (ωi)i∈T.

Endogeny is somewhat similar to pathwise uniqueness of stochastic differential
equations, in the sense that it asks whether given (ωi)i∈T, there always exists a “strong
solution” (Xi)i∈T on the same probability space, or whether on the other hand addi-
tional randomness is needed to construct (Xi)i∈T. Since for each t � 1, X∅ is a
function of (ωi)i∈T(t)

and the “boundary conditions” (Xi)i∈∂T(t)
, endogeny says that

in a certain almost sure sense, the effect of the boundary conditions disappears as
t → ∞. Nevertheless, endogeny does not imply uniqueness of solutions to the
RDE (1.4). Indeed, it is possible for a RDE to have several solutions, while some
of the corresponding RTPs are endogenous and others are not. In the special case
that T = T

1, an RTP is a time reversed stationary Markov chain . . . , X11, X1, X∅

generated by i.i.d. random variables . . . , ω11, ω1. In this context, equivalent formu-
lations of endogeny have been investigated in the literature, see for example [3]
who point back to [10]. Endogeny also plays a role, for example, in the coupling
from the past algorithm by Propp and Wilson [9]. We point to Lemma 14 and 15 of
Section 2.6 in [1] for an analogous statement on tree-structured coupling from the
past.

Endogeny of RTPs is related to, but not the same as triviality of the tail-σ -field as
defined for infinite volume Gibbs measures. Indeed, if (ωi, Xi)i∈T is an RTP, then the

1Here and in similar formulas to come, it is understood that the notation should be suitably adapted if
κ(ωi) = ∞, e.g., in this place, Xi = γ [ωi]

(
Xi1, Xi2, . . .

)
.
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law of (Xi)i∈T is a Gibbs measure on ST. The tail-σ -field of such a Gibbs measure
is defined as

T :=
⋂
t�1

σ
(
(Xi)i∈T\T(t)

)
. (2.8)

It is known that if (ωi, Xi)i∈T is endogenous, then the tail-σ -field of (Xi)i∈T is trivial
[2, Proposition 1], but the converse implication does not hold [2, Example 1]. It
is known that triviality of the tail-σ -field is equivalent to nonreconstructability in
information theory [8, Proposition 15], and also to extremality of (Xi)i∈T as a Gibbs
measure [7, Section 7.1].

3 The n-Variate RDE

Let g : Sk → S with k � 0 be a measurable map and let n � 1 be an integer.
We can naturally identify the space (Sn)k with the space of all n × k matrices x =
(x

j
i )

j=1,...,n

i=1,...,k . We let xj := (x
j

1 , . . . , x
j
k ) and xi = (x1

i , . . . , xn
i ) denote the rows and

columns of such a matrix, respectively. With this notation, we define an n-variate
map g(n) : (Sn)k → Sn by

g(n)
(
x) := (

g(x1), . . . , g(xn)
) (

x ∈ (Sn)k
)
. (3.1)

This notation is easily generalized to k = ∞ or n = ∞, or both. The map g(n)

describes n systems that are coupled in such a way that the same map g is applied to
each system. We will be interested in the n-variate map (compare (1.3))

T (n)(ν) :=
∫
G

π(dg) Tg(n) (ν)
(
ν ∈ P(Sn)

)
. (3.2)

and the corresponding n-variate RDE (compare (1.4))

T (n)(ν) = ν. (3.3)

If γ satisfies (2.1), then the same is true for γ (n) so T (n)(ν) is well-defined. The maps
T (n) are consistent in the following sense. Let ν|{i1,...,im} denote the marginal of ν

with respect to the coordinates i1, . . . , im, i.e., the image of ν under the projection
(x1, . . . , xn) 	→ (xi1 , . . . , xim). Then

T (n)(ν)
∣∣{i1,...,im} = T (m)

(
ν
∣∣{i1,...,im}

)
. (3.4)

In particular, if ν solves the n-variate RDE (3.3), then its one-dimensional marginals
ν|{m} (1 � m � n) solve the RDE (1.4). For any μ ∈ P(S), we let

P(Sn)μ := {
ν ∈ P(Sn) : ν|{m} = μ ∀1 � m � n

}
(3.5)

denote the set of probability measures on Sn whose one-dimensional marginals are
all equal to μ. We also let Psym(Sn) denote the space of all probability measures
on Sn that are symmetric with respect to permutations of the coordinates {1, . . . , n},
and denote Psym(Sn)μ := Psym(Sn) ∩ P(Sn)μ. It is easy to see that T (n) maps
Psym(Sn) into itself. If μ solves the RDE (1.4), then T (n) also maps Psym(Sn)μ into
itself.
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Given a measure μ ∈ P(S), we define μ(n) ∈ P(Sn) by

μ(n) := P
[
(X, . . . , X) ∈ · ] where X has law μ. (3.6)

We will prove the following theorem, which is similar to [1, Theorem 11]. The main
improvement compared to the latter is that the implication (ii)⇒(i) is shown without
the additional assumption that T (2) is continuous with respect to weak convergence,
solving Open Problem 12 of [1]. We have learned that this problem has been solved
before using an argument from [3], although its solution has not been published. We
refer to Appendix B for a comparison of our solution and this other solution. Below,
⇒ denotes weak convergence of probability measures.

Theorem 1 (Endogeny and bivariate uniqueness) Let μ be a solution to the RDE
(1.4). Then the following statements are equivalent.

(i) The RTP corresponding to μ is endogenous.
(ii) The measure μ(2) is the unique fixed point of T (2) in the space Psym(S2)μ.

(iii) (T (n))t (ν) =⇒
t→∞ μ(n) for all ν ∈ P(Sn)μ and n ∈ N+.

4 The Higher-Level RDE

In this section we introduce a higher-level map Ť that through its n-th moment mea-
sures contains all n-variate maps (Lemma 2 below). In the next section, we will use
this higher-level map to give a short and elegant proof of Theorem 1. We believe the
methods of the present section to be of wider interest. In particular, in future work we
plan to use them to study iterates of the n-variate maps for a non-endogenous RTP
related to systems with cooperative branching.

Let ξ be a random probability measure on S, i.e., a P(S)-valued random variable,
and let ρ ∈ P(P(S)) denote the law of ξ . Conditional on ξ , let X1, . . . , Xn be
independent with law ξ . Then (see Lemma 7 below)

ρ(n) := P
[
(X1, . . . , Xn) ∈ · ] = E

[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

n times

] (4.1)

is called the n-th moment measure of ξ . Here, the expectation of a random measure
ξ on S is defined in the usual way, i.e., E[ξ ] is the deterministic measure defined by∫
φ dE[ξ ] := E[∫ φ dξ ] for any bounded measurable φ : S → R. A similar definition

applies to measures on Sn. With slight changes in the notation, ρ(n) can also be
defined for n = ∞.

We observe that ρ(n) ∈ Psym(Sn) for each ρ ∈ P(P(S)) and n ∈ N+. By De
Finetti’s theorem, for n = ∞ the converse implication also holds. Indeed, Psym(S∞)

is the space of exchangeable probability measures on S∞ and De Finetti says that
each element of Psym(S∞) is of the form ρ(∞) for some ρ ∈ P(P(S)). Thus, we
have a natural identification Psym(S∞) ∼= P(P(S)) and through this identification
the map T (∞) : Psym(S∞) → Psym(S∞) corresponds to a map on P(P(S)). Our
next aim is to identify this map.
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Let Ť : P(P(S)) → P(P(S)) be given by

Ť (ρ) :=
∫
G

π(dg) Tǧ(ρ)
(
ρ ∈ P(P(S))

)
, (4.2)

where for any g : Sk → S, the map ǧ : P(S)k → P(S) is defined as in (1.1).
If γ satisfies (2.1), then the same is true for γ̌ so Ť (ρ) is well-defined. Note that
Tǧ(ρ) = ˇ̌g(ρ, . . . , ρ) by (1.2). We call Ť the higher-level map, which gives rise to
the higher-level RDE

Ť (ρ) = ρ. (4.3)

The following lemma shows that Ť is the map corresponding to T (∞) we were
looking for. More generally, the lemma links Ť to the n-variate maps T (n).

Lemma 2 (Moment measures) Let n ∈ N+ and let T (n) and Ť be defined as in (3.2)
and (4.2). Then the n-th moment measure of Ť (ρ) is given by

Ť (ρ)(n) = T (n)(ρ(n))
(
ρ ∈ P(P(S))

)
. (4.4)

Lemma 2 implies in particular that if ρ solves the higher-level RDE (4.3), then its
first moment measure ρ(1) solves the original RDE (1.4). For any μ ∈ P(S), we let

P(P(S))μ := {
ρ ∈ P(P(S)) : ρ(1) = μ

}
(4.5)

denote the set of all ρ whose first moment measure is μ. Note that ρ ∈ P(P(S))μ
implies ρ(n) ∈ Psym(Sn)μ for each n � 1.

We equip P(P(S)) with the convex order. By Theorem 13 in Appendix A, two
measures ρ1, ρ2 ∈ P(P(S)) are ordered in the convex order, denoted ρ1 �cv ρ2, if
and only if there exists an S-valued random variable X defined on some probability
space (�, F ,P) and sub-σ -fields F1 ⊂F2 ⊂F such that ρi =P

[
P[X ∈ · |Fi] ∈ · ]

(i = 1, 2). It is not hard to see that P(P(S))μ has a minimal and maximal element
w.r.t. the convex order. For any μ ∈ P(S), let us define

μ := P
[
δX ∈ · ] where X has law μ. (4.6)

Clearly δμ, μ ∈ P(P(S))μ. Moreover (as will be proved in Section 6 below)

δμ �cv ρ �cv μ for all ρ ∈ P(P(S))μ. (4.7)

In line with notation that has already been introduced in (3.6), the n-th moment
measures of δμ and μ are given by

δ(n)
μ = P

[
(X1, . . . , Xn) ∈ · ] and μ(n) = P

[
(X, . . . , X) ∈ · ], (4.8)

where X1, . . . , Xn are i.i.d. with common law μ and X has law μ. The following
proposition says that the higher-level RDE (4.3) has a minimal and maximal solution
with respect to the convex order.

Proposition 3 (Minimal and maximal solutions) The map Ť is monotone w.r.t. the
convex order. Let μ be a solution to the RDE (1.4). Then Ť maps P(P(S))μ into
itself. There exists a unique μ ∈ P(P(S))μ such that

Ť t (δμ) =⇒
t→∞ μ, (4.9)
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where ⇒ denotes weak convergence of measures on P(S), equipped with the topol-
ogy of weak convergence. The measures μ and μ solve the higher-level RDE (4.3),
and any ρ ∈ P(P(S))μ that solves the higher-level RDE (4.3) must satisfy

μ �cv ρ �cv μ. (4.10)

Since μ and μ solve the higher-level RDE (4.3), there exist RTPs corresponding to
μ and μ. The following proposition gives an explicit description of these higher-level
RTPs.

Proposition 4 (Higher-level RTPs) Let (ωi, Xi)i∈T be an RTP corresponding to a
solution μ of the RDE (1.4). Set

ξi := P
[
Xi ∈ · | (ωij)j∈T

]
. (4.11)

Then (ωi, ξi)i∈T is an RTP corresponding to the map γ̌ and the solution μ of the
higher-level RDE (4.3). Also, (ωi, δXi)i∈T is an RTP corresponding to the map γ̌

and μ.

In general, we can interpret the higher-level map Ť as follows. Fix t � 1, and
let (Xi, Yi)i∈∂T(t)

be i.i.d. random variables, independent of (ωi)i∈T(t)
, where the Xi’s

take values in S and the Yi’s take values in some arbitrary measurable space. Define
(Xi)i∈T(t)

inductively as in (2.5) and for i ∈ T(t) ∪ ∂T(t), let ξi denote the conditional
law of Xi given (ωij)ij∈T(t)

and (Yij)ij∈∂T(t)
. Then the (ξi)i∈∂T(t)

are i.i.d. with some
common law ρ ∈ P(P(S)). Using Lemma 8 below, it is not hard to see that for
each 1 � s � t ,

(ξi)i∈∂T(s)
are i.i.d. with common law Ť t−s(ρ) and independent of (ωi)i∈T(s)

.
(4.12)

Let μ denote the common law of the random variables (Xi)i∈∂T(t)
. We think of

the random variables (Yi)i∈∂T(t)
as providing extra information about the (Xi)i∈∂T(t)

.
The convex order measures how much extra information we have. For ξi = δXi ,
we have perfect information, while on the other hand for ξi = μ the Yi’s pro-
vided no extra information. A solution to the higher-level RDE gives rise to a
higher-level RTP that can be interpreted as a normal (low-level) RTP (ωi, Xi)i∈T
in which we have extra information about the (Xi)i∈T. The solutions μ and μ

of the higher-level RDE correspond to minimal and maximal knowledge about
Xi, respectively, where either we know only (ωij)j∈T, or we have full knowledge
about Xi.

We will derive Theorem 1 from the following theorem, which is our main result.

Theorem 5 (The higher-level RDE) Let μ be a solution to the RDE (1.4). Then the
following statements are equivalent.

(i) The RTP corresponding to μ is endogenous.
(ii) μ = μ.

(iii) Ť t (ρ) =⇒
t→∞ μ for all ρ ∈ P(P(S))μ.
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5 Proof of theMain Theorem

In this section, we use Lemma 2 and Propositions 3 and 4 to prove Theorems 1 and
5. We need one more lemma.

Lemma 6 (Convergence in probability) Let (ωi, Xi)i∈T be an endogenous RTP
corresponding to a solution μ of the RDE (1.4), and let (Yi)i∈T be an independent
i.i.d. collection of S-valued random variables with common law μ. For each t � 1,
set Xt

i := Yi (i ∈ ∂T(t)), and define (Xt
i )i∈T(t)

inductively by

Xt
i = γ [ωi](Xt

i1, . . . , X
t
iκ(ωi)

) (i ∈ T(t)). (5.1)

Then
Xt
∅

−→
t→∞ X∅ in probability. (5.2)

Proof The argument is basically the same as in the proof of [1, Theorem 11 (c)], but
for completeness, we give it here. Let f, g : S → R be bounded and continuous and
let Ft resp. F∞ be the σ -fields generated by (ωi)i∈T(t)

resp. (ωi)i∈T. Since X∅ and
Xt
∅

are conditionally independent and identically distributed given Ft ,

E
[
f (X∅)g(Xt

∅
)
] = E

[
E

[
f (X∅)

∣∣ Ft

]
E

[
g(Xt

∅
)
∣∣ Ft

]]

= E
[
E

[
f (X∅)

∣∣ Ft

]
E

[
g(X∅)

∣∣ Ft

]]

−→
t→∞ E

[
E

[
f (X∅)

∣∣ F∞
]
E

[
g(X∅)

∣∣ F∞
]]

= E
[
f (X∅)g(X∅)

]
, (5.3)

where we have used martingale convergence and in the last step also endogeny. Since
this holds for arbitrary f, g, we conclude that the law of (X∅, Xt

∅
) converges weakly

to the law of (X∅, X∅), which implies (5.2).

Proof of Theorem 5 If the RTP corresponding to μ is endogenous, then the random
variable ξ∅ defined in (4.11) satisfies ξ∅ = δX∅

. By Proposition 4, ξ∅ and δX∅
have

laws μ and μ, respectively, so (i)⇒(ii). Conversely, if (i) does not hold, then ξ∅ is
with positive probability not a delta measure, so (i)⇔(ii).

The implication (iii)⇒(ii) is immediate from the definition of μ in (4.9). To get the

converse implication, we observe that by Proposition 3, Ť is monotone with respect
to the convex order, so (4.7) implies

Ť t (δμ) �cv Ť t (ρ) �cv Ť t (μ) (t � 0). (5.4)

By Proposition 3, Ť maps P(P(S))μ into itself, so Ť t (ρ) ∈ P(P(S))μ for
each t � 0, and hence by Lemma 9 in Appendix A, the measures (Ť t (ρ))t�1 are
tight. By Proposition 3, the left-hand side of (5.4) converges weakly to μ as
t → ∞ while the right-hand side equals μ for each t , so we obtain that any subse-
quential limit Ť tn (ρ) ⇒ ρ∗ satisfies μ �μ ρ∗ �μ μ. In particular, this shows that
(ii)⇒(iii).
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Proof of Theorem 1 The implication (iii)⇒(ii) is trivial. By Lemma 2 and the fact
that μ and μ solve the higher-level RDE, we see that (ii) implies μ(2) = μ(2). By

Proposition 3, μ �μ μ. Now Lemma 14 from Appendix A shows that μ(2) = μ(2)

and μ �μ μ imply μ = μ, so applying Theorem 5 we obtain that (ii)⇒(i).
To complete the proof, we will show that (i)⇒(iii). Let (ωi, Xi)i∈T be an RTP

corresponding to μ and let (Y 1
i , . . . , Y n

i )i∈T be an independent i.i.d. collection of Sn-
valued random variables with common law ν. For each t � 1 and 1 � m � n,
set X

m,t
i := Ym

i (i ∈ ∂T(t)), and define (X
m,t
i )i∈T(t)

inductively as in (5.1). Then

(X
1,t
∅

, . . . X
n,t
∅

) has law (T (n))t (ν), and using endogeny, Lemma 6 tells us that

(X
1,t
∅

, . . . X
n,t
∅

) −→
t→∞ (X∅, . . . , X∅) in probability. (5.5)

Since the right-hand side has law μ(n) (recall (4.8)), this completes the proof. With a
slight change of notation, this argument also works for n = ∞.

6 Other Proofs

In this section, we provide the proofs of Lemma 2 and Propositions 3 and 4, as well
as formula (4.7). We start with some preliminary observations.

Lemma 7 (Moment measures) Let X1, . . . , Xn be S-valued random variables such
that conditionally on some σ -field H , the X1, . . . , Xn are i.i.d. with (random) law
P[Xj ∈ · |H ] = ξ a.s. (j = 1, . . . , n). Let ρ ∈ P(P(S)) denote the law of ξ , i.e.,

ρ = P
[
P[Xj ∈ · |H ] ∈ · ] (j = 1, . . . , n). (6.1)

Then
ρ(n) = P

[
(X1, . . . , Xn) ∈ · ] = E

[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

n times

]. (6.2)

Proof This follows by writing

E
[ n∏

i=1

fi(X
i)

] = E
[ n∏

i=1

E[fi(X
i) | H ]]

=
∫

ρ(dξ)

∫
Sn

ξ(dx1) · · · ξ(dxn) f1(x) · · · fn(xn). (6.3)

for arbitrary bounded measurable fi : S → R.

Lemma 8 (Higher-level map) LetX1, . . . , Xk andH1, . . . , Hk beS-valued random
variables and σ -fields, respectively, such that (X1, H1), . . . , (Xk, Hk) are i.i.d. Let

ρ = P
[
P[Xi ∈ · |Hi] ∈ · ] (i = 1, . . . , k). (6.4)

Let H1 ∨ · · · ∨ Hk denote the σ -field generated by H1, . . . , Hk . Then, for each
measurable g : Sk → S,

Tǧ(ρ) = P
[
P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] ∈ · ]. (6.5)
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Similarly, if ω is an independent �-valued random variable with law r and F is the
σ -algebra generated by ω, then

Ť (ρ) = P
[
P[γ [ω](X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk ∨ F ] ∈ · ]. (6.6)

Proof Let ξi := P[Xi ∈ · |Hi]. Then (i) ξ1, . . . , ξk are i.i.d. with common law ρ, and
(ii) conditional on H1 ∨ · · · ∨Hk , the random variables X1, . . . , Xk are independent
with laws ξ1, . . . , ξk , respectively. Now (ii) implies

P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] = ǧ(ξ1, . . . , ξk) a.s. (6.7)

and in view of (i), (6.5) follows. Since ω is independent of (X1, H1), . . . , (Xk, Hk),
conditional on H1 ∨ · · · ∨ Hk ∨ F , the random variables X1, . . . , Xk are again
independent with laws ξ1, . . . , ξk , respectively, and hence

P[γ [ω](X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk ∨ F ] = γ̌ [ω](ξ1, . . . , ξk) a.s., (6.8)

which implies (6.6). With a slight change in notation, these formulas hold also for
k = ∞.

Proof of formula (4.7) Let ξ be a P(S)-valued random variable with law ρ and con-
ditional on ξ , let X be an S-valued random variable with law ξ . Let F0 be the trivial
σ -field, let F1 be the σ -field generated by ξ , and let F2 be the σ -field generated by
ξ and X. Then F0 ⊂ F1 ⊂ F2. Since ρ(1) = μ, the random variable X has law μ.
Now

P
[
P[X ∈ · | F0] ∈ · ] = P

[
μ ∈ · ] = δμ,

P
[
P[X ∈ · | F1] ∈ · ] = P

[
ξ ∈ · ] = ρ,

P
[
P[X ∈ · | F2] ∈ · ] = P

[
δX ∈ · ] = μ. (6.9)

This proves that δμ �μ ρ �μ μ.

Proof of Lemma 2 Let ξ1, . . . , ξk be i.i.d. with common law ρ and conditional on
ξ1, . . . , ξk , let (X

j
i )

j=1,...,n

i=1,...,k be independent S-valued random variables such that X
j
i

has law ξi . Let Hi denote the σ -field generated by ξi . Then ρ = P[P[Xj
i ∈ · |Hi] ∈

· ] for each i, j . By (6.2),

ρ(n) = P
[
(X1

i , . . . , X
n
i ) ∈ · ] (i = 1, . . . , k). (6.10)

Set Xi := (X1
i , . . . , X

n
i ) and Xj := (X

j

1 , . . . , X
j
k ). Since X1, . . . , Xk are indepen-

dent with law ρ(n),

Tg(n) (ρ
(n)) = P

[
g(n)(X1, . . . , Xk) ∈ · ] = P

[(
g(X1), . . . , g(Xn)

) ∈ · ]. (6.11)

Let H := H1 ∨ · · · ∨ Hk . Since (X
j

1 , H1), . . . , (X
j
k , Hk) are i.i.d. for each j ,

formula (6.5) tells us that Tǧ(ρ) = P
[
P[g(Xj ) ∈ · |H ] ∈ · ] (j = 1, . . . , n). Since

conditionally on H , the g(X1), . . . , g(Xn) are i.i.d., formula (6.2) tells us that

Tǧ(ρ)(n) = P
[(

g(X1), . . . , g(Xn)
) ∈ · ]. (6.12)
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Combining this with (6.11), we see that Tǧ(ρ)(n) = Tg(n) (ρ(n)) for each g ∈ G . Now
(4.4) follows by integrating w.r.t. π .

Proof of Propositions 3 and 4 We first show that Ť is monotone w.r.t. the convex
order. Let ρ1, ρ2 ∈ P(P(S))μ satisfy ρ1 �μ ρ2. Then we can construct S-

valued random variables X1, . . . , Xk as well as σ -fields (H
j

i )
j=1,2
i=1,...,k , such that

(X1, H
1

1 , H 2
1 ), . . . , (Xk, H

1
k , H 2

k ) are i.i.d.,

ρj = P
[
P[Xi ∈ · |H j

i ] ∈ · ] (i = 1, . . . , k, j = 1, 2), (6.13)

and H 1
i ⊂ H 2

i for all i = 1, . . . , k. Let ω be an independent �-valued random
variable with law r and let F be the σ -field generated by ω. Then (6.6) says that

Ť (ρj ) = P
[
P[γ [ω](X1, . . . , Xk) ∈ · |H j

1 ∨ · · · ∨ H
j

k ∨ F ] ∈ · ] (j = 1, 2).
(6.14)

Since H 1
1 ∨ · · · ∨ H 1

k ∨F⊂ H 2
1 ∨ · · · ∨ H 2

k ∨F , this proves that Ť (ρ1) �μ Ť (ρ2).
Let μ be a solution to the RDE (1.4). Then by Lemma 2 for ρ ∈ P(P(S))μ we

have Ť (ρ)(1) = T (ρ(1)) = T (μ) = μ, proving that Ť maps P(P(S))μ into itself. It
will be convenient to combine the proof of the remaining statements of Proposition 3
with the proof of Proposition 4. To check (as claimed in Proposition 4) that (ωi, ξi)i∈T
is an RTP corresponding to the map γ̌ and to μ, we need to check that:

(i) The (ωi)i∈T are i.i.d.
(ii) For each t � 1, the (ξi)i∈∂T(t)

are i.i.d. with common law μ

and independent of (ωi)i∈T(t)
.

(iii) ξi = γ̌ [ωi](ξi1, . . . , ξiκ(ωi)) (i ∈ T).

Here (i) is immediate. Since ξi depends only on (ωij)j∈T, it is also clear that the
(ξi)i∈∂T(t)

are i.i.d. and independent of (ωi)i∈T(t)
. To see that their common law is μ,

we may equivalently show that ξ∅ has law μ. Thus, we are left with the task to prove
(iii) and

(iv) P[ξ∅ ∈ · ] = μ.

Let F i denote the σ -field generated by (ωij)j∈T. Then, for any i ∈ T,

ξi = P[Xi ∈ · |F i] = P
[
γ [ωi](Xi1, . . . , Xiκ(ωi)) ∈ · ∣∣F i]. (6.15)

Conditional on F i, the random variables Xi1, . . . , Xiki are independent with respec-
tive laws ξi1,. . ., ξiki , and hence γ [ωi](Xi1,. . ., Xiκ(ωi)) has law γ̌ [ωi](ξi1,. . ., ξiκ(ωi)),
proving (iii).

To prove also (iv), we first need to prove (4.9) from Proposition 3. Fix t � 1 and
for i ∈ T(t) ∪ ∂T(t), let F i

t denote the σ -field generated by {ωij : j ∈ T, |ij| < t}. In
particular, if i ∈ ∂T(t), then F i

t is the trivial σ -field. Set

ξ t
i := P[Xi ∈ · |F i

t ] (i ∈ T(t) ∪ ∂T(t)). (6.16)

In particular, ξ t
i = μ a.s. for i ∈ ∂T(t). Arguing as before, we see that

ξ t
i = γ̌ [ωi]

(
ξ t
i1, . . . , ξ

t
iκ(ωi)

)
(i ∈ T(t)), (6.17)
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and hence

Ť t (δμ) = P[ξ t
∅

∈ · ]. (6.18)

By martingale convergence,

ξ t
∅

= P[X∅ ∈ · |F∅

t ] −→
t→∞ P[X∅ ∈ · |(ωi)i∈T] = ξ∅ a.s. (6.19)

Combining this with (6.18), we obtain (4.9) where μ is in fact the law of ξ∅, proving
(iv) as well. This completes the proof that (ωi, ξi)i∈T is an RTP corresponding to the
map γ̌ and μ.

The proof that (ωi, δXi)i∈T is an RTP corresponding to the map γ̌ and μ is simpler.
It is clear that (i) the (ωi)i∈T are i.i.d., and (ii) for each t � 1, the (δXi)i∈∂T(t)

are i.i.d.
with common law μ and independent of (ωi)i∈T(t)

. To prove that also (iii) δXi = γ̌ [ωi](
δXi1 , . . . , δXiκ(ωi)

)
(i ∈ T), it suffices to show that for any measurable g : Sk → S,

ǧ(δx1 , . . . , δxk
) = δg(x1,...,xk). (6.20)

By definition, the left-hand side of this equation is the law of g(X1, . . . , Xk), where
X1, . . . , Xk are independent with laws δx1 , . . . , δxk

, so the statement is obvious.
This completes the proof of Proposition 4. Moreover, since the marginal law of an

RTP solves the corresponding RDE, our proof also shows that the measures μ and μ

solve the higher-level RDE (4.3).
In view of this, to complete the proof of Proposition 3, it suffices to prove (4.10). If

ρ solves the higher-level RDE (4.3), then applying Ť t to (4.7), using the monotonicity
of Ť with respect to the convex order, we see that Ť t (δμ) �μ ρ �μ μ for all t .
Letting t → ∞, (4.10) follows.
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Appendix A: The Convex Order

By definition, a Gδ-set is a set that is a countable intersection of open sets. By [4, §6
No. 1, Theorem. 1], for a metrizable space S, the following statements are equivalent.

(i) S is Polish.
(ii) There exists a metrizable compactification S of S s.t. S is a Gδ-subset of S.

(iii) For each metrizable compactification S of S, S is a Gδ-subset of S.

Moreover, a subset S′ ⊂ S of a Polish space S is Polish in the induced topology if
and only if S′ is a Gδ-subset of S.

Let S be a Polish space. Recall that P(S) denotes the space of probability mea-
sures on S, equipped with the topology of weak convergence. In what follows, we fix
a metrizable compactification S of S. Then we can identify the space P(S) (includ-
ing its topology) with the space of probability measures μ on S such that μ(S) = 1.
By Prohorov’s theorem, P(S) is compact, so P(S) is a metrizable compactification
of P(S). Recall the definition of P(P(S))μ from (4.5).
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Lemma 9 (Measures with given mean) For any μ ∈ P(S), the space P(P(S))μ
is compact.

Proof Since any ρ ∈ P(P(S)) whose first moment measure is μ must be concen-
trated on P(S), we can identify P(P(S))μ with the space of probability measures
on P(S) whose first moment measure is μ. From this we see that P(P(S))μ is a
closed subset of P(P(S)) and hence compact.

We let C (S) denote the space of all continuous real functions on S, equipped with
the supremumnorm, and we let B(S) denote the space of bounded measurable real
functions on S. The following fact is well-known (see, e.g., [5, Corollary 12.11]).

Lemma 10 (Space of continuous functions) C (S) is a separable Banach space.

For each f ∈ C (S), we define an affine function lf ∈ C (P(S)) by lf (μ) :=∫
f dμ. The following lemma says that all continuous affine functions on P(S) are

of this form.

Lemma 11 (Continuous affine functions) A function φ ∈ C (P(S)) is affine if and
only if φ = lf for some f ∈ C (S).

Proof Let φ : P(S) → R be affine and continuous. Since φ is continuous, setting
f (x) := φ(δx) (x ∈ S) defines a continuous function f : S → R. Since φ is affine,
φ(μ) = lf (μ) whenever μ is a finite convex combination of delta measures. Since
such measures are dense in P(S) and φ is continuous, we conclude that φ = lf .

Lemma 12 (Lower semi-continuous convex functions) Let C ⊂ C (S) be convex,
closed, and nonempty. Then

φ := sup
f ∈C

lf (A.1)

defines a lower semi-continuous convex function φ : P(S) → (−∞, ∞]. Con-
versely, each such φ is of the form (A.1).

Proof It is straightforward to check that (A.1) defines a lower semi-continuous con-
vex function φ : P(S) → (−∞, ∞]. To prove that every such function is of the
form (A.1), let C (S)′ denote the dual of the Banach space C (S), i.e., C (S)′ is the
space of all continuous linear forms l : C (S) → R. We equip C (S)′ with the weak-∗
topology, i.e., the weakest topology that makes the maps l 	→ l(f ) continuous for
all f ∈ C (S). Then C (S)′ is a locally convex topological vector space and by
the Riesz-Markov-Kakutani representation theorem, we can view P(S) as a convex
compact metrizable subset of C (S)′. Now any lower semi-continuous convex func-
tion φ : P(S) → (−∞, ∞] can be extended to C (S)′ by putting φ := ∞ on the
complement of P(S). Applying [6, Theorem I.3] we obtain that φ is the supremum
of all continuous affine functions that lie below it. By Lemma 11, we can restrict
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ourselves to continuous affine functions of the form lf with f ∈ C (S). It is easy
to see that {f ∈ C (S) : lf � φ} is closed and convex, proving that every lower
semi-continuous convex function φ : P(S) → (−∞, ∞] is of the form (A.1).

We define
Ccv

(
P(S)

) := {
φ ∈ C (P(S)) : φ is convex

}
(A.2)

If two probability measures ρ1, ρ2 ∈ P(P(S)) satisfy the equivalent conditions
of the following theorem, then we say that they are ordered in the convex order,
and we denote this as ρ1 �cv ρ2. The fact that �μ defines a partial order will be
proved in Lemma 15 below. The convex order can be defined more generally for
ρ1, ρ2 ∈ P(C) where C is a convex space, but in the present paper we will only
need the case C = P(S).

Theorem 13 (The convex order for laws of random probability measures) Let S
be a Polish space and let S be a metrizable compactification of S. Then, for ρ1, ρ2 ∈
P(P(S)), the following statements are equivalent.

(i)
∫

φ dρ1 �
∫

φ dρ2 for all φ ∈ Cμ

(
P(S)

)
.

(ii) There exists an S-valued random variable X defined on some probabil-
ity space (�, F ,P) and sub-�-fields F1 ⊂ F2 ⊂ F such that ρi =
P [P[X ∈ · |Fi] ∈ · ] (i = 1, 2).

Proof For any probability kernel P on P(S), measure ρ ∈ P(S), and function
φ ∈ C (P(S)), we define ρP ∈ P(P(S)) and Pφ ∈ B(P(S)) by

ρP :=
∫

ρ(dμ)P (μ, · ) and Pφ :=
∫

P( · , dμ)φ(μ). (A.3)

By definition, a dilation is a probability kernel P such that P lf = lf for all f ∈C (S).
As in the proof of Lemma 12, we can view P(S) as a convex compact metrizable

subset of the locally convex topological vector space C (S)′. Then [11, Theorem 2]
tells us that (i) is equivalent to:

(iii) There exists a dilation P on P(S) such that ρ2 = ρ1P .

To see that this implies (ii), let ξ1, ξ2 be P(S)-valued random variables such that ξ1
has law ρ1 and the conditional law of ξ2 given ξ1 is given by P . Let F1 be the �-
field generated by ξ1, let F2 be the �-field generated by (ξ1, ξ2), and let X be an
S-valued random variable whose conditional law given F2 is given by ξ2. Then

P [P[X ∈ · |F2] ∈ · ] = P[ξ2 ∈ · ] = ρ1P = ρ2. (A.4)

Since P is a dilation

E[f (X) | F1] = E [E[f (X) | F2] | F1 ] = E
[
lf (ξ2) | F1

]

=
∫

P(ξ1, dμ)lf (μ) = lf (ξ1) (A.5)
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for all f ∈ C (S), and hence

P [P[X ∈ · |F1] ∈ · ] = P [ξ1 ∈ · ] = ρ1. (A.6)

We note that since ρ1, ρ2 ∈ P(P(S)), we have ξ1, ξ2 ∈ P(S) a.s. and hence X ∈ S

a.s. This proves the implication (iii)⇒(ii).
To complete the proof, it suffices to show that (ii)⇒(i). By Lemma 12, each φ ∈

Cμ(P(S)) is of the form φ = supf ∈C lf for some C ⊂ C (S). Then (ii) implies

∫
φ dρ1 = E

[
sup
f ∈C

E[f (X) | F1]
]

= E

[
sup
f ∈C

E [E[f (X) | F2] | F1 ]

]

� E

[
E

[
sup
f ∈C

E[f (X) | F2]
∣∣∣∣∣ F1

]]
= E

[
sup
f ∈C

E[f (X) | F2]
]

=
∫

φ dρ2. (A.7)

The n-th moment measure ρ(n) associated with a probability law ρ ∈ P(P(S))

has been defined in (4.1). The following lemma links the first and second moment
measures to the convex order.

Lemma 14 (First and second moment measures) Let S be a Polish space. Assume
that ρ1, ρ2 ∈ P(P(S)) satisfy ρ1 �μ ρ2. Then ρ

(1)
1 = ρ

(1)
2 and∫

ρ
(2)
1 (dx, dy)f (x)f (y) �

∫
ρ

(2)
2 (dx, dy)f (x)f (y) (f ∈ B(S)) . (A.8)

If ρ1 �μ ρ2 and (A.8) holds with equality for all bounded continuous f : S → R,
then ρ1 = ρ2.

Proof By Theorem 13, there exists an S-valued random variable X defined on
some probability space (�, F ,P) and sub-�-fields F1 ⊂ F2 ⊂ F such that
ρi = P [P[X ∈ · |Fi] ∈ · ] (i = 1, 2). Since for each f ∈ B(S)∫

ρ
(1)
1 (dx)f (x) = E [E[f (X) |F1]] = E[f (X)] = E [E[f (X) |F2]]

=
∫

ρ
(1)
2 (dx)f (x), (A.9)

we see that ρ
(1)
1 = ρ

(1)
2 . Fix f ∈ B(S) and set Mi := E[f (X) |Fi] (i = 1, 2). Then∫

ρ
(2)
2 (dx, dy)f (x)f (y) = E

[
E[f (X) |F2]2

]
= E[M2

2 ]

= E[M2
1 ] + E

[
(M2 − M1)

2
]
� E[M2

1 ]

=
∫

ρ
(2)
1 (dx, dy)f (x)f (y), (A.10)
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proving (A.8). Let S be a metrizable compactification of S. If ρ1 �μ ρ2 and (A.8)
holds with equality for all bounded continuous f : S → R, then (A.10) tells us that
M1 = M2 for each f ∈ C (S), i.e.,

E[f (X) |F1] = E[f (X) |F2] a.s. for each f ∈ C (S). (A.11)

By Lemma 10, we can choose a countable dense set D ⊂ C (S). Then
E[f (X)|F1]=E[f (X)|F2] for all f ∈D a.s. and hence P[X∈· |F1]=P[X∈ · |F2]
a.s., proving that ρ1 = ρ2.

The following lemma shows that the convex order is a partial order,

Lemma 15 (Convex functions are distribution determining) If ρ1, ρ2 ∈
P(P(S)) satisfy

∫
φ dρ1 = ∫

φ dρ2 for all φ ∈ Ccv(P(S)), then ρ1 = ρ2.

Proof For any f ∈ C (S) and ρ ∈ P(P(S)),∫
S

2
ρ(2)(dx, dy)f (x)f (y)

=
∫
P(S)

ρ(dμ)

∫
S

2
μ(dx)μ(dy)f (x)f (y) =

∫
P(S)

ρ(dμ)lf (μ)2. (A.12)

Therefore, since l2
f is a convex function,

∫
φ dρ1 = ∫

φ dρ2 for all φ ∈ Cμ(P(S))

implies equality in (A.8) and hence, by Lemma 14, ρ1 = ρ2.

Appendix B: Open Problem 12 of Aldous and Bandyopadhyay

We have seen that the use of the higer-level map from Section 4 and properties of
the convex order lead to an elegant and short proof of Theorem 1, which is similar to
[1, Theorem 11]. The most significant improvement over [1, Theorem 11] is that the
implication (ii)⇒(i) is shown without a continuity assumption on the map T , solving
Open Problem 12 of [1]. If one is only interested in solving this open problem, taking
the proof of [1, Theorem 11] for granted, then it is possible to give a shorter argument
that does not involve the higer-level map and the convex order.

One way to prove the implication (ii)⇒(i) in Theorem 1 is to show that nonen-
dogeny implies the existence of a measure ν ∈ P(S2)μ such that T (2)(ν) = ν and
ν 
= μ(2). In [1], such a ν was constructed as the weak limit of measures νn which
satisfied T (2)(νn) = νn+1; however, to conclude that T (2)(ν) = ν they then needed
to assume the continuity of T (2). Their Open Problem 12 asks if this continuity
assumption can be removed.

In our proof of Theorem 1, we take ν = μ(2), which by Theorem 5 and Lemma 14

from Appendix A satisfies ν 
= μ(2) if and only if the RTP corresponding to μ is not
endogenous, and by Lemma 4.4 satisfies T (2)(ν) = ν.

Antar Bandyopadhyay told us that shortly after the publication of [1], he learned
that their Open Problem 12 could be solved by adapting the proof of the implication
(3)⇒(2) of [3, Théorème 9] to the setting of RTPs. To the best of our knowledge,
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this observation has not been published. The setting of [3, Théorème 9] are positive
recurrent Markov chains with countable state space, which are a very special case of
the RTPs we consider. In view of this, we sketch their argument here in our general
setting and show how it relates to our argument.

Let (ωi, Xi)i∈T be an RTP corresponding to the map γ and a solution μ of a RDE.
Construct (Yi)i∈T such that (Xi)i∈T and (Yi)i∈T are conditionally independent and
identically distributed given (ωi)i∈T. Then X∅ = Y∅ a.s. if and only if the RTP
corresponding to μ is endogenous. Let ν denote the law of (X∅, Y∅). Then ν = μ(2)

if and only if endogeny holds. In view of this, to prove the implication (ii)⇒(i) in
Theorem 1, it suffices to show that ν solves the bivariate RDE T (2)(ν) = ν. This will
follow provided we show that

(ωi, (Xi, Yi))i∈T (B.1)

is an RTP corresponding to the map γ (2) and ν, i.e.,

(i) the (ωi)i∈T are i.i.d.,

(ii) for each t � 1, the (Xi, Yi)i∈∂T(t)
are i.i.d. with common law ν

and independent of (ωi)i∈T(t)
,

(iii) (Xi, Yi) = γ (2)[ωi]
(
(Xi1, Yi1), . . . , (Xiki , Yiκ(ωi))

)
(i ∈ T). (B.2)

Here (i) and (iii) are trivial. To prove property (ii), set

�i := (
Xi, (ωij)j∈T

)
and �

(2)
i := (

Xi, Yi, (ωij)j∈T
)

(i ∈ T). (B.3)

Then the (�i)i∈T are identically distributed. Moreover, for each t � 1, the (�i)i∈∂T(t)

are independent of each other and of (ωk)k∈T(t)
. Recall that (Xi)i∈T and (Yi)i∈T are

conditionally independent and identically distributed given (ωk)k∈T. Since the con-
ditional law of Xi given (ωk)k∈T only depends on (ωij)j∈T, the same is true for Yi.

Using this, it is not hard to see that the (�
(2)
i )i∈T are identically distributed and for

each t � 1, the (�
(2)
i )i∈∂T(t)

are independent of each other and of (ωk)k∈T(t)
, and this

in turn implies (ii).
In fact, since the law of (X∅, Y∅) is the second moment measure of the random

measure ξ∅ from Proposition 4, the measure ν constructed here is the same as our
measure μ(2). Thus, our argument and the one from [3] are both based on the same
solution of the bivariate RDE.
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