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Abstract

Conditional probability tables (CPTs) of discrete valued random variables may achieve high di-
mensions and Bayesian networks defined as the product of these CPTs may become intractable by
conventional methods of BN inference because of their dimensionality. In many cases, however,
these probability tables constitute tensors of relatively low rank. Such tensors can be written in the
so-called Kruskal form as a sum of rank-one components. Such representation would be equivalent
to adding one artificial parent to all random variables and deleting all edges between the variables.
The most difficult task is to find such a representation given a set of marginals or CPTs of the ran-
dom variables under consideration. In the former case, it is a problem of joint canonical polyadic
(CP) decomposition of a set of tensors. The latter fitting problem can be solved in a similar manner.
We apply a recently proposed alternating direction method of multipliers (ADMM), which assures
that the model has a probabilistic interpretation, i.e., that all elements of all factor matrices are
nonnegative. We perform experiments with several well-known Bayesian networks.

Keywords: canonical polyadic tensor decomposition; conditional probability tables; marginal
probability tables; alternating direction method of multipliers.

1. Introduction

As Bayesian networks (BNs) are becoming more and more popular frameworks for reasoning un-
der uncertainty, larger and larger BN models are constructed by domain experts or learned from
extensive datasets that are common in many areas of human activities nowadays. The construction
of large BNs is difficult but, often, a more critical task is an efficient reasoning within these large
models.

In this paper, we study representations of whole BN models by their so-called Kruskal forms.
Each Kruskal form is a sum of rank-one components. This extends our previous work in this
area (Savicky and Vomlel, 2007; Vomlel and Tichavský, 2014) in the sense that in our previous
works we aimed at decomposing conditional probability tables (CPTs) independently and then we
combined the decomposed tables together using the standard BN inference approaches such as,
for example, the Junction Tree Algorithm (Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990;
Shenoy and Shafer, 1990)]. The work presented in this paper is, in a sense, more ambitious since
we aim at decomposing the whole BN at once. This requires new decomposition algorithms that are
capable of working with the whole BN. On the other hand, if we succeed with the decomposition,
we can perform reasoning much more efficiently than with the aid of the standard methods since
the computational complexity is proportional to the rank of the decomposition. This is in contrast
with the standard methods where the complexity is proportional to the treewidth of the triangu-
lated moral graph of the BN. Of course, the key question is: can BNs from real applications be
decomposed using reasonably low ranks (say, at most in the orders of hundreds) so that the decom-
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posed form well approximates the original BNs. To answer this question, we used BNs from a BN
repository (Scutari, 2009).

In this paper, we address this task using three approaches. The first approach is based on the
fact that the basic building blocks of each BN are CPTs that define the joint probability so that the
resulting joint probability distributions have their CPTs equal to the input CPTs. The standard way
how these CPTs are combined is derived from the conditional independence (CI) relations defined
by the directed acyclic graph of the BN. It is well known that the joint probability distribution
satisfying the above properties (i.e., having the input CPTs and satisfying the CI relations) is the
product of the input CPTs. We also aim at a joint probability distribution having CPTs equal (or
at least close) to the input CPTs but we relax the CI requirements and require a low rank instead.
We propose a novel method for fitting the given set of the CPT’s by a low-rank CP decomposition
model.

In the second approach, instead of CPTs, we use marginal probability tables (MPTs) defined by
the BN for each variable by its family1. In this approach, we aim at a joint probability distribution
having its MPTs equal (or at least close) to the input MPTs and, again, we relax the CI requirements
and require a low rank instead. In this case, we apply the fitting method proposed by Kargas et al.
(2017).

The third approach is similar to the second one but instead of marginals in families of model
variables we use a relatively large number of marginals defined on randomly selected sets of model
variables. The cardinality of these sets is restricted. In the experiments we used sets of cardi-
nality three. A motivation for this approach is that, contrary to the second approach, by having
marginals defined on sets that differ from families of model variables, we can enforce CI relations
into the model (e.g., if a marginal contains variables that are conditionally independent). This can
be supported by recent results (Kargas et al., 2017, Theorem 1) implying that a joint probability
distribution with rank restricted by a relatively mild condition is identifiable from the MPTs of three
variables.

The rest of the paper is organized as follows. In Section 2 we introduce the basic concepts. In
Section 3 we present the ADMM method of minimizing the criterion (6) under the constraint that
all elements of factor matrices A1, . . . , AN are nonnegative. Section 4 is devoted to computational
experiments. We report the results of experiments performed with six large BNs from a BN reposi-
tory (Scutari, 2009). In particular, we have measured the dependence of the approximation error on
the rank of the resulting form. Section 5 concludes the paper.

2. Preliminaries

Let {X1, . . . , XN} be a set of discrete random variables and assume that Xn can achieve In values,
1, . . . , In for all n = 1, . . . , N . The probability distribution of {X1, . . . , XN} is determined by the
probability table (tensor) T of the size I1 × . . .× IN which has elements

Ti1,...,iN = P (X1 = i1, . . . , XN = iN ) . (1)

The number of the elements of the tensor is I1I2 . . . IN and it can obviously be very large. The
integer N will be called the order of the tensor.

Assume the existence of an integer R (to be called a rank) and of N real- or complex-valued
matrices A1, . . . , AN (to be called factor matrices) such that An has the size In × R and elements

1. Family of a variable is the variable plus its parents.
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An,j,r, n = 1, . . . , N , j = 1, . . . , In, r = 1, . . . , R, and a vector λ = (λ1, . . . , λR) such that

Ti1,...,iN =

R∑
r=1

λrA1,i1,rA2,i2,r . . . AN,iN ,r . (2)

for all in = 1, . . . , In, n = 1, . . . , N .
The number of elements of the factor matrices is R(I1 + . . . + IN ). If R is small, this num-

ber might be much lower than the number of the elements in the tensor T. The representation of
the tensor T by the factor matrices A1, . . . , AN is called the Kruskal representation. We use the
notation (Kolda and Bader, 2009)

T = [[λ,A1, . . . , AN ]] . (3)

The Kruskal representation may serve as a convenient tool for storing large-dimensional tensors
with many elements. The decomposition can be either general, or nonnegative. In the latter case,
we assume that all factor matrices are composed of nonnegative elements only. The nonnegative
Kruskal representation can be interpreted by introducing an artificial random variable Y , such that
the random variables X1, . . . , XN are conditionally independent given Y . In this interpretation,
An,j,r is the probability2 that Xn = j given Y = r, and λr is the probability that Y = r. Note
that An,j,r ≥ 0 for all n, j, r,

∑
j An,j,r = 1 for all n and r, λr ≥ 0 for all r, and

∑
r λr = 1. For

computational purposes, we simplify this model by assuming λ1 = . . . = λR and absorbing them
in the factor matrices, so that they do not necessarily sum up their columns to one. We shall write
simply

T = [[A1, . . . , AN ]] . (4)

In Bayesian networks, we are given a set of conditional probability tables, where each conditional
probability table is given for a random variable given its parents. A conceptually easier case is if
the given tensors represent marginal probability tables (MPTs). For each variable and its parents it
is possible to compute the MPTs, so we start with this case first.

Assume we are given M marginal probability tables T1, . . . ,TM such that each tensor Tm

represents a marginal probability distribution of variables Xi1 , . . . , XiNm
. Then, it holds

Tm = [[λ,Ai1 , . . . , AiNm
]] . (5)

This means that only factor matrices of variables from Tm are needed to compute Tm. It is claimed
by Kargas et al. (2017) that, if the true model of the network is of a low rank and the set T1, . . . ,TM

contains sufficient numbers of marginal probability tables of order at least three, then the decom-
position of the whole tensor (4) is uniquely determined. The CP decomposition of the tensors
T1, . . . ,TM in (5) is joint in the sense that if two tensors Tm, Tn share a variable i ∈ Sm ∩ Sn,
their CP decomposition shares the corresponding factor matrix Ai. Note that the ranks Rm of ten-
sors Tm (the minimum rank-one components in a CP decomposition of Tm) can be strictly lower
than the rank R of the the decomposition (3). On the other hand, R must be greater than or equal to
the maximum of {Rm}.

2. The matrices and the vector λ are normalized so that all matrix row sums and the vector sum are equal to one.
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In practice, we do not know the ideal rank R. It would be a design variable. For a given R,
we seek for the factor matrices An of sizes In × R, n = 1, . . . , N such that the identities (5) are
fulfilled at least approximately, by minimizing the criterion

ε(A1, . . . AN ) =
M∑

m=1

wm‖Tm − [[λ,Ai1 , . . . , AiNm
]]‖2F (6)

where wm is a nonnegative weight assigned to the m−th tensor, and ‖ · ‖F is the Frobenius norm.
The weights wm can reflect the number of elements in Tm, or express a measure of confidence that
we have in the tensor Tm

3.

Example 1 (A BN with six variables) Assume a BN with the structure given by the directed acyclic
graph presented in Figure 1 and with CPTs defined in Table 1. Using the notation defined above,
we have N = 6. In the first approach, the input tensors correspond to CPTs. This means
T1 = P (X1), T2 = P (X2|X1), T3 = P (X3|X1), T4 = P (X4), T5 = P (X5|X1, X2, X3, X4),
and T6 = P (X5|X1, X3, X4). The nonnegative Kruskal representation of this BN corresponds to
a Naive Bayes model that has the structure given in Figure 2. The variable Y can be understood
as a hidden variable whose number of states is equal to the rank of the nonnegative Kruskal repre-
sentation. The task is to find matrices A1, . . . , A6 that correspond to conditional probability tables
Q(X1|Y ), . . . , Q(X6|Y ), and vector λ corresponding to Q(Y ).

In order to compute a CPT, say Q(X6|X1, X3, X4), from the nonnegative Kruskal representa-
tion of this BN, which corresponds to the Naive Bayes model, we need to consider only matrices
Ai1 , . . . , AiN6

that for variables from the family4 of X6. The variables from the family of X6 are
X1, X3, X4 and X6 which means we have to consider only matrices A1, A3, A4, and A6. Therefore
we compute

T6 = Q(X6|X1, X3, X4) =
Q(X1, X3, X4, X6)∑
X6
Q(X1, X3, X4, X6)

(7)

where

Q(X1, X3, X4, X6) = [[A1, A3, A4, A6]] (8)

=
∑
Y

Q(Y ) ·Q(X1|Y ) ·Q(X3|Y ) ·Q(X4|Y ) ·Q(X6|Y ) . (9)

3. Joint CP decomposition

3.1 Arbitrary Joint CP decomposition

First, we explain the alternating least squares (ALS) algorithm for the joint CP decomposition of
the tensors without the non-negativity constraint.

3. If the primary goal is to approximate a BN it is desirable to monitor the error of the decomposition of the whole
tensor, ‖T − [[A1, . . . , AN ]]‖F , but it is often difficult, because the number of elements of T is too large to be
enumerated. However, we can compute certain numbers of elements on both sides of T ≈ [[A1, . . . , AN ]] and check
how they differ from each other, to check whether the approximation is good or not.

4. The remaining variables are barren, see, e.g. Jensen and Nielsen (2007).
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X2 X1 X3 X4

X6X5

Figure 1: The structure of the BN from Example 1

Table 1: The CPTs of BN from Example 1

P (X1)
X1 p

0 0.2
1 0.8

P (X2|X1)
X2 X1 p

0 0 0.9
1 0 0.1
0 1 0.3
1 1 0.7

P (X3|X1, X4)
X3 X1 X4 p

0 0 0 0.15
1 0 0 0.85
0 1 0 0.25
1 1 0 0.75
0 0 1 0.4
1 0 1 0.6
0 1 1 0.1
1 1 1 0.9

P (X4)
X4 p

0 0.4
1 0.6

P (X5|X1, X2, X3, X4 = 0)
X5 X1 X2 X3 p

0 0 0 0 0.9
1 0 0 0 0.1
0 1 0 0 0.09
1 1 0 0 0.91
0 0 1 0 0.18
1 0 1 0 0.82
0 1 1 0 0.018
1 1 1 0 0.982
0 0 0 1 0.27
1 0 0 1 0.73
0 1 0 1 0.027
1 1 0 1 0.973
0 0 1 1 0.054
1 0 1 1 0.946
0 1 1 1 0.0054
1 1 1 1 0.9946

P (X5|X1, X2, X3, X4 = 1)
X5 X1 X2 X3 p

0 0 0 0 0.36
1 0 0 0 0.64
0 1 0 0 0.036
1 1 0 0 0.964
0 0 1 0 0.072
1 0 1 0 0.928
0 1 1 0 0.0072
1 1 1 0 0.9928
0 0 0 1 0.108
1 0 0 1 0.892
0 1 0 1 0.0108
1 1 0 1 0.9892
0 0 1 1 0.0216
1 0 1 1 0.9784
0 1 1 1 0.00216
1 1 1 1 0.99784

P (X6|X1, X3, X4)
X6 X1 X3 X4 p

0 0 0 0 0.75
1 0 0 0 0.25
0 1 0 0 0.2625
1 1 0 0 0.7375
0 0 1 0 0.3375
1 0 1 0 0.6625
0 1 1 0 0.118125
1 1 1 0 0.881875
0 0 0 1 0.1875
1 0 0 1 0.8125
0 1 0 1 0.065625
1 1 0 1 0.934375
0 0 1 1 0.084375
1 0 1 1 0.915625
0 1 1 1 0.029531
1 1 1 1 0.970469
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X1 X3 X4

X6X5

X2

Y

Figure 2: The structure of the Naive Bayes model that corresponds to the nonnegative Kruskal
representation of BN from Example 1

The ALS method alternates the optimization of one factor matrix, say Ai, while keeping the
other factor matrices fixed. The index i can be updated cyclically in a loop, or according to another
policy. Assume that all other factor matrices Aj are known and fixed and derive an update formula
for Ai. The iterations start with randomly chosen matrices. We can observe that criterion (6) is a
quadratic function of Ai, and therefore it can be minimized in a closed form.

First of all, note that in the summation in (6), only those marginal tensors Tm play a role for
which i ∈ Sm. Assume that the variable i is involved in Tm. Let T(i)

m be a transposition5 of the
tensor so that the dimension i is placed at the first position, say

T(i)
m = [[λ,Ai, Aj1 , . . . , AjNm−1 ]] (10)

where {j1, . . . , jNm−1} = {i1, . . . , iNm} − {i}. Let T (i)
m be a matricization6 of T(i)

m along its first
dimension. It is a matrix of the size Ii × (

∏
k Ijk). Then, the CP decomposition of the tensor can

be written as

T (i)
m = Aidiag(λ)(AjNm−1 � . . .�Aj1)

T 4
= AiB

T
im (11)

where� is the Khatri-Rao product and T is the transposition. The Khatri-Rao product is defined for
matrices having the same number of columns. For example, for two matrices F,G with R columns
it is defined as

F �G = [F1 ⊗G1, . . . , FR ⊗GR] (12)

where Fr, Gr is the r−th column of F andG, respectively, and⊗ is the Kronecker (tensor) product.
The criterion (6) can be rewritten as

ε(λ,A1, . . . AN ) =
∑

m:i∈Sm

wm‖T (i)
m −AiB

T
im‖2F + const (13)

5. In Matlab, the transposition is done through the function “permute”.
6. In Matlab, the matricization is done through the function “reshape”.
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The closed-form minimizer of (13) with respect to Ai is then

Ai =

( ∑
m:i∈Sm

wmT
(i)
m Bim

)( ∑
m:i∈Sm

wmB
T
imBim

)−1
(14)

In this way, we would update A1, A2, ..., AN cyclically until convergence is achieved. The vector
λ is updated in order to maintain normalization of columns of the matrices Ai.

3.2 Nonnegative Joint CP decomposition

The use of the ADMM technique for a nonnegative tensor factorization was proposed in (Liavas and
Sidiropoulos, 2015). In this subsection we adapt this technique to joint CP decomposition of several
tensors. Instead of minimizing the criterion ε(A1, . . . AN ) in (6) subject to the condition An ≥ 0
for n = 1, . . . , N , we consider an equivalent minimization with respect to {An, Ãn},

min ε(λ,A1, . . . AN ) +
N∑

n=1

g(Ãn) (15)

subject to Ãn −An = 0 for n = 1, . . . , N , where

g(M) =

{
0, if M ≥ 0
∞, otherwise .

(16)

We introduce dual variables Yn of size In × R for n = 1, . . . , N and the vector of penalty terms
ρ = [ρ1, . . . , ρN ]. Then, the ADMM optimization method iterates

{Ak+1
m } = argmin{Am}ε(A1, . . . AN ) +

N∑
n=1

Yn ∗An +
ρn
2
‖An − Ãk

n‖2 (17)

Ãk+1
m =

(
Ak+1

m +
1

ρm
Ym

)
+

(18)

Y k+1
m = Y k

m + ρm

(
Ak+1

m − Ãk+1
m

)
. (19)

where k is the iteration index, Yn ∗An is the scalar product of Yn and An, and (X)+ is the nonneg-
ative part of X . The minimization in (17) is, indeed, not quadratic, and is replaced by a series of
updates

Ak+1
i =

( ∑
m:i∈Sm

wmT
(i)
m Bim + ρiÃ

k
i − Y k

i

)( ∑
m:i∈Sm

wmB
T
imBim + ρiIR

)−1
(20)

for i = 1, . . . , N , where Bim is computed from the latest available estimates of Aj , j 6= i, and
IR is the R × R identity matrix. For simplicity, we skip technical details of the derivation of these
updates.

During the iteration process, k →∞, the Frobenius norm of the difference ‖Ak
n − Ãk

n‖ should
converge to zero for all n = 1, . . . , N . We also found it useful to monitor the fitting error for all
input tensors

em(λ,A1, . . . , AN ) = ‖Tm − [[λ,Ai1 , . . . , AiNm
]]‖F . (21)
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3.3 Fitting Conditional Probability Tables

Assume now that the given set of tensors {Tm} does not represent marginal probability tables of
Xi1 , . . . , Xim but conditional probability tables of Xi1 given Xi2 , . . . , Xim . Instead of the errors
in (21) we shall consider the errors

ẽm = ‖[[λ,Ai1 , . . . , AiNm
]]− Tm ? [[λ,1I1,R, Ai2 . . . , AiNm

]]‖F (22)

where ? is the elementwise product and 1I1,R is a matrix of the size I1 × R filled with ones, and
I1 is the number of states of Xi1 . We note that (ẽm)2 is a quadratic function of Ai1 , . . . , AiNm

.
However, we need to avoid a trivial solution when some of the factor matrices Aij is zero. It can
be done in several ways. One of them is to add the constraint that the sum of the elements of
[[λ,Ai1 , . . . , AiNm

]] should be one,

‖[[λ,Ai1 , . . . , AiNm
]]‖1 = 1 , (23)

where ‖ · ‖1 is the L1 norm. The total criterion to replace (6) is

ε̃(λ,A1, . . . , AN ) =
M∑

m=1

wm[((ẽm)2 + (‖[[λ,Ai1 , . . . , AiNm
]]‖1 − 1)2] . (24)

The criterion is quadratic like the former one, and it can be optimized by an ADMM alternating
least square technique similar to that described in the previous subsection.

Example 2 (Nonnegative Kruskal form of rank three for a BN with six variables) Assume again
the BN from Example 1 whose structure is given in Figure 1. Now, we will use the ADMM technique
for the nonnegative factorization of tensor T = P (X1, . . . , X6) with the input tensors T1, . . . ,T6

fulfilling one of the following conditions:

• CPTs of the BN (Section 3.3),

• MPTs computed from the BN for the families of all variables (Section 3.2),

• all MPTs of cardinality three computed from the BN. There are twenty different subsets of
cardinality three in this example, or

• the single tensor of the joint probability table of the size 2× 2× 2× 2× 2× 2.

We will consider Kruskal forms of rank three in this example. We aim at minimizing the criterion (6)
or (24), respectively, with uniform weights, w1 = . . . = wM = 1. We run the algorithm several
times from different starting points and let the algorithm run for 1000 iterations.

In Table 3 we present few statistics from the experiment. First, we present the approximation
error(6) or(13), respectively, achieved in the optimization. We can see that the approximation error
can be quite low even at a small rank, R = 3. Second, the sum of absolute errors of each ap-
proximation with respect to the tensor of the original Bayesian network model is presented. Third,
we report the Kendall correlation coefficient between the tensor of the original Bayesian network
(arranged in one long vector) and the approximation. We can see that although the fitting error is
quite low even for the low model rank, the difference from the original tensor is quite large, both
in terms of the sum of absolute errors and also in the terms of the Kendall correlation coefficient.
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Table 2: Statistics of approximations of BN from Example 1

fitting error overall error Kendall correlation
CPT’s 5.047e-4 0.4367 0.5010

MPT’s of the same size 1.735e-4 0.1003 0.7579
MPT’s of the size 3 6.0e-3 0.2005 0.6781

The whole distribution 4.62e-4 0.0923 0.7520

Table 3: The CPTs of the Naive Bayes model

P (X1|Y )
X1 Y p

0 0 0
1 0 1
0 1 0
1 1 1
0 2 0.8853
1 2 0.1147

P (X2|Y )
X2 Y p

0 0 0.2595
1 0 0.7405
0 1 0.2876
1 1 0.7124
0 2 0.8976
1 2 0.1024

P (X3|Y )
X3 Y p

0 0 0.4203
1 0 0.5797
0 1 0.0609
1 1 0.9391
0 2 0.3024
1 2 0.6976

P (X4|Y )
X4 Y p

0 0 0.7738
1 0 0.2262
0 1 0.2622
1 1 0.7378
0 2 0.4126
1 2 0.5874

P (X5|Y )
X5 Y p

0 0 0.0157
1 0 0.9843
0 1 0
1 1 1
0 2 0.2151
1 2 0.7849

P (X6|Y )
X6 Y p

0 0 0.2832
1 0 0.7168
0 1 0.0069
1 1 0.9931
0 2 0.1991
1 2 0.8009

P (X1)
X1 p

0 0.2049
1 0.5700
2 0.2251

The best approximation is achieved by fitting the whole distribution and then by fitting the marginal
probability tables of the nodes’ families within the Bayesian model.

We have also tried to approximate the whole probability table with tensors of a higher rank.
For rank R = 10 we receive the Kendall correlation coefficient value of 0.9266. It looks like this
Bayesian network is not easy to be represented by a low-rank model.

If we compare the total table size of the junction tree of the original model, which is 48, with
the total tables size of the Naive Bayes model (representing the nonnegative Kruskal form), which
is 36, we get a 25% saving in the total table size. This saving can help us reduce the complexity of
inference, which is proportional to the total table size.

4. Numerical Experiments

For the numerical experiments, we have selected the method that uses MPTs computed from the
BN for the families of each variable, since this method provides the best fit of the original BNs.
We let the algorithm iterate until the convergence is reached, which sometimes requires a number of
iterations in the order of tens of thousands. We have also started the algorithm from several different
starting points.

In Figure 3 we present results of the numerical experiments on six large Bayesian networks
from a Bayesian network repository (Scutari, 2009). In Table 4 we summarize the basic character-
istics of these BNs7. Each point in the graph corresponds to a tensor decomposition of a Bayesian

7. We report the total table size of the junction tree representation computed by Hugin (Hugin, 2015) using its (in most
cases optimal) triangulation.
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Table 4: Characteristics of BNs used in the experiments

name number of variables total table size
Pigs 441 709,830
Hepar 2 70 2,617
Pathfinder 109 182,641
Link 724 37,870,762
Insurance 27 46,872
Diabetes 413 9,989,707

network. Its horizontal coordinate is the compression ratio of the total table size (tts) of the tensor
decomposition with respect to the optimal tts of the Bayesian network computed by (Hugin, 2015).
A value smaller than 1.0 means we get a saving in tts. The horizontal coordinate corresponds to the
average absolute error of the tensor decomposition computed for all values of marginal probability
tables and input marginal probability tables of the original Bayesian network. The lower the value
the better approximation we get. Each point is labeled by the value of the rank of the corresponding
tensor decomposition.

In Figure 3 we can see that we can control the approximation error by the rank. For some
networks (Pathfinder, Diabetes) we get a low error rate (0.0002 and 0.0004, respectively) with a
favorable compression ratio (0.03 and 0.01, respectively). For some other networks (Pigs, Link, and
Insurance) the error rate is higher (0.003, 0.003, and 0.0015, respectively) but one of them (Link)
has a very high compression (the ratio is about 0.001). The Hepar 2 network has a low tts already
for the original Bayesian network (tts=2617), which is the main reason that it is hard to get any
higher compression rate with a small error rate using the suggested tensor decomposition.

5. Conclusions

In our experiments, we have observed that the marginal probability tables of all six tested models
can be approximated by a low-rank Kruskal model with a quite low average error. Similarly, we can
approximate the corresponding CPTs. However, already in the example of six binary variables we
have observed that the obtained low-rank models differ from each other. They also differ from the
Bayesian network model in the sense that their joint probability distributions differ, which implies
they give different inference results. At first sight, this may be a surprise since the MPTs and CPTs
are fitted well. But when we realize that BNs and low rank models combine the input CPTs and
MPTs differently, we see there is no reason why they should arrive at the same joint probability
distributions.

Indeed, it should be possible to combine information from the CPTs and from the marginals or
introduce more sophisticated weighting and do many more experiments. It seems that the low-rank
models cannot compete with the Bayesian product models if the latter model is considered to be
the ground truth. However, if the ground truth is not available and CPTs need to be estimated from
data, then the low-rank models can be appropriate. At least the low-rank models have the advantage
of a simple inference.
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Figure 3: Results of experiments
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It would be interesting to compare BN models with low-rank Kruskal models when both were
learned from real data, e.g., data from a machine learning repository. If they were both learned from
the same training dataset and tested on a testing dataset, we could see which model better represents
data. But we leave this as a topic for our future research.
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