
Available online at www.sciencedirect.com 

Journal of the Franklin Institute 354 (2017) 8529–8551 
www.elsevier.com/locate/jfranklin 

Production-process optimization algorithm: 
Application to fed-batch bioprocess 

Matej Pčolka 
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Abstract 

This paper presents a computationally tractable algorithm focusing on overall optimization of a pro- 
duction process. The proposed algorithm embraces both the input profile and the state initial conditions 
optimization and consists of three stages: (i) optimization of the input profile with constant initial con- 
ditions, (ii) reduction of the input profile complexity and (iii) joint optimization of the input profile 
parameters and state initial conditions. The newly proposed algorithm is compared with several alter- 
natives on a series of numerical experiments representing penicillin cultivation process. As a part of 
the evaluation, a broader range of optimization periods is considered and not only the criterion but 
also the complexity of the provided input profiles is inspected. The obtained encouraging results show 

the superiority of the newly proposed solution and demonstrate the usefulness of the joint-optimization 
algorithm. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Process industry (and bioprocess industry in particular) is a highly interesting application
rea of the optimization theory and many recent works have been devoted to optimal ma-
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nipulation of the process inputs (see e.g. [1–8] and references therein). However, unlike the
branches where the initial conditions are given by the current measurements, also the initial
state of the process can be usually manipulated within some range in process industry. “Bet-
ter” choice of the initial conditions can improve the achieved results by as much as several
tens of per cent [9] . Even despite the strong potential, works on initial conditions optimization
are rather rare and are mostly based on statistical methods [9–11] . This requires exhaustive
number of real-life experiments with different initial conditions, which can be economically 

unbearable. Furthermore, only the effect of initial conditions is inspected and the influence of
the input variables is ignored. The model-based optimization algorithm proposed in this paper 
takes both these influences into account and its performance is illustrated on the penicillin
production case study. Besides the (bio)process control, such approach can be exploited in 

business, mathematical economics and elsewhere. 
Another specific property of process control is that the processes very often involve non-

coherently measured/actuated systems operating over long horizons. With commonly used 

discrete time models/discretized inputs [2,5,8,12–14] , the dimension of the optimization task 

rises steeply as the sampling period decreases. To evade the curse of dimensionality, a trade-off
between the optimality of the discretized solution and the memory and computational demands 
of the optimization would need to be sought using the traditional approaches and apparently, 
the optimality would be sacrificed to the acceptable complexity of the optimization. However, 
an input-profile re-parametrization performed as a part of the algorithm proposed in this paper 
effectively decreases the number of the optimized input profile parameters while keeping the 
optimization working in continuous time. Moreover, the re-parametrization enables to handle 
irregularly available state measurements, since the re-calculation of the continuous-time input 
profile might be performed at whichever time. Here, several works focusing on maximization 

of yields of a fed-batch fermentation process can be mentioned. In [15] , the control function
was approximated by a piecewise constant function with fixed switching times and only the
constant levels were optimized. In [16] , the control function parametrization was extended 

to incorporate also linear and quadratic function of time and the coefficients of their linear
combinations were optimized, however, the switching times were again expected to be known 

a priori. On the other hand, in [17] , the feed rate was assumed to be constant or zero and the
switching times were optimized, while in [18] , also the terminal time was manipulated. The
most complex tasks were solved in [19] and [20] , where the control function was parametrized
as a piecewise constant function of time and both the levels and the switching times were
optimized. Although the time-scaling transform introduced in [17,19,20] enables to optimize 
also the switching times, the optimized feed flow rate remains a piecewise-constant function 

of time. On the other hand, the algorithm proposed in this paper enables the optimized input to
be truly whichever parametrized continuous-time function. While already optimization of the 
switching times brings considerable improvement, not restricting to the piecewise-constant 
functions only but allowing also for a broader class, even more flexibility is offered and
improved results might be obtained while the computational complexity is decreased. To 

sum up, the currently available works suffer from the following drawbacks: (i) the control
function parametrization is determined ad hoc, and (ii) the process initial conditions are 
given a priori and are not optimized. In some sense, the newly proposed algorithm might
be regarded as a significant extension of these works since it optimizes over much broader
family of the basis functions and the choice of these functions is obtained as a result of
a well-defined combinatorial optimization, and in addition, it optimizes also the state initial 
conditions. The resulting joint optimization algorithm consists of three stages: in stage I, 
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he initial guess of the optimized input profile is obtained via sampled-data optimization. In
tage II, the initial input profile guess is re-parametrized in continuous time using a rigorous
ptimization-based procedure. In stage III, the state initial conditions and the newly obtained
nput profile parameters are jointly optimized by a parametric optimization. The combination
f all these adaptations leads to significant improvement of the fermentation yields (46–64%),
s demonstrated by the presented case study. 

The paper is structured as follows: Section 2 presents preliminaries for the proposed algo-
ithm including the problem formulation and the previous solution which serves as a spring-
oard for the new approach. The proposed solution itself is provided in Section 3 where
 three-stage optimization algorithm is composed and all stages are described in detail and
iscussed. Section 4 illustrates the proposed approach using a penicillin production optimiza-
ion case-study. The results of the newly proposed approach are compared with the original
lgorithm presented in the previous work and the achieved improvement demonstrates the
ontribution of both the newly introduced optimization of the re-parametrized input profile
nd state initial condition optimization. Section 5 concludes the paper. 

. Preliminaries 

In this section, the optimization tasks to be dealt with are specified and the motivation for
he newly proposed algorithm is provided. 

.1. Problem formulation 

In many applications, the ultimate goal is optimization of particular state function at the
nd of certain given period. For such tasks, the following minimization criterion can be used:

 (u, x 0 ) = F(x(T F )) , (1)

here F is the chosen function of process states x = [ x 1 , x 2 , . . . , x n ] T , n ∈ N 

+ , and T F is the
iven end time of the optimization period. Moreover, the solution must respect the following
et of constraints: 

˙  = f (x , u) , x (0) = x 0 , 

 0, min ≤ x 0 ≤ x 0, max , x i 0 ∈ X 

i 
0, adm 

, u ∈ U , (2)

here U is the class of all admissible input functions being all measurable on [0, T F ] such
hat u ( t ) ∈ [ u min , u max ], ∀ t ∈ [0, T F ], u min ∈ R , u max ∈ R , u min ≤u max . Here, f ( x , u ) represents the
rocess dynamics and { x 0,min , x 0,max } and { u min , u max } specify the acceptable intervals for initial
tates x 0 and inputs u . Furthermore, some initial states x i 0 might be required to belong to an
dmissible set of discrete values X 

i 
0, adm 

. Although theoretically, X 

i 
0, adm 

might be whichever
ser-defined set of discrete values, the most probable formulation is the one with a fixed
esolution step, X 

i 
0, adm 

= { q i R i | q i ∈ Z } , with R i ∈ R 

+ being the fixed resolution of setting the
 th initial state. 

Finally, the optimization task is summarized as: 

nd { u 

∗(t ) , x ∗0 } = arg min 

u(t ) , x 0 
J (u, x 0 ) 

ubject to constraints (2) . (3)
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2.2. Sampled Hamiltonian-based projected gradient method 

Standard way of solving the production-process optimization task is to simplify the opti- 
mization problem by setting the state initial condition x 0 to be fixed and considering only the
input u as the optimizable variable [2,5,12,21,22] . Then, the task (3) can be treated as a fixed
initial state, fixed time interval and free terminal state optimal control problem. To find the
input u minimizing Eq. (1) , the well-known gradient approach is often performed on U T samp 

admissible class of T samp -sampled functions defined as follows. 

Definition 1. For the given sampling period T samp ∈ R 

+ and the constraints u min ∈ R , u max ∈
R , u min ≤u max , U T samp is an admissible class of measurable T samp -sampled functions such that 

U T samp = { u(t ) ≡ u (k) , ∀ t ∈ [(k − 1) T samp , kT samp ) ; u min ≤ u (k) ≤ u max ; k ∈ N 

+ } . 
The key idea is to start from an initial approximation u 0 of the optimal input and follow

the direction of the negative gradient of the cost criterion J : 

u l+1 = u l − αl 
∂J 

∂u 

, (4) 

where l specifies the iteration number and αl defines the step length for the gradient search
[23] . 

To compute the gradient of J , define first the Hamiltonian H as follows: 

H = λT f (x, u) , (5) 

where f ( x , u ) refers to model of the process dynamics and λ is the adjoint state vector having
the following dynamics: 

dλ

dt 
= −∂H 

∂x 
(6) 

with terminal condition 

λ(T F ) = − dF 

dx 

∣∣∣∣
t= T F 

. (7) 

Defined in the above way, Hamiltonian Eqs. (5) –(7) both incorporate the information about 
the criterion J and capture the dynamics of the controlled system. In particular, using the
Hamiltonian Eqs. (5) –(7) , the gradient of J can be computed as follows: 

∂J 

∂u 

= 

∂H 

∂u 

. (8) 

As a consequence, the iterative search (4) can be performed as follows: 

u l+1 = u l − α
∂H 

∂u 

(9) 

where Eqs. (5) –(9) are to be used at each step. After each search step, the calculated profile
u l+1 is projected on U T samp . The iterative procedure is repeated until |J (u i+1 ) − J (u i ) | < ε

for some suitably selected ε > 0. 
More precisely, each iteration l is executed as follows: at first, the input profile u l is used to

obtain the state x profiles by integrating the equation ˙ x = f (x, u) with state initial condition
x 0 over time interval [0, T F ]. Then, the terminal condition (7) for the adjoint state vector
is obtained by evaluating −d F/ d x at t = T F . This terminal condition λ( T F ) is used together
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ith input u l and state profiles x to integrate Eq. (6) backward in time. After that, all the
djoint state vector λ, state vector x and input u l are exploited to evaluate the gradient of the
amiltonian ∂ H/∂ u which is then used to update the input profile from u l to u l+1 according

o Eq. (9) and after the projection on U T samp , the new iteration (l + 1) starts. Considering the
ampling period T samp , the resulting optimal input is then represented as a vector of optimal
nput samples, u = { u (k) | k = 1 , 2, . . . , P } , where k corresponds to the sampling instant and
 F = P × T samp . More details can be found in [23,24] . 

This approach suffers from a severe drawback—in case that the sampling period decreases,
he complexity of the optimization grows. In the previous work [25] , an alternative consisting
n re-parametrization of the input profile was proposed to overcome this issue. However, the re-
arametrization was not performed in a systematic way. In the current paper, the methodology
o derive the input profile re-parametrization is studied in detail and a formalized approach
s presented. 

The computations described by Eqs. (5) –(9) are applicable only if the state initial condition
 0 is given and there is no straightforward way how to adapt the iterative schemes Eqs. (5) –(9)
hen x 0 is free. Note that with the free state initial condition, even the determination of the

xtremals using the Pontryagin’s maximum principle turns into a difficult two-point boundary
roblem [26] which needs to be solved for both the states and the adjoint states. 

Therefore, another purpose of this paper is to propose an alternative way how to treat free
rocess initial condition—this will be described as a part of complex algorithm given in the
equel. 

. Three-stage optimization procedure 

As already mentioned, this paper presents an algorithm incorporating both the optimal
election of the process initial conditions and manipulated variables and lowering complex-
ty/computational demands caused by dense sampling by introducing the input profile re-
arametrization. This algorithm is given by the following three-stage procedure: 

lgorithm 1 Joint input profile and initial conditions optimization (JIPICO) . 
Inputs : cost criterion J , set of input constraints, dynamics of the controlled process ˙ x =

f (x, u) , length of the optimization horizon T F , initial approximation of state initial conditions
 0,0 , initial approximation of input profile u 0 , suboptimality threshold �J . 

Outputs : vector x ∗0 of optimal state initial conditions and vector P 

∗ of optimal input profile
arameters. 

I. Consider the state initial conditions to be fixed, x(0) = x 0, 0 , find the optimal input
profile u 

∗(t ) minimizing the given optimization criterion on U T samp . 
II. To reduce the complexity of the input profile, find a set of parametric basis func-

tions F (t, P A ) , t ∈ [0, T F ], vector of parameters P = [ P 

T 
T , P 

T 
S , P 

T 
A ] 

T , P ∈ R 

N T + N S + N A ,

N T , N S , N A ∈ Z 

+ 

0 , and the mapping � : R 

N T + N S + N A → U , 

�(P) := u(P)(t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

u 1 = 

∑ 

q p S , 1 ,q F (t, P A ) 0 ≤ t < p T, 1 , 

u 2 = 

∑ 

q p S , 2,q F (t, P A ) p T, 1 ≤ t < p T, 2 , 

. . . 
. . . 

u N T = 

∑ 

q p S ,N T ,q F (t, P A ) p T,N T −1 ≤ t ≤ p T,N T = T F , 
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p T ,1 , p T ,2 , . . . , p T ,N T ∈ P T , p S ,1, q , p S ,2, q , . . . , p S,N T ,q ∈ P S , such that for the given subop-
timality threshold �J ∈ R 

+ 

0 , the performance deterioration condition 

J (u( P 

∗
)(t )) − J ( u 

∗(t )) ≤ �J 

is satisfied. 
III. Minimize function J (P, x 0 ) of N T + N S + N A + n real variables defined as follows: 

J (P, x 0 ) = J ◦ � : R 

N T + N S + N A + n → R . 

Note that the first two stages of the JIPICO algorithm are to be performed off-line before
the production process starts. The third stage is performed on-line every time a measurement 
of the current system variables arrives in order to introduce necessary measurement feedback 

and enable disturbance rejection. The parameters that are irrelevant with respect to the time
moment of the arrival of the new measurements are omitted. Let us also remark that no
assumptions on frequency or regularity of the measurements are considered which makes the 
procedure more robust against irregular or non-coherent measurements. 

The particular stages of the JIPICO algorithm are described in more detail in the following
text. 

3.1. JIPICO stage I 

During the JIPICO stage I, the optimization problem is treated as a fixed initial state, fixed
time interval and free terminal state optimal control problem. The state initial conditions x 0 
are chosen such that they satisfy the initial condition constraints x 0,min ≤x 0 ≤x 0,max . As the
candidate for the optimization routine, sampled Hamiltonian-based projected gradient method 

described in detail in Section 2.2 belonging to the optimal control methods family [23] has
been chosen. More details on this method can be found in [22,24,27] and references therein.
For possible alternatives, see [28–30] . 

Summarizing, the JIPICO stage I takes the entry data x 0,0 , u 0 , T samp > 0 and produces u 

∗

being T samp -sampled optimal input function. Rather than decrease T samp , the next JIPICO stage
is more convenient. 

3.2. JIPICO stage II 

The systematic and rigorous input profile re-parametrization—the purpose of the JIPICO 

stage II—provided in the sequel is one of the main contributions and was motivated by the
successful first attempt in this direction in [25] . 

The coherently sampled input sequence u = { u (k) | k = 1 , 2, . . . , P } , P = T F /T samp ob-
tained by JIPICO stage I will be re-parametrized and represented as follows: 

u(P, F , t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

u 1 = 

∑ s 1 
q=1 p S , 1 ,q f 1 ,q 0 ≤ t < p T, 1 , 

u 2 = 

∑ s 2 
q=1 p S , 2,q f 2,q p T, 1 ≤ t < p T, 2 , 

. . . 
. . . 

u N T = 

∑ s N T 
q=1 p S ,N T ,q f N T ,q p T,N T −1 ≤ t ≤ p T,N T = T F . 

(10) 

To specify the ingredients of Eq. (10) , the following definitions are given. 
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efinition 2. Time stamps p T, 1 , p T, 2 , . . . , p T,N T ∈ R 

+ define particular time subintervals on
hich piece-wise continuous parts of u(P, F , t ) are defined. These subintervals are denoted
y i ∈ { 1 , 2, . . . , N T } . Collection of all time stamps P T 

is then defined as P T = { p T,i | i =
 , 2, . . . , N T ; 0 < p T, 1 < p T, 2 < · · · < p T,N T = T F } . 
efinition 3. Simple parameters p S , 1 , p S , 2 , . . . ∈ R are coefficients of linear combina-

ions of basis functions that define the piece-wise continuous parts u 1 , u 2 , . . . , u N T of
(P, F , t ) . Collection of all simple parameters P S is then defined as P S = { p S ,i,q | u i =
 s i 
q=1 p S ,i,q f i,q , i = 1 , 2, . . . , N T } . 

efinition 4. Simple basis function f r S is r -th power of continuous time t , f r S (t ) = t r . Set of
ll simple functions F S is then defined as F S = { t r | r ∈ Z } . 
efinition 5. Advanced basis function f A 

is a function of both continuous time t and param-
ters, f A 

= f A 

(· , t ) . Set of advanced functions F A 

is then defined as F A 

= { f A 

(· , t ) } . 
Typical examples of advanced basis functions are goniometric functions, hyperbolic func-

ions or sigmoid function. 

efinition 6. Advanced parameters p A ∈ R are parameters included in advanced basis func-
ions. For each advanced parameter p A 

there exists advanced function f A 

such that f A 

=
 A 

(p A 

, · , t ) . Collection of advanced parameters P A 

is then defined as P A 

= { p A,i,q,m 

| f i,q =
 A,i,q (p A,i,q,m 

, ·, t ) ; f A,i,q ∈ F A 

; m ∈ N 

+ } . 
emark 1. Sets of simple and advanced basis functions are mutually disjoint, F S 

⋂ 

F A 

= ∅ .
amily of sets P T 

, P S and P A 

is mutually disjoint. 

efinition 7. Set of all basis functions F is defined as F = F S 
⋃ 

F A 

. 

efinition 8. Collection of all used parameters P is defined as P = P T 
⋃ 

P S 
⋃ 

P A 

. 

Now the re-parametrization problem can be formulated as an optimization problem. 
e-parametrization optimization problem. Fix an admissible performance degradation thresh-
ld �J ≥ 0. Then, the choice of the proper parametrization can be expressed as the following
ptimization task: 

min N P 

ubject to : J (u(P, F , t )) ≤ J ( u ) + �J 

constraints (2) 

�J ≥ 0 

u = { u (k) | k = 1 , 2, . . . , P } 
P = P T 

⋃ 

P S 

⋃ 

P A 

; | P| = N P 

P T = { p T,i | i = 1 , 2, . . . , N T ; 0 < p T, 1 < p T, 2 < · · · < p T,N T = T F } 

P S = 

⎧ ⎨ 

⎩ 

p S ,i,q | u i = 

s i ∑ 

q=1 

p S ,i,q f i,q ; f i,q ∈ F 

⎫ ⎬ 

⎭ 

P A 

= { p A,i,q,m 

| f i,q = f A,i,q (p A,i,q,m 

, t ) ; f A,i,q ∈ F A 

} 
F = F S 

⋃ 

F A 
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F S = { f r S (t ) = t r | r ∈ Z } 
F A 

= { f A 

( P A 

, t ) } . (11) 

In other words, given the set of basis functions F (user-defined entry of the algorithm) and the
vector of optimized input samples u (obtained at first stage of the algorithm, see Section 3.1 ),
we are looking for the smallest set of parameters P of cardinality N P such that the degradation
of the performance index J is not higher than �J while the original constraints given by
Eq. (2) are satisfied. Here, �J is a user-defined tuning parameter and can be chosen either
absolutely or relatively with respect to J ( u ) . 

Theorem 1. Given the initial estimate u and the corresponding cost criterion value J ( u ) ,

the optimization problem (11) has always a feasible solution N P ≤2 P for any �J ≥ 0. 

Proof. Let us start with the most strict condition, �J = 0. In such case, the initial estimate
u can be directly used to derive the parametrization with the following sets: 

P T = { k T samp | k = 1 , 2, . . . , P } 
P S = { u (k) | k = 1 , 2, . . . , P } 
P A 

= ∅ 

F S = { t 0 } 
F A 

= ∅ . 

With this parametrization, J (u(P, F , t )) − J ( u ) = 0 which satisfies the condition for max-
imal allowed perturbation of the cost criterion. Moreover, N P = | P| = | P T 

⋃ 

P S 
⋃ 

P A 

| =
| P T | + | P S | + | P A 

| = 2P . This solution is valid and feasible also for any �J > 0. This com-
pletes the proof. �

Remark 2. Theorem 1 and its proof provide a solution that ensures the feasibility of task (11) .
Moreover, they provide also the upper estimate for the cardinality of the set of parameters
P and a criterion according to which the “meaningfulness” of any parametrization can be 
evaluated. Assumption of the most strict condition �J = 0 results in N P = 2P and therefore,
parametrizations with more than 2 P parameters are ineffective with respect to the optimization 

task (11) . 

To find a parametrization satisfying the constraints given by Eq. (11) and being more
effective in the sense of cardinality of the set of used parameters, the following procedure is
proposed. 

Algorithm 2 (Simple parameter exclusion) . Exclusion of simple parameter p S, i , q from the set
P is equivalent to setting p S, i , q equal to zero. The rest of parameters is updated to P such
that ‖ u( P , F , t ) − u(P, F , t ) ‖ 2 is minimized and input constraints (2) are satisfied. Then, the
updated profile u( P , F , t ) is equivalent to u({ . . . , p S ,i,q−1 , 0, p S ,i,q+1 , . . . } , F , t ) . 

Algorithm 3 (Advanced parameter exclusion) . Exclusion of advanced parameter p A, i , q , m 

from 

the set P is equivalent to setting p A, i , q , m 

equal to zero. The rest of parameters is updated to P 

such that ‖ u( P , F , t ) − u(P, F , t ) ‖ 2 is minimized and input constraints (2) are satisfied. Then,
the updated profile u( P , F , t ) is equivalent to u({ . . . , p A,i,q,m−1 , 0, p A,i,q,m+1 , . . . } ,F , t ) . 
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Table 1 
Influence I of the parameters. 

Parameter T 1 T 2 a b c d e f g h i 

Influence I (−) 8 – 1 1 1 3 3 1 3 3 1 
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lgorithm 4 (Time stamp exclusion) . If time stamp p T, i is excluded from the set P , the input
rofile u(P\{ p T,i } , F , t ) changes into: 

(P\{ p T,i } , F , t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u 1 0 ≤ t < p T, 1 , 
. . . 

. . . 
u i−1 p T,i−2 ≤ t < p T,i−1 , 

ˆ u i p T,i−1 ≤ t < p T,i+1 , 

u i+2 p T,i+1 ≤ t < p T,i+2 , 
. . . 

. . . 
u N T p T,N T −1 ≤ t ≤ p T,N T = T F . 

(12)

Parameters of ˆ u i are updated such that ‖ ̂  u i − u i: i+1 ‖ 2 is minimized and input constraints
2) are satisfied. Here u i: i+1 corresponds to unification of i -th and (i + 1) -st subfunctions of
he original input profile u(P, F , t ) , 

 i: i+1 = 

{
u i p T,i−1 ≤ t < p T,i , 

u i+1 p T,i ≤ t < p T,i+1 . 

emark 3. In order to have input profile u(P, F , t ) well-defined, time stamp p T,N T can not
e eliminated. 

In order to quantify the effect of excluding certain parameter p i from the original set P ,
ts influence is defined as follows. 

efinition 9. Influence I(p i ) ∈ N of the parameter p i ∈ P is the effective decrease of the
ardinality of the set P caused by excluding the i -th parameter p i from the set P , 

(p i ) = | P| − | P\{ p i }| . 
xample 1. Let us consider a function parametrized as follows: 

 = 

{
u 1 = a + bt 0 ≤ t < T 1 , 
u 2 = c + d cos (et + f ) + g tanh (ht + i) T 1 ≤ t ≤ T 2 = T F . 

(13)

ased on the parametrization, the used basis functions are F S = { t 0 , t 1 } , F A 

= { cos (·) , tanh (·) }
nd the sets of parameters are P T = { T 1 , T 2 } , P S = { a, b, c, d, g} and P A 

= { e, f , h, i} . Table 1
rovides the influence I of the used parameters. 

The fact that the influence I(T 2 ) for the time stamp T 2 is missing results directly from
emark 3 . Moreover, from Algorithm 4 it straightforwardly follows that the time stamp T 1 is

he most influential parameter. Furthermore, I(e ) = 3 and I(h) = 3 result from the fact that
f one of the parameters { e , h } is eliminated, the corresponding advanced functions (cos ( · ) or
anh ( · )) turns into a constant. However, the constant function is already included (parameter
 ) and therefore, the particular advanced function does not effectively add any new degree of
reedom and thus it can be absolutely eliminated. 
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Remark 4. Example 1 shows that the least influential parameters are usually the advanced 

parameters and simple parameters multiplying simple functions—if one of them is eliminated, 
the number of parameters is reduced usually only by one. Simple parameters corresponding 

to advanced functions are moderately influential—their influence I is equal to 1 + number 
of the advanced parameters included in the particular advanced function. Last of all, time
stamps are usually the most influential group of parameters. Their elimination is equivalent 
to elimination of the whole following time subinterval and as a result, the effective number
of the remaining parameters is decreased by 1 + number of the simple parameters + number
of the advanced parameters related to the following time subinterval. 

Exploiting the influence I, the procedure solving the task (11) can be proposed. First of
all, initial guesses of the sets P init and F init shall be obtained. 

Assumption 1. For the initial parametrization { P init , F init } , the following holds: 

J (u(P init , F init , t )) = J ( u ) , 

| P init | ≥ C P , 

| F init | ≥ C F , 

where C P �2 P and C F are sufficiently large positive scalars. 

Assumption 1 introduces an initial estimate that is obviously ineffective, on the other hand, 
it offers a broad space for reduction of the number of parameters. Suitable initial parametriza-
tion can be obtained using nonparametric identification techniques [31] and extending the re- 
sult with suitable basis functions. Then, the performance deterioration caused by its exclusion 

from the original parameter set is calculated for each of the parameters p i . 

Definition 10. Performance deterioration 

˜ J (p i ) is the increase of criterion J that is caused
by exclusion of p i from P , ˜ J (p i ) = J (u(P\{ p i } , F , t )) − J ( u ) . 

Based on the introduced performance deterioration, the parameters are divided into two 

sets—the expendable parameters and indispensable parameters. 

Definition 11. Expendable parameter is such parameter p i that ˜ J (p i ) ≤ �J . Set of all ex-
pendable parameters is then P E = { p i | ˜ J (p i ) ≤ �J } . 
Definition 12. Indispensable parameter is such parameter p i that ˜ J (p i ) > �J . Set of all
indispensable parameters is then P I = { p i | ˜ J (p i ) > �J } . 
Corollary 1. Given �J ≥ 0, indispensable parameters P I can be directly omitted from the
parameters reduction (11) . Therefore, only the expendable parameters P E can be reduced by
task (11) . 

Based on this, it can be seen that the parameters P O 

that can be excluded from the original
parameters set P init such that ˜ J (P O 

) ≤ �J form a subset of expendable parameters, P O 

⊂P E .
Now, let us formulate an optimization task complementary to the task (11) : 

find P O 

= 

{ 

p i ∈ P E | arg max 

( | P O | ∑ 

i=1 

I(p i ) 

) 

; | P O 

| ≥ | P init | − 2P; ˜ J (P O 

) ≤ �J 

} 

. (14) 

The set P O 

being the solution of the optimization task (14) can be found using combinato-
rial optimization techniques [32–34] . Furthermore, it can be seen that tasks (11) and (14) are
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omplementary to each other. Therefore, having obtained the solution of the task (14) P O 

,
he solution P of task (11) is P = P init \ P O 

with cardinality N P = | P | = | P init | − | P O 

| ≤ 2P . 
Regarding the method used to solve the re-parametrization task in this paper, a genetic

lgorithm implemented by the authors was used to provide the solution, however, any of a
air variety of the available MIP solvers [35–38] can be exploited as an alternative. 

.3. JIPICO stage III 

Having succesfully performed the parametrization, set of parameters P is obtained. This
et is extended with the vector of n optimizable state initial conditions to form the initial
et of optimizable parameters, P 0 = P 

⋃ 

x 0, 0 . The optimization of these parameters is then
erformed iteratively as follows: 

First, at every iteration l of the third-stage optimization, each of the optimizable parameters
 m 

∈ P, m ∈ { 1 , 2, . . . , N P = |P|} , is perturbed while the other parameters are kept fixed at
heir values from the previous iteration, 

˜ 
 m,l = [ p 1 ,l−1 , p 2,l−1 , . . . , p m−1 ,l−1 , ̃  p m 

, p m+1 ,l−1 , . . . , p N P ,l−1 ] 
T . (15)

he range of the perturbation might be chosen with respect to different criteria such as
hysical and/or technical limits of the particular parameters, etc. Additive perturbations in the
ollowing form are considered: 

˜ 
 m 

= p m,l−1 + �p m . 

ere, �p m refers to a set of perturbations of the m -th optimizable parameter. It should be
emarked that �p m might differ for each parameter p m 

, however, the most straightforward
ay is to choose 

p m ∈ PS 

m × LPS 

m 

here PS 

m is a set of (both negative and positive) multiples and LPS 

m stands for the elemen-
ary (least) perturbation step of the m -th parameter. PS 

m might vary from iteration to iteration
ince only those perturbations that do not violate constraints (2) are admitted and the sets PS 

m

re accordingly updated. LPS 

m can be considered as tuning parameter. It should be realized
hat due to perturbation by sets of perturbations { �p m } , { ˜ P m,l } is not just a single set but a
et of perturbed parameter sets . 

Exploiting { ˜ P m,l } , the sets of cost criterion values {J ˜ m 

} corresponding to the perturbed set
f each optimizable parameter can be obtained, namely 

J ˜ m 

} = J ( ˜ P m,l ) . (16)

aving gathered the sets of the perturbed cost criterion values for all optimized parameters,
pline interpolation [39] of each of these sets J ˜ m 

is performed. After the interpolation, N P =
P| splines S 1 , S 2 , . . . , S N P are at disposal and the spline approximation of the optimization
riterion is expressed as a function of the particular optimization parameter perturbation, 

 m 

≈ J (�p m ) . (17)

ere, the piece-wise polynomial character of the splines can be exploited—this feature enables
o find the minimum of each spline analytically. Finally, parameter perturbation values 

 m 

= arg min S m 

(18)
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corresponding to the minima of the interpolated splines are lined up to form the optimization
direction 

D = [ d 1 , d 2 , . . . , d N P ] (19) 

which is then used to move along in the N P -dimensional optimization parameter space, 

P l = P l−1 + D. (20) 

To prevent confusion, let us note that P l stands for the whole set of N P optimized parameters
at l -th iteration of the procedure. 

In order to satisfy the constraints imposed on the input profile and initial states, the fol-
lowing postprocessing is performed. Each parameter p m 

is at every iteration l projected on
the corresponding admissible interval [ p m,l , p m,l ] , 

p m,l = 

⎧ ⎨ 

⎩ 

p m,l p m,l ≤ p m,l , 

p m,l p m,l ∈ [ p m,l , p m,l ] , 
p m,l p m,l ≥ p m,l . 

Let us note that while handling of the constraints for the state initial conditions is straightfor-
ward, the constraints for the input profile parameters need to be extracted from the original
input profile constraints such that u min ≤ u(P, F , t ) ≤ u max is satisfied. Furthermore, each op-
timizable state initial condition p init ∈ {P\ P} that is expected to be set with finite resolution
is then projected on the nearest integer multiple of its admissible resolution R , 

p init = arg min (‖ p init − q R‖ ) , q ∈ Z . 

The above-described procedure is performed until the chosen convergence criterion is 
satisfied. After convergence, the set of optimal input profile parameters corresponding to 

parametrization (10) and the set of optimal state initial conditions are obtained. 

3.4. Summary 

The whole procedure is illustrated by its flow chart diagram in Fig. 1 . At the very begin-
ning, the JIPICO algorithm is provided with the estimates of the state initial conditions and
input profile (the algorithm entries). During the off-line stage I, the gradient search for the op-
timal input profile is performed starting from the provided estimate while the given estimates
of the state initial conditions are considered. Let us note this is the only time the input profile
optimization is carried out in a sampled-data fashion. Stage II (also performed off-line) leaves 
the state initial conditions intact and re-parametrizes the input profile such that the parameters
set is reduced and the user-defined suboptimality threshold �J is satisfied. Stage III starts
with the original state initial conditions and the parameters of the re-parametrized input profile
and performs the gradient optimization as described in Section 3.3 . After the convergence, 
the optimal state initial conditions and input profile parameters being the algorithm outputs 
are obtained. 

3.5. Practical implementation remarks 

Let us note that although the state initial conditions optimization might not be realizable 
in some applications, the algorithm can still be used. The input profile parametrization offers
more flexibility for the optimization and as the number of the optimized parameters is usually



M. Pčolka, S. Čelikovský / Journal of the Franklin Institute 354 (2017) 8529–8551 8541 

Fig. 1. JIPICO algorithm. 
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ignificantly reduced compared to the T samp -sampled input profile, the proposed algorithm can
ffer an attractive alternative to the currently used optimization approaches. 

In real-life applications, robustness of the optimal control is usually ensured by employing
he receding horizon principle where the control moves are re-calculated based on the currently
vailable measurements. Following this paradigm, the on-line JIPICO stage III can be repeated
ach time the new measurements arrive. Nevertheless, in the process industry and in the
ioengineering area in particular, the states are very rarely measured at exact specific times
ith fixed sampling period. Being partly motivated by this practical phenomenon, the JIPICO

lgorithm makes no assumptions on frequency or regularity of the measurements. This is
chieved thanks to the fact that the re-parametrization (stage II) brings the input profile from
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“discrete time/sampled world” into “continuous time world”. As a result, only the preliminary 

off-line stage I optimizes in the sampled-data fashion while the optimized input profile is
considered to be a function of continuous time at the on-line stage III. Here, the improved
robustness compared to the sampled-data optimal control can be gained—as long as the 
optimal profile is considered to be a function of continuous time, it is not necessary to
extrapolate the measurement values for t = k × T samp to obtain the state values at the multiples
of the sampling period and the re-calculation of the optimal input profile might be performed at
any time the new measurement is available. Although not crucial for tiny sampling periods and
frequently performed measurements, the severity of this issue increases for larger sampling 

periods and non-coherent measurements where the extrapolation errors grows. This holds 
especially in case of unknown/neglected system dynamics, uncertain system parameters, etc. 

4. Case study: penicillin optimization 

In this section, a specific case of penicillin optimization is introduced and the performance 
of the proposed algorithm is demonstrated. 

4.1. Model of the controlled system 

For the purposes of this work, the process of penicillin cultivation is considered. This cul-
tivation is carried out in the fed-batch mode, which means that no significant cultivation broth
withdrawal is allowed except of the measurement samples and the feed supply of nutritive
elements is provided according to the needs of the micro-organisms and therefore, the pro-
cess might be operated at specific rates close to their optimal values [40] . The basic dynamic
behavior of this system can be described in terms of differential equations as follows: 

˙ x 1 = u − K vap x 1 , 

˙ x 2 = ( μ − K D 

) x 2 −
(

u 

x 1 
− K vap 

)
x 2 , 

˙ x 3 = −
(

μ

Y X/ S 
+ 

π

Y P/ S 

)
x 2 + 

C S , in u 

x 1 
−

(
u 

x 1 
− K vap 

)
x 3 , 

˙ x 4 = πx 2 − K H 

x 4 −
(

u 

x 1 
− K vap 

)
x 4 . (21) 

Here, states x = [ x 1 , x 2 , x 3 , x 4 ] T correspond to volume (l), biomass concentration ( g l −1 ) ,

essential nutrient (glucose) concentration ( g l −1 ) and penicillin concentration ( g l −1 ) while 
input u ( l h 

−1 ) represents the feed-flow rate. 
Biomass (its concentration is represented by the second state variable x 2 ) can be regarded

as the “driving engine” of the cultivation—it consumes essential nutrient (whose concentra- 
tion corresponds to the third state variable x 3 ) and thanks to this “fuel”, it ensures its own
reproduction at growth rate μ and creates the penicillin (whose concentration is represented 

by x 4 ) at specific production rate π . Penicillin cultivation is a typical secondary metabolism
example with the Contois formula describing μ and Haldane kinetics modeling π . In this case,
μ considers a saturation of growth with respect to the substrate and a growth decrease related
to the cells accumulation while π is activated by law substrate level, reaches its maximum 

at a precise level and is inhibited by the substrate itself beyond this level. Mathematically, μ
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Fig. 2. Growth and production rate profiles. 

Table 2 
Model parameters. 

Parameter Value Parameter Value 

μmax (h −1 ) 0.11 Y P/S (−) 1.2 
πmax (h −1 ) 0.004 C S,in ( g l −1 ) 500 
K P ( g l −1 ) 0.1 K vap (h −1 ) 6 . 23 × 10 −4 

Y X/S (−) 0.47 K I ( g l −1 ) 0.1 
K D (h −1 ) 0.0136 K X (−) 0.06 
K H (h −1 ) 0.01 

a

μ

π  

G
 

o  
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m

nd π are expressed as follows: 

= μmax 
x 3 

K X 

x 2 +x 3 
, 

= πmax 
x 3 

K P + x 3 + x 2 3 /K I 
. (22)

raphical representation of both formulas is given in Fig. 2 . 
The biomass mortality is expressed by the constant death rate K D 

at which the amount
f biomass decreases. Usual way of complementing the consumed nutrient is pouring the
eed with nutrient concentration C S,in into the tank while the feed flow rate u is then the
anipulated variable of this control task. Every control action increases the volume level
 1 which naturally decreases due to the vaporization described by the specific vaporization
onstant K vap . Moreover, penicillin hydrolysis caused by the fact that the penicillin is not
table in the liquid environment is modeled by its hydrolysis rate K H 

. Model (21) is further
xploited as both the optimization model and the simulation test-bed for the results evaluation.

Values of the system parameters can be found in Table 2 . Interested readers looking for a
ore detailed description are referred to [12,22] . 
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Table 3 
Optimization constraints. 

Parameter Value 

x 0,min ([l, g l −1 , g l −1 ] T ) [4, 0.05, 0.05] T 

x 0,max ([l, g l −1 , g l −1 ] T ) [14, 10, 20] T 

LPS 1 (l) 0.01 
LPS 2 ( g l −1 ) 0.05 
LPS 3 ( g l −1 ) 0.05 
u min ( l h −1 ) 0 
u max ( l h −1 ) 0.05 

 

 

 

 

 

 

 

 

 

 

 

4.2. Optimization task 

Usual control goal for penicillin production is to obtain a highly concentrated product at
the end of the cultivation [12,41] . This corresponds to maximization of the terminal penicillin
concentration, which is mathematically expressed by the following minimization criterion: 

J = −x 4 (T F ) , (23) 

where T F is the cultivation period. Moreover, the solution must satisfy the following con-
straints: 

˙ x = f (x , u) , x (0) = x 0 , 

x 0, min ≤ x { 1 , 2, 3 } 
0 ≤ x 0, max , 

x 0 ∈ { [ p × LPS 1 , r × LPS 2 , s × LPS 3 , 0] T | p, r, s ∈ N 

0 } , 
u min ≤ u ≤ u max . (24) 

All constraint values are provided in Table 3 . Moreover, it can be shown that the following
holds for every state variable x i : 

x i (t ) = 0 ∧ u(t ) ≥ 0 �⇒ 

dx i 
dt 

≥ 0. 

Thus, the nonnegativity of the state variables requested by the physical meaningfulness 
of the resulting system is satisfied by the input/initial state constraints and the mathematical 
model itself and there is no further need to pay attention to it. 

4.3. Results 

To demonstrate the effectiveness of the results obtained by the JIPICO algorithm, nom- 
inal cultivation period T F = 400 h was chosen. The settings used for JIPICO stage I are
listed in Table 4 . Sampled Hamiltonian-based projected gradient method was used to obtain 

T samp -sampled optimized input profile u which served as the starting point for JIPICO stage
II. Besides the input profile from the previous stage, a set of basis functions F = F S 

⋃ 

F A 

needs to be provided to solve the re-parametrization optimization problem (11) . The cho-
sen functions F S and F A are presented in Table 4 . Here, 1 (t − ·) denotes the Heaviside step
function. Regarding the performance degradation threshold, relative performance degradation 

| �J | / |J ( u ) | = 1% was chosen. Although such choice might seem too conservative and re-
strictive, it should be realized that the higher the allowed deterioration is, the more parameters
are eliminated and the less parameters are available for optimization in the JIPICO stage III.
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Table 4 
JIPICO algorithm: settings. 

JIPICO stage Parameter Value 

I x 0,0 ([l, g l −1 , g l −1 , g l −1 ] T ) [7, 1.5, 6, 0] T 

T samp (h) 4 
T F (h) 400 
P (−) T F /T samp = 100
u 0 0 P ×1 

II F S { t 0 , t 1 , t 2 , t 3 } 
F A { 1 (t − ·) } 
| �J | / |J ( u ) | 1% 

Table 5 
Influence I(p i ) and relative performance deterioration | ˜ J (p i ) | / |J ( u ) | . 
Parameter P T P S P A 

T 1 T 2 a c d b 

| ˜ J (p i ) | / |J ( u ) | (%) 30.9 – 25.7 1.7 3.6 25.7 
I(p i ) (−) 3 – 2 1 1 1 
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To illustrate the performance of the JIPICO algorithm and its particular stages, let us refer
o Fig. 1 . During the stage I, the zero-valued optimal input profile estimate is processed and a
 samp -sampled input profile with a length of P = 100 samples is obtained. The total cardinality
f the set of optimizable parameters obtained after the JIPICO stage I is 2 P ; P time stamps
nd P constant input values. During the stage II, the re-parametrization optimization problem
11) is solved with respect to the chosen set of basis functions F , input profile constraints
 min , u max , and the relative performance degradation | �J | / |J ( u ) | . After convergence of the
IPICO stage II, the re-parametrized input profile is expressed as: 

 = 

{ 

u 1 = a 1 (t − b) 0 ≤ t < T 1 , 

u 2 = c t + d T 1 ≤ t ≤ T 2 = T F , 
(25)

ith the following sets of optimizable parameters: P T = { T 1 , T 2 } , P S = { a, c, d} , P A 

= b. The
ardinality of the set of all input profile parameters is then N P = | P| = | P T 

⋃ 

P S 
⋃ 

P A 

| = 6 ≤
P . To prove that none of the parameters p i ∈ P obtained at the end of JIPICO stage II belongs
o the set of expendable parameters P E , relative performance deterioration | ˜ J (p i ) | / |J ( u ) |
aused by exclusion of p i from P is presented in Table 5 . To complete the overview, influence
(p i ) of all parameters is also provided. It can be seen that elimination of any of the con-

idered input profile parameters would lead to the relative deterioration of the performance
riterion higher than the allowed threshold. 

After the re-parametrization, the set of input profile parameters P is joined together with
he set of optimizable state initial conditions and the JIPICO stage III is performed. After
onvergence, the optimal input profile parameter values (marked with asterisks in Fig. 1 ) and
he optimal state initial conditions are provided as the JIPICO algorithm outputs. 

In order to finalize the evaluation of the JIPICO algorithm, Fig. 3 shows the penicillin
oncentration profiles obtained for various optimization scenarios. Here, HGO stands for
amiltonian-based gradient optimization (equivalent to stage I optimization), ICO means

nitial condition optimization and IPRO represents input profile re-parametrization and op-
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Fig. 3. Penicillin concentration profiles ( —HGO, —ICO, —IPRO, —JIPICO). 

Table 6 
Optimization strategies (details and comparison). 

Strategy Optimization of x 0 Re-parametrization x 4 | T F (g l −1 ) 
and optimization of u 

HGO 3.6 
IPRO 3.7 
ICO 4.6 
JIPICO 5.8 

 

 

 

 

 

 

 

 

 

 

timization. The last two mentioned exploit the input profile provided by the HGO method 

and, moreover, they perform one of two additional optimizations. More details about the par-
ticular optimization approach can be found in Table 6 . In Fig. 3 , the markers show the value
of penicillin concentration at the end of cultivation These values are also listed in Table 6 . 

From both Fig. 3 and Table 6 , it can be observed that while incorporation of any of the
“extra” optimizations (either optimization of the state initial conditions or re-parametrization 

and subsequent optimization of the input profile) improves the value of the penicillin con-
centration at the end of the cultivation, it is none of them but the ultimate joint optimization
performed by JIPICO that makes the most significant difference. The gain of more than 60%
is much higher than simple addition of the partial improvements of about 3% (IPRO) and
28% (ICO), respectively, and this clearly demonstrates the meaningfulness and importance of 
the joint optimization. 

For better illustration, x 2 and x 3 profiles are presented in Fig. 4 together with the time
profiles of the production rate π and πx 2 which determines the effective rate of increase of
the penicillin concentration in the broth. 

Although only insignificant amount of penicillin is produced during the first 200–300 h 

(see Fig. 3 ), this earlier period is crucial for the terminal penicillin concentration due to the
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Fig. 4. Suplementary profiles ( —HGO, —ICO, —IPRO, —JIPICO). 

Table 7 
HGO vs. JIPICO. 

Strategy Evaluator T F (h) 

100 160 220 280 340 400 460 520 580 

HGO x 4 | T F (g l −1 ) 2.24 3.14 3.47 3.50 3.56 3.62 3.70 3.80 3.90 
N P (–) 25 40 55 70 85 100 115 130 145 

JIPICO x 4 | T F (g l −1 ) 3.30 4.93 5.08 5.34 5.58 5.80 6.01 6.21 6.39 
N P (–) 5 5 6 6 6 6 6 6 6 

o  

g  

p  

p  

o  

t  

t  

t  

t
 

c  

T  

o  

r
 

i  

a  

a  
ngoing biomass growth (see the first subfigure of Fig. 4 ). This period corresponds to the
rowth phase while the latter one represents the production phase (let us remind that the
enicillin cultivation is a secondary metabolism example with distinct growth and production
hase). Recalling the model (21) , the first and the most significant term of the right-hand side
f the ˙ x 4 -equation is a product of the production rate π and the biomass concentration x 2 ;
his product is plotted in the last subfigure of Fig. 4 . Inspecting Figs. 3 and 4 , it can be seen
hat the newly proposed JIPICO algorithm ensures the highest biomass concentration which
ogether with optimal π timing leads to sovereignly highest πx 2 value and yields the highest
erminal penicillin concentration. 

To support the credibility of the previously presented evaluation, a wider range of the
ultivation periods T F = { 100, 160, 220, 280, 340, 400, 460, 520, 580} was examined. For each
 F ∈ T F , both the HGO and the JIPICO optimization were performed. As evaluators, the value
f penicillin concentration at the end of cultivation x 4 | T F and N P were inspected. The achieved
esults are listed in Table 7 and graphically presented in Figs. 5 and 6 . 

As can be expected, the penicillin concentration obtained at the end of the cultivation period
ncreases with prolonging of the cultivation period—this holds for both the HGO and JIPICO
lgorithm. It can also be seen that for all of the inspected cultivation periods T F ∈ T F , JIPICO
lgorithm provides significantly better terminal penicillin concentrations with improvement
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ranging from more than 46 up to almost 64%, which clearly validates the results obtained
for T F = 400 h presented earlier. Furthermore, it can be deduced that JIPICO algorithm is
more effective in optimizing the penicillin concentration since even for the second shortest 
cultivation period, T F = 160 h, it ensures much higher penicillin concentration than is reached 

with HGO algorithm for the longest inspected cultivation period, T F = 580 h. 
Fig. 6 provides a comparison of the “computational resource efficiency” of either of the 

examined approaches. Here, it should be realized that the number of input profile parameters
N P corresponds to the memory demands required to store the solution of the optimization 

problem (1) and is also related to the computational complexity of the problem (1) . For the
optimization of T samp -sampled input profile performed by HGO, this ratio is very low and
keeps decreasing with increase of the cultivation period—this is caused by the fact that al-
though the terminal penicillin concentration grows for longer cultivation period, its growth 

is relatively small and is outweighed by the need for more optimized parameters. On the
other hand, the JIPICO algorithm requires much less optimized input profile parameters and 
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oreover, N P is kept constant for cultivation periods from 220 to 580 h, which in combina-
ion with solid growth of terminal penicillin concentration results in “computational resource
fficiency” that is much higher and fairly increasing toward longer cultivation periods. This
omparison also shows that not only the HGO algorithm is outperformed in the terms of
computational effectiveness” by JIPICO being its counterpart, but the difference between the
wo algorithms gets even more considerable toward the higher cultivation periods. 

Based on the above presented evaluations, it can be concluded that the JIPICO algorithm
rovides substantial improvement in both the optimization criterion value and complexity of
he optimized input profile. 

. Conclusion 

In this paper, a novel three stage JIPICO algorithm reducing the complexity of the optimal
nput profile and performing joint optimization of the input profile parameters and state initial
onditions was proposed and verified. 

The comparison with the optimization period T F = 400 h shows that the JIPICO algorithm
utperforms all the co-evaluated control strategies. Moreover, the percentage increase of the
erminal penicillin concentration introduced by the JIPICO algorithm (normalized with respect
o the ordinary used HGO optimization algorithm) is much higher than increase brought by
he two other strategies performing some kind of additional optimization (more than 60%
ncrease vs. 3 and 28%, respectively). For a broader range of the inspected optimization
eriods, the improvement in the cost criterion of the JIPICO algorithm ranges from 46 up
o nearly 64% compared with the baseline HGO algorithm. This improvement is achieved
ith much less input-profile parameters whose number is kept basically constant even with

ncrease that cultivation/optimization period (5 or 6 parameters of the JIPICO profile vs. 25
p to 145 parameters of the HGO profile). Based on the achieved results, the newly proposed
IPICO algorithm can be considered as a promising candidate for the optimization algorithm
ith use in the process control area. 
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[22] M. Pčolka , S. Čelikovský, Gradient method optimization of penicillin production, in: 24th Chinese Control and

Decision Conference (CCDC), IEEE, 2012, pp. 74–79 . 
[23] A. Bryson , Y. Ho , Applied Optimal Control, Blaisdell, New York, 1969 . 
[24] K.L. Teo , C. Goh , K. Wong , A Unified Computational Approach to Optimal Control Problems, Longman

Scientific & Technical, Essex, 1991 . 
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