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Abstract 

This paper deals with a control of coupled nonlinear identical systems that admit full exact feedback 
input-output linearization. The subsystems are linearized using this nonlinear transformation. In the next 
step, an auxiliary low-dimensional system is derived whose stability implies stability of the original 
large-scale system. The control law is designed so that the control loops are only local, no information 
exchange between subsystems is required. Unknown time delay in the feedback are allowed. Two cases 
are studied: equal time delay for all subsystems or different delay in all subsystems. Results are illustrated 
by two examples. 
© 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

1.1. State of the art 

In practice, many control systems have a large number of inputs and outputs. It is not
desirable to control such systems centrally as such a control would be too complicated, 
costly to implement and prone to failures. Therefore it is desirable to develop a decentralized
control law. This means, the system is decomposed into subsystems; the control is designed 

for these subsystems with the following feature in mind: to control one particular subsystem,
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nly information gained from this subsystem are used; the control must be robust enough to
tabilize the system even in presence of interactions caused by other subsystems. See also
1,2] for further details. 

A special case of large-scale systems are systems composed of a large number of identi-
al subsystems. In practice, this kind of systems describes e.g. crystal growth furnaces [3] ,
pplications in optics [4] or control of paper machines [5] . Control of spatially distributed
ystems like vehicle platoons [6] or flight formations is a related problem. 

A particular kind of these systems are systems where every subsystem is connected to
very other subsystem. These systems will be called symmetrically interconnected systems in
ccordance with Chapter 12 in [1] . An introduction to these systems appeared in [7] where
pplication of this theory to the control of parallel reactors with combined precooling is de-
cribed. Let us mention control of power systems [8,9] which is another important application
f these systems. 

The essential tool for analysis of systems composed of identical interconnected subsystems
s a state transformation that converts the interconnected system into a block-diagonal one. See
1] for symmetrically coupled systems or [10] or [11] for systems with a general coupling.
herefore, stability of the interconnected system is converted into the problem of robust
ontrol of a system with dimension equal to the dimension of one subsystem. The stabilizing
olution for this system is obtained using linear matrix inequalities (LMI). These ideas were
ater elaborated e.g. in [12,13] , a thorough analysis together with analysis of fault tolerance can
e found in [14] . Control of a switched system composed of identical subsystems is treated in
15] . Let us also mention LQ-optimal control of a large number of identical coupled systems
n [16] . Decomposition approach to the control of symmetric system is presented in [17] . 

Control of large-scale systems is naturally combined with communication networks. Usage
f communication networks helps to save costs through reducing complexity of wiring and
rovides a high degree of flexibility and reliability. On the other hand, several issues arise,
.g. random delays in the communication channel and packet dropouts occur, quantization
s inevitable etc., see [2] and references therein. Control of large-scale symmetrically inter-
onnected systems is treated in [18] . Analysis of the maximal allowable time delay in the
etworked control systems can be found in [19] . 

The problem of time delay systems control is usually solved using LMI. Recently, the
o-called descriptor approach ( [20,21] and others) gained attention as it is easy-to-implement
nd yields results that are not overly conservative. The estimates are usually based on the
ensen’s inequality as presented e.g. in [22] . The aforementioned approach is used in this
aper as well. The estimates can be further improved e.g. by replacing the Jensen inequality
y the Wirtinger inequality [23–26] and others. 

In the early days, the control of large systems was focused on linear systems. However,
nterest in control of large-scale nonlinear systems is rising. A large group is formed by
ethods that handle the nonlinearity using the Lipschitz inequality and subsequent employing

inear robust design methods, mostly based on H ∞ 

control. In [27] , this approach is used
hile employing Jensen’s inequality to prove exponential stability. Other results from this

lass are described in [28,29] . In other works, the interconnected systems are handled e.g. by
ackstepping. Two cases of interconnections are distinguished: weakly and strongly coupled
arge-scale systems. In the case of weakly-coupled systems, the interconnections between
ubsystems are realized through functions of outputs of subsystems, see e.g. in [30–32] and
thers. On the other hand, the interconnection terms depend on arbitrary state variables of
ther subsystems in the case of strongly interconnected systems, see [33] . A control of large-
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scale nonlinear systems where all subsystems are similar (the system matrices are coupled by
the similarity transformation) is derived in [34] using LMI. Furthermore, control of large-scale 
nonlinear systems via exact linearization is presented in [35] . In this paper, the output-feedback
control is designed so that asymptotic tracking is achieved. 

1.2. Contribution of the paper 

Networked control of nonlinear weakly coupled large-scale systems composed of identical 
subsystems is studied. The main contribution is to present a novel method based on full exact
feedback linearization ( [36] , Chapter 12.2) of the subsystems in connection with the dimension
reduction, as explained in [1] . Moreover, time delays in the control loop are considered and
treated using the descriptor approach. The authors believe this combination has never been 

explored before. The controller design is less conservative while the method remains easy-to- 
implement and does not pose overly demanding requirements on the computational resources. 
The most significant features are: 

• Exploiting the nonlinear structure of the system rather than merely approximating it by 

the Lipschitz inequality as is the usual approach for control of identical interconnected 

systems. 
• Formulating the LMI problem with help of the descriptor approach specifically tailored to 

handle the uncertainties resulting from the exact feedback linearization and demonstrating 

viability of the descriptor approach to solve the aforementioned problem. 
• Formulating the above mentioned LMI problem so that it involves only matrices whose 

dimension does not depend on the number of the subsystems but solely on the dimension
of the subsystems. 

The proposed method is an extension of the control design for linear symmetric systems
with a single delay in the control loop described in [12] to nonlinear systems and in case of
multiple delays in [13] . Effects of other phenomena occurring in the networked control (e.g.
quantization) are not considered in this paper. 

The results could potentially be extended to the application to complex dynamical networks 
[37,38] and chaotic systems [39–41] . 

1.3. Outline 

The problem is defined in the second section. All state transformations are presented in
the third section. The controller design follows; analysis of an auxiliary system from the
Section 4.2 is a crucial part of this section. The fifth section contains examples together with
brief discussion about the results. The proofs of theorems concerning the auxiliary system are
concentrated in the Appendix. Finally, conclusions and outlooks finish the paper. 

2. Problem setting 

Notation: 

• The symbol L f λ denotes the so-called Lie derivative: L f λ(x) = 

dλ
dx . f (x) where λ: R 

n → R ,
f : R 

n → R 

n and the function λ is sufficiently smooth. 
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• If P is a square matrix, then P > 0 means the matrix P is symmetric positive definite. 
• For any function f depending on time, the time argument is omitted where no confusion

can arise: f means the same as f ( t ). If the argument is different from t , it is written in full.

• If M , N are matrices, then diag (M, N ) = 

(
M 0 
0 N 

)
. Here as well as in the subsequent text,

0 denotes the zero matrix of appropriate dimension. 
• The symbol I denotes the identity matrix. Its dimension can depends on the context where

this symbol is used. If a confusion can arise, then the symbol I k which denotes the k -
dimensional identity matrix is used. 
• In symmetric matrices, the part under the diagonal is not written in full, rather, the symbol

∗ is used: 
(

X Y 
∗ Z 

) = 

(
X Y 

Y T Z. 

)
• If f is a function of time, then f τ denotes this function with a delayed argument: f τ =

f (t − τ ) for all τ > 0. 

The system to be controlled is composed of N identical subsystems. The i th subsystem
 i = 1 , . . . , N ) is described by the equation 

˙  i = f (x i ) + g(x i ) u i + 

N ∑ 

j =1 , j � = i 

J i j lλ(x j ) . (1)

he symbol x i = (x 1 ,i , . . . , x n,i ) 
T denotes the state of the i th subsystem, u i is its control.

t is supposed that the functions f : R 

n → R 

n , λ: R 

n → R are sufficiently smooth, g : R 

n → R 

n

s continuous, l = (l 1 , . . . , l n ) T ∈ R 

n . The term 

∑ N 
j =1 , j � = i J i j lλ(x j ) represents interconnections,

hat means, it describes the influence of other subsystems on the i th one. The matrix J ∈ R 

N ×N

s the adjacency matrix with J ij ∈ {0, 1} such that J ii = 0 for all i , J i j = 1 if and only if the
erivative of the i th state depends on the j th one. 

The goal is to find a feedback control u i = F(x i ) for all i = 1 , . . . , N such that, if the
ontrol input u i is applied to the i th subsystem, the overall system is stabilized. Note also
hat to control the i th subsystem, only values of state of the i th subsystem are needed as this
s the main objective for the decentralized control. 

Time delay in the control loop is considered: the control action is computed from delayed
tate values. This (time varying) delay in the control of the i th subsystem is denoted by τ i ( t ).
n accordance with the above notation, the symbol τ i means the same as τ i ( t ). The functions
i are not known. 

ssumption 1. There exists a constant τ̄ > 0 such that τi (t ) ∈ [0, τ̄ ] for each i = 1 , . . . , N .
his constant is assumed to be available for the control design. 

ssumption 2. The matrix J is diagonalizable; this means, there exists an invertible matrix
 and a diagonal matrix D such that J = U 

−1 DU . Moreover, all eigenvalues of the matrix J
re real. 

emark 1. The form of the system (1) where the interconnections depend on a certain
unction λ (which plays the role of the output in the subsequent text) seems to be restrictive.
owever, several important practical applications, e.g. control of power electric networks or
ecentralized control of platoons of vehicles with nonlinear dynamics, lead to a problem
atisfying this assumption. 
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3. Transformation of the subsystems 

Assumption 3. The auxiliary system ˙ x = f (x) + g(x ) u, y = λ(x ) has relative degree n . 

Full exact feedback input-output linearization transforms the system (1) by using the fol- 
lowing variables: 

ξi = T (x i ) = (λ(x i ) , . . . , L 

n−1 
f λ(x i )) 

T . (2)

Moreover, let us define functions �: R 

n → R , �: R 

n → R as follows: 

�(ξi ) = L 

n 
f λ(x 1 ,i ) , �(ξi ) = L g L 

n−1 
f λ(x 1 ,i ) , v i = �(ξi ) u i + �(ξi ) . 

Using the matrices A ∈ R 

n ×n , B ∈ R 

n ×1 and L ∈ R 

n ×n defined by 

A = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 1 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 1 

0 0 . . . 0 

⎞ ⎟ ⎟ ⎟ ⎠ 

, L = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

l 1 
. . . 
l n 

0 . . . 0 

. . . 
. . . 

0 . . . 0 ︸ ︷︷ ︸ 
n−1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 

. . . 
0 

1 

⎞ ⎟ ⎟ ⎟ ⎠ 

one can write the feedback linearization transforms the i th subsystem into the linear form
(here, the symbol ∂T 

∂x denotes the Jacobi matrix of the mapping T ) 

˙ ξi = Aξi + B 

(
�(ξi ) u i + �(ξi ) 

)
+ 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j Lξ j 

= Aξi + Bv i + 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j Lξ j . (3) 

Assume that the system is stabilized by a linear feedback using the local loops. The i th
subsystem is stabilized by using information contained in the vector ξ i only. In the delay-free 
case, the i th subsystem is stabilized by applying the classical setting of feedback linearization
( [36] , Chapter 12.3.). Note also that these assumptions correspond to the assumptions made
in [35] , namely 

u i = 

1 

�(ξi ) 
(v i − �(ξi )) (4) 

with v i = K ξi chosen so that the matrix A + BK is Hurwitz. The nonlinear term in the formula
(4) matches exactly the nonlinear terms in the first row of Eq. (3) . However, the networked
control imposes some time delay caused e.g. by finite time needed to acquire information
about the state ξ i or to pass the control to the plant. Hence, the control u 

∗
i defined by 

u 

∗
i = 

1 

�(ξi,τi ) 
(K ξi,τi − �(ξi,τi )) (5) 

is used instead. If we define 

�u i = 

(
1 

�(ξi,τi ) 
− 1 

�(ξi ) 

)
K ξi,τi + 

�(ξi ) 

�(ξi ) 
− �(ξi,τi ) 

�(ξi,τi ) 
(6) 
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hen the relation u 

∗
i = 

1 
�(ξi ) 

(K ξi,τi − �(ξi )) + �u i , analogous to Eq. (4) , holds. The term �u i

ill be converted into an uncertainty in the subsequent text. In this case, the system (3) can
e expressed as 

˙ i = Aξi + 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j Lξ j + BK ξi,τi + B �(ξi ) �u i . (7)

To sum up, if we find the matrix K so that the system (7) is stable even in presence of the
ncertainty represented by the term B �( ξ ) �u i then the system (3) is stable with the control
 

∗
i . 

emark 2. Assume � = 1 and let there exists an n -dimensional vector �̄ = ( ̄�1 , . . . , �̄n )

nd a smooth function 

˜ � : R 

n → R vanishing at zero together with its derivatives such that

(ξ ) = �̄ξ + 

˜ �(ξ ) . Then, one can use ˜ A = A + 

( 0 n−1 ×n 

�̄1 , ... , ̄�n 

)
instead of the matrix A and the

unction 

˜ � instead of �. This reduces the uncertainties which, in turn, improves efficiency
f the algorithm which will be presented later. 

In the subsequent text, two problems are studied: first, all delays in the network for all
ubsystems are equal (albeit not constant in time), that means, τi = τ j for all i, j = 1 , . . . , N 

hile this condition is not satisfied in the second problem. 

ssumption 4. The differences can be estimated as follows: 

• There exist matrices D 2 ∈ R 

n ×n , E 2 ∈ R 

n ×n and measurable functions F 2, i : R → R 

n ×n , i =
1 , . . . , N such that for every t holds B(�(ξi ) − �(ξi,τi ) 

�(ξi ) 

�(ξ i,τi ) 
)) = D 2 F 2,i (t ) E 2 (ξi − ξi,τi )

and ‖ F 2, i ( t ) ‖ ≤1. 
• There exist matrices D 3 ∈ R 

n ×n , E 3 ∈ R 

n ×n and measurable functions F 3, i : R → R 

n ×n such
that B( 

�(ξi ) 

�(ξi,τi ) 
− 1) = D 3 F 3 ,i (t ) E 3 and ‖ F 3, i ( t ) ‖ ≤1 for every t . Here, the symbol ‖ . ‖ denotes

the spectral norm (largest singular value). 
• There exist matrices M ∈ R 

n ×n , D 4 ∈ R 

n ×n , E 4 ∈ R 

n ×n and measurable matrix-valued
functions F 4, i : R → R 

n ×n , i = 1 , . . . , N so that ∂T 
∂ξ

(T −1 (ξi )) = M + D 4 F 4,i (t ) E 4 and
‖ F 4, i ( t ) ‖ ≤1 for every t . 

emark 3. Let us focus on the practical choice of the matrices D j , E j for j = 2, 3 , 4. 

• The functions F 2, i , F 3, i , F 4, i are usually unknown. For the controller design, knowledge of
these functions is not necessary, however, the matrices D j and E j must be known. They
are not unique and can be determined in various ways. 
• One method how to find the matrices D 2 and E 2 is described in the sequel. Let I n be

the n -dimensional identity matrix. Assume first that there exists a constant c > 0 so that
| 1 
�(ξ ) 

| > c (this holds at least on some neighborhood of the origin). If the function B � has
continuous second order derivatives, then, with help of the n -dimensional Taylor formula
and the function 	 = ��, one can write B(	(ξi ) − 	(ξi,τi )) = R(ξi − ξi,τi ) where the
remainder is given by R = 

∑ n 
j=1 

∫ 1 
0 D j B	(ξi + σ (ξi − ξi,τi )) dσ (the symbol D j denotes

the derivative of the function B 	 with respect to the j th variable). If the differential of B �

is bounded by a constant γ > 0, one can set D 2 = 

γ

c I n , E 2 = I n and F 2,i (t ) = 

1 
γ

R. 
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• If the above estimates hold locally on a certain neighborhood of the origin, then it is
necessary to ensure that the states of the system remains in this neighborhood for all t .
For large initial conditions, this condition might be violated, hence the stabilization is only
local. 
• The matrices D 3 and E 3 can be obtained e.g. as D 3 = 

2 
c ‖ �‖ ∞ 

, E 3 is the identity matrix.
Again, this estimate can be local. 
• The matrices D 4 , E 4 are determined using a similar reasoning as the matrices D 2 , E 2 . As-

sume there exists a constant c̄ so that c̄ > ‖ ∂T 
∂ξ

(T −1 (ξi )) ‖ ∞ 

. Note that, thanks to continuity
of the mapping T , such a constant exists on a neighborhood of the origin. The matrices
D 4 and E 4 can then be determined as D 4 = c̄ I , E 4 is the identity matrix. Again, if this
estimate holds only locally, the stabilization is only local. 
• From the practical point of view, quality of these estimates has a strong impact on the

behavior of the LMI optimization problem which will be presented later. 

Note that we assume that the matrices D j and E j , j = 2, 3 , 4 are the same for all subsys-
tems. The closed loop obeys the equation 

˙ ξi = Aξi + (B + D 3 F 3 ,i (t ) E 3 ) K ξi,τi + (M + D 4 F 4,i (t ) E 4 ) 

N ∑ 

j =1 , j � = i 

L J i j ξ j 

+ D 2 F 2,i (t ) E 2 

∫ t 

t−τi 

˙ ξi (s) ds. (8) 

Moreover, introducing another uncertainty will be useful in the sequel. The new uncertainty 

is described by n -dimensional matrices D 1 , E 1 with measurable matrix-valued functions F 1, i :
R → R 

n ×n such that ‖ F 1, i ‖ ≤1. Using these matrices, the transformed subsystem will be in-
vestigated in the form 

˙ ξi = (A + D 1 F 1 ,i E 1 ) ξi + (B + D 3 F 3 ,i (t ) E 3 ) K ξi,τi 

+ (M + D 4 F 4,i (t ) E 4 ) 

N ∑ 

j =1 , j � = i 

L J i j ξ j + D 2 F 2,i (t ) E 2 

∫ t 

t−τi 

˙ ξi (s) ds. (9) 

Remark 4. Let us explain the motivation for the uncertainty defined by the matrices D 1 , E 1 

and the functions F 1, i . In many practical cases, the interconnections are given by the differ-
ences J i j L(λ(x j ) − λ(x i )) . Then, the system (3) attains a slightly modified form (compared
to Eq. (3) ): 

˙ ξi = Aξi + Bv i + 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j L(ξ j − ξi ) . (10) 

Then the right-hand side of Eq. (10) can be rewritten as 

Aξi + 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j Lξi + Bv i + 

∂T 
∂ξ

(T −1 (ξi )) 

N ∑ 

j =1 , j � = i 

J i j Lξ j . 

The second term is time-dependent and is not equal for all subsystems. Hence, it is treated as
uncertainty as follows. First, assume that there exist a matrix 

˜ L and a function η: R 

n → R 

n so
that ̃  L ξi + η(ξi ) ξi = 

∂T 
∂ξ

(T −1 (ξi )) 
∑ N 

j =1 , j � = i J i j Lξi . The choice of the function η and the matrix
 L is not specified here. However, to facilitate the computation of the resulting LMI problem,
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he linear part ˜ L ξi should approximate the term 

∂T 
∂ξ

(T −1 (ξi )) 
∑ N 

j =1 , j � = i J i j Lξi as closely as
ossible. 

Then, the linear part of the term Aξi + 

∂T 
∂ξ

(T −1 (ξi )) 
∑ N 

j =1 , j � = i J i j Lξi equals to 

A + 

N ∑ 

j =1 , j � = i 

J i j ̃  L ) ξi . 

his term is substituted in place of the term A ξ i in (3) . Then, assume the function η is
ounded: ‖ η( ζ ) ‖ ≤ s for all ζ ∈ R 

n . In the next step, one can define D 1 = sI , E 1 = I and
 1 ,i (t ) = 

1 
s diag ((η(ξi (t ))) 1 , . . . , (η(ξi (t )) n )) . The function F 1, i is measurable and satisfies

 F 1, i ( t ) ‖ ≤1 for all t . The system is thus transformed into the form Eq. (9) . This way of
etermining the matrices D 1 and E 1 is not unique; rather it is a very rough estimate. As pre-
ise as possible estimate of the function η should be used, however, this estimate depends on
he specific problem solved, hence it cannot be given here. If the function η is not bounded,
hen we assume it is bounded on a neighborhood U of the origin. Then, the above estimate
an be done on the neighborhood U , however, the resulting controller will guarantee stability
nly if the trajectories do not leave this neighborhood. The functions F 1, i are not known for
he controller design; the design algorithm is set up so that knowledge of the matrices D 1

nd E 1 is sufficient. 

Let φi (t, s) = 1 for s ∈ [ t − τi , t] and φi (t, s) = 0 elsewhere. Also, let J i =
iag ( 0, . . . , 0 ︸ ︷︷ ︸ 

i−1 

, I , 0, . . . , 0 ︸ ︷︷ ︸ 
N−i 

) with all blocks are n ×n -dimensional. Note that φ(t , t ) = 1 . Using

his function, one finds that 
ξ (t − τi ) = ξ (t ) − ∫ t 

t−τ̄
φi (t, s) J ˙ ξ (s) ds. Hence Eq. (9) can be transformed into 

˙ i = (A + BK + D 1 F 1 ,i (t ) E 1 + D 3 F 3 ,i (t ) E 3 K ) ξi 

+ (M + D 4 F 4,i (t ) E 4 ) 

N ∑ 

j =1 , j � = i 

J i j Lξ j 

+ 

(
D 2 F 2,i (t ) E 2 − BK − D 3 F 3 ,i (t ) E 3 

) ∫ t 

t−τ̄

φi (t, s) J i ̇  ξ (s) ds. (11)

 = I � A, B = I � B, D i = I � D, E i = I � E i , K = I � K, M = I � M, L = J � L and
 j (t ) = diag (F j, 1 (t ) , . . . , F j,N (t )) , j = 1 , 2, 3 , 4, the overall system with the local feedback

an be expressed in the compact form 

˙ = (A + D 1 F 1 (t ) E 1 + ML + BK + D 3 F 3 (t ) E 3 K + D 4 F 4 (t ) E 4 L ) ξ

+ 

(
D 2 F 2 (t ) E 2 − BK − D 3 F 3 (t ) E 3 K 

) ∫ t 

t−τ̄

N ∑ 

i=1 

φi (t, s) J i ̇  ξ (s) ds. (12)

he overall feedback system (12) can be transformed such that the system matrix will be
lock diagonal. The transformation reads ˜ ξ = T ξ, the definition of the matrix T is given
elow. 

emark 5. Two cases are distinguished in the subsequent text. The ”General case” means
hat the matrix T is given in terms of eigenvectors of the matrix J . This approach is applicable
o systems with a general kind of interconnections of subsystems. However, analysis of sym-
etrically interconnected dynamical systems is traditionally carried out using the matrix T as
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described e.g. in [1,14] . This is the reason why this case is singled out as the “Symmetrically
interconnected systems” case in this paper. 

Case 1: (General case) Let I ∈ R 

N ×N be the identity matrix. The transformation matrix T
is defined as (see, e.g. [17] ) 

T = U � I , (13) 

where existence of the matrix U is guaranteed by the Assumption 2 . Define also and 

˜ A =
A + D � L. Note that, due to the properties of the Kronecker product (see [42] ) one has
T (A + ML ) T −1 = A + (D � ML) = 

˜ A . 
Case 2: (Symmetrically interconnected systems) In this case, the matrix T is defined by 

T = 

1 

N 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(N − 1) I −I . . . −I −I 
−I (N − 1) I . . . −I −I 
. . . 

. . . 
. . . 

. . . 
. . . 

−I −I . . . (N − 1) I −I 
I I . . . I I 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (14) 

Further, define matrices A s = A − ML, A o = A + N ML and 

˜ A = diag ( A s , . . . , A s ︸ ︷︷ ︸ 
N−1 times 

, A o ) . 

The subsequent analysis is the same for both cases. 
In the variable ˜ ξ the feedback system (12) attains the form 

˙ ˜ ξ = ( ̃  A + D 1 ̃  F 1 (t ) E 1 + BK + D 3 ̃  F 3 (t ) E 3 K + D 4 ̃  F 4 (t ) E 4 ˜ L ) ̃  ξ

+ 

(
D 2 ̃  F 2 (t ) E 2 − BK − D 3 ̃  F 3 (t ) E 3 K 

) ∫ t 

t−τ̄

N ∑ 

i=1 

φi (t , s) ˜ J i ̇
 ˜ ξ (s) ds, (15) 

where ˜ F i (t ) = T F i (t ) T −1 , i = 1 , 2, 3 , ˜ J i = T J i T −1 and 

˜ L = D � L. Note also D i = T D i T −1 

and E i = T E i T −1 , i = 1 , 2, E 3 K = T E 3 KT −1 as this state transformation does not change
block-diagonal matrices with the same block on the diagonal. Contrary to this, the matrices˜ F and 

˜ J i are not diagonal. With μ> 0 defined as μ2 = ‖ T −1 T −1 T ‖‖ T T T ‖ and properties of
the uncertainties F j , i ( t ), j = 1 , 2, 3 , 4, one obtains ˜ F i ̃

 F 

T 
i ≤ μ2 I , i = 1 , 2, 3 , 4. (16) 

4. Controller design 

In this section, the decentralized controller is designed. In the first subsection, an auxiliary
problem is defined. After that, it is shown how the results of this auxiliary problem allow to
define a stabilizing solution of the original problem. 

4.1. Preliminaries 

In the general case, define d̄ as the largest eigenvalue of the matrix J and d as the smallest
eigenvalue of the matrix J . Let the matrices D A and E A be chosen as 

D A E A = 

d̄ − d 

2 

ML (17) 
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n the general case or 

 A E A = 

N + 1 

2 

ML (18)

or the symmetrically interconnected systems. Assume D A ∈ R 

n ×n , E A ∈ R 

n ×n . 
Let us denote the n -dimensional identity matrix by I , then, define the matrix A m 

and the
onstant matrix function F A ( t ) ∈ R 

Nn ×Nn in the general case: 

˜ 
 = 

d̄ − d 

2 

, A m 

= A + 

1 

2 

( d̄ + d ) ML , F A (t ) = diag 

( 

d i − d̄ + d 
2 

˜ d 

I 

) 

(19)

r 

 m 

= A + 

N − 1 

2 

ML , F A (t ) = diag 

⎛ ⎝ I , . . . , I ︸ ︷︷ ︸ 
N−1 times 

, −I 

⎞ ⎠ (20)

or the symmetrically interconnected systems if the transformation matrix T is given by Eq.
14) . 
A m 

= I � A m 

, D A = I � D A , E A = I � E A . In both cases, 

˜ 
 = A m 

+ D A F A (t ) E A , ‖ F A (t ) ‖ ≤ 1 . 

.2. Auxiliary problem 

The stabilizing control for the system (15) is closely related to the stabilization of the
uxiliary system defined in this subsection. 

Assume the functions F m , A and F m , j , j = 1 , 2, 3 , 4 are measurable functions satisfying
 F m , A ( t ) ‖ ≤1, ‖ F m , j ( t ) ‖ ≤1, 0 ≤ τ ≤ τ̄ being (possibly time varying) unknown time delay.
et also 

̂ d = max (| Eig D| ) where the matrix D was defined in Assumption 2. 

˙  = (A m 

+ μD 1 F m, 1 (t ) E 1 + μ̂ d D 4 F m, 4 (t ) E 4 L + D A F m,A (t ) E A ) z 

+ (B + μD 3 F m, 3 (t ) E 3 ) K z(t − τ ) + μD 2 F m, 2 (t ) E 2 

∫ t 

t−τ

˙ z (s) ds, (21)

hich can be using z(t − τ ) = z(t ) − ∫ τ
0 ˙ z (s) ds rewritten as 

˙  = (A m 

+ μD 1 F m, 1 (t ) E 1 + μ̂ d D 4 F m, 4 (t ) E 4 L + D A F A (t ) E A + BK 

+ μD 3 F m, 3 (t ) E 3 K ) z 

+ (μD 2 F m, 2 (t ) E 2 − BK − μD 3 F m, 3 (t ) E 3 K ) 

∫ t 

t−τ

˙ z (s) ds (22)

s stable for all uncertainties F m , A ( t ) and F m , j ( t ). In the following subsection, we will show that
obust stabilization of Eq. (22) for all uncertainties F A , F m, j , j = 1 , 2, 3 , 4 guarantees stability
f Eq. (15) . This is the reason to introduce the system (22) . 

The controller for the system (22) is designed using the descriptor approach to the
yapunov–Krasovskii functional as explained in e.g. [20,21] in detail. First, define the matrix

by 

= 

⎛ ⎝ 

ψ 1 , 1 ψ 1 , 2 ψ 1 , 3 

∗ ψ 2, 2 εψ 1 , 3 

∗ ∗ −τ̄R 

⎞ ⎠ , (23)
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ψ 1 , 1 = P 

T 
2 

(
A m 

+ μD 1 F m, 1 (t ) E 1 + μ̂ d D 4 F m, 4 (t ) E 4 L + D A F m,A (t ) E A + BK 

+ μD 3 F m, 3 (t ) E 3 K 

)
+(A m 

+ μD 1 F m, 1 (t ) E 1 + μ̂ d D 4 F m, 4 (t ) E 4 L + D A F m,A (t ) E A + BK 

+ μD 3 F m, 3 (t ) E 3 K ) T P 2 , 

ψ 1 , 2 = P 1 − P 

T 
2 + 

(
A m 

+ μD 1 F m, 1 (t ) E 1 + μ̂ d D 4 F m, 4 (t ) E 4 L + D A F m,A (t ) E A 

+ BK + μD 3 F m, 3 (t ) E 3 K 

)
) T εP 2 , 

ψ 1 , 3 = τ̄P 

T 
2 

(
μD 2 F m 

(t ) E 2 − BK − μD 3 F m, 3 (t ) E 3 K 

)
, 

ψ 2, 2 = −ε(P 2 + P 

T 
2 ) + τ̄R. 

All proofs of theorems formulated in this section are concentrated in the Appendix. 

Theorem 1. Let there exist the parameter ε> 0 and matrices P 1 > 0 , P 2 , R > 0 such that
� ≤0 for every value of F m , A ( t ) and F m , j ( t ), j = 1 , 2, 3 , 4. Then the system (22) is stable. 

The proof can be found in the Appendix A . 

Assumption 5. The matrix P 2 is invertible. 

Remark 6. This assumption is crucial for finding of the controller gain K . In the descriptor
approach, regularity of the matrix P 2 is often supposed, see e.g. [21] . 

Theorem 2. Let there exist n ×n-dimensional matrices P̄ 1 > 0, Q 2 , R̄ > 0, Z > 0 , Z B > 0 ,
positive constants νA , ν1 , ν3 , ε, ρA , ρ1 , ρ3 , ρ4 , ρ̄, ρ2B and a matrix Y ∈ R 

1 ×n such that the matrix
Q 2 is regular and 

0 > �, (24) 

0 > 

(−Z Q 

T 
2 E 

T 
2 

∗ − 1 
ρ̄

I 

)
, (25) 

0 > 

(−Z B Y 

T E 

T 
3 

∗ − 1 
ρ2B 

I 

)
, (26) 

0 > −τ̄ R̄ + Z + Z B , (27) 

0 > −ε(Q 2 + Q 

T 
2 ) + τ̄ R̄ + ρA D A D 

T 
A + ρ1 D 1 D 

T 
1 

+ ρ3 D 3 D 

T 
3 + ρ4 D 4 D 

T 
4 (28) 
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N  
here the matrix � is defined as (the symbol I denotes the identity matrix with an appropriate
imension) 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ1 , 1 σ1 , 2 σ1 , 3 σ1 , 4 σ1 , 5 σ1 , 6 σ1 , 7 σ1 , 8 σ1 , 9 σ1 , 10 σ1 , 11 σ1 , 12 σ1 , 13 

∗ σ2, 2 εσ1 , 3 0 0 0 0 0 0 εσ1 , 10 εσ1 , 11 0 0 

∗ ∗ σ3 , 3 0 0 0 0 0 0 0 0 0 0 

∗ ∗ ∗ −νA I 0 0 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ −ν1 I 0 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ −ν3 I 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ −ρA I 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ1 I 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ3 I 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ̄I 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ2B I 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ν4 I 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ4 I 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

σ1 , 1 = (A m Q 2 + BY ) T + A m Q 2 + BY + νA D A D 

T 
A + ν1 D 1 D 

T 
1 + ν3 D 3 D 

T 
3 + ν4 D 4 D 

T 
4 , 

σ1 , 2 = P̄ 1 − Q 2 + ε(Q 

T 
2 A 

T 
m + Y T B 

T ) , 

σ1 , 3 = −τ̄BY, 

σ1 , 4 = μQ 

T 
2 E 

T 
A , 

σ1 , 5 = μQ 

T 
2 E 

T 
1 , 

σ1 , 6 = μY T E 

T 
3 

σ1 , 7 = εQ 

T 
2 E 

T 
A , 

σ1 , 8 = εμQ 

T 
2 E 

T 
1 , 

σ1 , 9 = εμY T E 

T 
3 , 

1 , 10 = −τ̄μD 2 , 

1 , 11 = −τ̄μD 3 , 

1 , 12 = μ̂ d Q 

T 
2 L 

T E 

T 
4 , 

1 , 13 = εμ̂ d Q 

T 
2 L 

T E 

T 
4 , 

σ2, 2 = −ε(Q 2 + Q 

T 
2 ) + τ̄ R̄ + ρA D A D 

T 
A + ρ1 D 1 D 

T 
1 + ρ3 D 3 D 

T 
3 + ρ4 D 4 D 

T 
4 , 

σ3 , 3 = −τ̄ R̄ + Z + Z B . 

hen the system (22) is stabilized by the feedback law u(t ) = Kz(t − τ ) with K = Y Q 

−1 
2 . 

The proof is in the Appendix A . 

emark 7. The constants νA , ν j , j = 1 , 2, 3 , 4 and ρA , ρ1 , ρ3 , ρ4 can be obtained as a part
f the solution of the LMI optimization problem. On the other hand the constants ρ̄, ρ2,B , ε

ust be defined a-priori. Including them into the optimization problem leads to the loss of
onvexity. 

.3. Identical delays in the network 

In this subsection, the case when τi = τ j for all t > 0 and all i, j = 1 , . . . , N is considered.
etworks with this property have been studied e.g. in [43] , however, with the value of the
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delay being constant in time which is not needed here. If the time delays are equal throughout
the network, one has φi = φ j for all i, j = 1 , . . . , N . Consequently, the formula (12) attains
the form 

˙ ξ = (A + D 1 F 1 (t ) E 1 + ML + BK + D 3 F 3 (t ) E 3 K + D 4 F 4 (t ) E 4 L ) ξ

+ 

(
D 2 F 2 (t ) E 2 − BK − D 3 F 3 (t ) E 3 K 

) ∫ t 

t−τ

˙ ξ (s) ds (29) 

and the formula (15) is converted into 

˙ ˜ ξ = ( ̃  A + D 1 ̃
 F 1 (t ) E 1 + BK + D 3 ̃

 F 3 (t ) E 3 K + D 4 ̃
 F 4 (t ) E 4 ˜ L ) ̃  ξ

+ 

(
D 2 ̃  F 2 (t ) E 2 − BK − D 3 ̃  F 3 (t ) E 3 K 

) ∫ t 

t−τ

˙ ˜ ξ (s) ds, 

which, with functions ̂ F i (t ) , i = 1 , 2, 3 , 4 defined as ̂ F i (t ) = 

1 
μ

˜ F i (t ) may be rewritten as 

˙ ˜ ξ = ( ̃  A + μD 1 ̂
 F 1 (t ) E 1 + BK + μD 3 ̂

 F 3 (t ) E 3 K + μD 4 ̂
 F 4 (t ) E 4 ˜ L ) ̃  ξ

+ 

(
μD 2 ̂  F 2 (t ) E 2 − BK − μD 3 ̂  F 3 (t ) E 3 K 

) ∫ t 

t−τ

˙ ˜ ξ (s) ds. (30) 

Note that ‖ ̂  F i (t ) ‖ ≤ 1 for i = 1 , 2, 3 , 4 due to Eq. (16) . 
Moreover, the matrix 

˜ A is block-diagonal. In the general case, the blocks are equal to
A + d i ML where d i are eigenvalues of the matrix J . In the case of symmetrically intercon-
nected systems, the blocks equal either to A + N ML or A − ML; see Eq. (20) . As mentioned
therein, one can replace the matrix 

˜ A by the matrix A m 

+ D A ̃
 F A (t ) E A . Define ̂ F i = μ˜ F i ,

i = 1 , 2, 3 , 4 . Then, one finally arrives at 

˙ ˜ ξ = 

(
A m 

+ μD A ̂
 F A (t ) E A + μD 1 ̂  F 1 (t ) E 1 + BK + μD 3 ̂  F 3 (t ) E 3 K ̃

 ξ

+ μD 4 ̂  F 4 (t ) E 4 ˜ L 

)
+ 

(
μD 2 ̂  F 2 (t ) E 2 − BK − μD 3 ̂  F 3 (t ) E 3 K 

) ∫ t 

t−τ

˙ ˜ ξ (s) ds (31) 

Note also that 

D 4 ̂  F 4 (t ) E 4 ˜ L = D 4 ̂  F 4 (t ) 
(

diag ( 
d 1 ̂ d 

, . . . , 
d N ̂ d 

) � I 
)̂ d E 4 (I N � L) 

and define F 4 (t ) = 

̂ F 4 (t ) diag ( d 1 ̂ d 
, . . . , d N ̂ d 

) . One can see that ‖ F 4 (t ) ‖ ≤
‖ ̂  F 4 (t ) ‖‖ diag ( d 1 ̂ d 

, . . . , d N ̂ d 
) ‖ ≤ 1 . Hence one can reformulate the Eq. (31) into 

˙ ˜ ξ = 

(
A m 

+ μD A ̂
 F A (t ) E A + μD 1 ̂  F 1 (t ) E 1 + BK + μD 3 ̂  F 3 (t ) E 3 K ̃

 ξ

+ μ̂ d D 4 F 4 (t ) E 4 (I � L) 
)

+ 

(
μD 2 ̂  F 2 (t ) E 2 − BK − μD 3 ̂  F 3 (t ) E 3 K 

) ∫ t 

t−τ

˙ ˜ ξ (s) ds (32) 

Before stating the proof of the main theorem, let us introduce the following nota-
tion: define matrices P i , P̄ i , i = 1 , 2, i = 1 , 2, Q 2 and R by P i = diag (P i , . . . , P i ) , P̄ i =
diag ( ̄P i , . . . , P̄ i ) , Q 2 = diag (Q 2 , . . . , Q 2 ) and R = diag (R, . . . , R) so that the matrices P i , Q 2 

and R have N blocks on the diagonal. Analogously, let the matrices A m 

, D A , E A are defined
as diagonal matrices with N diagonal blocks A m 

, D A , E A , respectively. 
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orollary 1. Under assumptions of Theorem 2 , the overall system (15) is stable with K =
iag (K, . . . , K ) with the matrix K = Y Q 

−1 
2 . 

Proof: Let ξ̄i = ( ̃  ξ(i−1) n+1 , . . . , ˜ ξin ) for i = 1 , . . . , N . Then we define the vector ˜ η by ˜ η =
 ̄ξT 

1 , 
˙ ξ̄T 
1 , 

1 
τ̄

∫ t 
t−τ̄

˙ ξ̄T 
1 (s) ds, . . . , ˜ ξT 

N , 
˙ ξ̄T 
N , 

1 
τ̄

∫ t 
t−τ̄

˙ ξ̄T 
N (s) ds) T . 

In Eq. (32) , the only matrices without the required block-diagonal structure are the matri-
es ̂ F i and F 4 . Let us define the symmetric Nn ×Nn matrix 

˜ � as follows: in the definition
q. (23) , replace the matrices A m 

, B , D A , F m , A ( t ), E A , D j , E j , F m , j ( t ), K , P 1 , P 2 , R by matri-
es A m 

, B, D A , F A (t ) E A , D j , E j , ̂ F j (t ) , K, P 1 , P 2 , R , respectively. Define also the Lyapunov

unction V = V 1 + V 2 where V 1 = 

˜ ξT P 1 ̃  ξ, V 2 = 

∫ 0 
−τ̄

∫ t 
t+ θ

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) d sd θ . Then 

˙ 
 2 ≤ τ̄

˙ ˜ ξT R ̇

 ˜ ξ −
∫ t 

t−τ̄

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) ds 

nd finally, proceeding as in the proof of the Theorem 1 yields ˙ V ≤ ˜ ηT ˜ � ˜ η. 
Proceeding further analogously as in the proof of Theorem 2 , using the Proposition 1 and

ts corollaries, one can introduce the matrix 

˜ � defined by replacing the matrices
 m 

, B, D A , E A , D j , E j , Y , P̄ 1 , Q 2 , R̄ , Z, Z B by matrices A m 

, B, D A , E A , μD j , E j , Y, P̄ 1 , Q 2 , R ,

 = diag (Z, . . . , Z ) , Z B = diag (Z B , . . . , Z B ) , respectively. (The matrices Z and Z B have N
iagonal blocks again.) Also use Y = KQ 2 . The same substitution is done in the inequalities
25) –(28) . A permutation of rows and columns can rearrange the matrix 

˜ � into a block-
iagonal matrix composed of N blocks where each of the blocks contains one copy of the
atrix �. This means, there exists a permutation matrix V such that V 

T ˜ �V = I � � ( I ∈ R 

N ×N

gain). Then, properties of the Kronecker product imply 

˜ � < 0. 
Moreover, inequalities corresponding to LMI Eqs. (25) –(28) obtained by the above substi-

ution are also valid, hence Corollaries 2 and 3 from the Appendix are applicable. Note that
n their formulation, the matrices F i , F A do not need to possess the block-diagonal structure.
sing the same reasoning as in the proof of Theorem 2 , one infers that the inequality 

˜ � < 0
mplies ˜ � < 0 for every t ≥0. Hence ˙ V < 0 if ˜ ξ � = 0. 

emark 8. Application of the Proposition 1 brings some conservatism since the condition in
roposition 1 can be sharp inequality. 

emark 9. Several parameters can be computed in the process of the LMI solution. On the
ther hand, other parameters cannot be obtained in this way as the resulting problem would
e nonconvex. They must be determined before the LMI optimization, finding their values so
hat the set of LMI constitutes a feasible problem is a matter of trial and error. 

heorem 3. Let the assumptions of Theorem 2 hold. The overall system is stabilized if each
ubsystem (1) is controlled by the local feedback 

 i = 

1 

�(T (x i,τi )) 

(
K T (x i,τ ) − �(T (x i,τi )) 

)
here T is defined by Eq. (2) . 

Proof: Since the transformation T is a diffeomorphism, Theorem 3 is a direct consequence
f Corollary 1 . 
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4.4. Non-equal network delays 

In this subsection, the requirement of equal time delay throughout the whole network is
removed. This leads to more conservative results. The notation from the preceding subsection 

is retained. Moreover, define also the vector v by 

v = 

1 

τ̄

N ∑ 

i=1 

∫ t 

t−τi 

˜ J i ̇
 ˜ ξ (s) ds = 

1 

τ̄

N ∑ 

i=1 

∫ t 

t−τ̄

φi (t, s) ̃  J i ̇
 ˜ ξ (s) ds. 

Then Eq. (15) can be reformulated as 

˙ ˜ ξ = ( ̃  A + D 1 ̃  F 1 (t ) E 1 + D 4 ̃  F 4 (t ) E 4 ˜ L + BK + D 3 ̃  F 3 (t ) E 3 K) ̃  ξ

+ 

(
D 2 ̃

 F 2 (t ) E 2 − BK − D 3 ̃
 F 3 (t ) E 3 K 

)
v. (33) 

Note that the Young inequality applied on each term J T i φi (t, s) R J j φ j (t, s) with i � = j and
subsequent use of the Jensen’s inequality N times together with the fact that φi ∈ {0, 1} for
all i yields the following: 

τ̄ 2 v T R v = 

⎛ ⎝ 

N ∑ 

i, j=1 

∫ t 

t−τ̄

φi (t, s) ̇
 ˜ ξT (s) ̃  J i 

T 
ds 

⎞ ⎠ R 

(∫ t 

t−τ̄

˙ ˜ ξT (s) ̃  J j 
T 
φ j (t, s) ds 

)

≤ N 

N ∑ 

i=1 

(∫ t 

t−τi 

˙ ˜ ξT (s) ̃  J i 
T 

ds 

)
R 

(∫ t 

t−τi 

˜ J i ̇
 ˜ ξ (s) ds 

)

≤ τ̄N 

N ∑ 

i=1 

∫ t 

t−τ̄

φi (t, s) ̇
 ˜ ξT (s) ̃  J i 

T R ̃

 J i ̇
 ˜ ξ (s) ds 

≤ τ̄N 

∫ t 

t−τ̄

˙ ˜ ξT (s) 

( 

N ∑ 

i=1 

˜ J i 
T R ̃

 J i 

) 

˙ ˜ ξ (s) ds. 

Assume there exists a constant γ > 0 such that 

N 

N ∑ 

i=1 

˜ J i 
T R ̃

 J i ≤ γR . 

This definition in combination with the above estimate of the term v T R v yields 

τ̄v T R v ≤ γ

∫ t 

t−τ̄

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) ds. (34) 

Finally, choose the constant k such that k > γ . 
Based on the definition of the matrix � in Eq. (23) , define now the matrix �̄ by 

�̄ = 

⎛ ⎝ 

ψ 1 , 1 ψ 1 , 2 ψ 1 , 3 

∗ ψ̄ 2, 2 εψ 1 , 3 

∗ ∗ −τ̄R 

⎞ ⎠ (35) 

where ψ i , j were used in Eq. (23) . The element ψ̄ 2, 2 is defined by 

ψ̄ 2, 2 = −ε(P 2 + P 

T 
2 ) + k ̄τR. 
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heorem 4. Assume the matrices P 1 > 0 , P 2 and R > 0 solve the problem �̄ < 0 for all t.
hen the system (33) is stable. 

roof. Define now the Nn ×Nn -dimensional matrix 

˜ �̄ by formal replacement of matrices A ,
 etc. in the definition of the matrix �̄ by matrices ˆ A , B, etc. respectively, in the same manner
s in the previous section. With the Lyapunov function V defined as V̄ = V 1 + kV 2 , one has 

˙ 
 1 ≤ ( ̃  ξT , 

˙ ˜ ξT , v T ) ̃  �̄

⎛ ⎜ ⎝ 

˜ ξ
˙ ˜ ξ

v 

⎞ ⎟ ⎠ 

− k ̄τ ˙ ˜ ξT R ̇

 ˜ ξ + τ̄v T R v, 

˙ 
 2 ≤ τ̄

˙ ˜ ξT R ̇

 ˜ ξ −
∫ t 

t−τ̄

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) ds. 

ence, using Eq. (34) , one arrives at 

˙ ¯
 ≤ ( ̃  ξT , 

˙ ˜ ξT , v T ) ̃  �̄

⎛ ⎜ ⎝ 

˜ ξ
˙ ˜ ξ

v 

⎞ ⎟ ⎠ 

+ τ̄v T R v − k 
∫ t 

t−τ̄

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) ds 

≤ ( ̃  ξT , 
˙ ˜ ξT , v T ) ̃  �̄

⎛ ⎜ ⎝ 

˜ ξ
˙ ˜ ξ

v 

⎞ ⎟ ⎠ 

− (k − γ ) 

∫ t 

t−τ̄

˙ ˜ ξT (s) R ̇

 ˜ ξ (s) ds (36)

ince ˜ �̄ < 0 and k > γ , one gets d 
dt V̄ < 0. �

heorem 5. Let the matrix �̄ be defined as 

¯ = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ1 , 1 σ1 , 2 σ1 , 3 σ1 , 4 σ1 , 5 σ1 , 6 σ1 , 7 σ1 , 8 σ1 , 9 σ1 , 10 σ1 , 11 σ1 , 12 σ1 , 13 

∗ σ̄2, 2 εσ1 , 3 0 0 0 0 0 0 εσ1 , 10 εσ1 , 11 0 0 

∗ ∗ σ3 , 3 0 0 0 0 0 0 0 0 0 0 

∗ ∗ ∗ −νA I 0 0 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ −ν1 I 0 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ −ν3 I 0 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ −ρA I 0 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ1 I 0 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ3 I 0 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ̄I 0 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ2B I 0 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ν4 I 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ4 I 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

ith σ i , j defined in the Theorem 2 and σ̄2, 2 = −ε(Q 2 + Q 

T 
2 ) + k ̄τ R̄ + ρ1 D A D 

T 
A +

3 D 3 D 

T 
3 + ρ4 D 4 D 

T 
4 . Let Q 1 > 0 , Q 2 and R > 0 , Q 2 regular, be the solution of the problem

¯ < 0, −ε(Q 2 + Q 

T 
2 ) + k ̄τ R̄ + ρ1 D A D 

T 
A + ρ3 D 3 D 

T 
3 + ρ4 D 4 D 

T 
4 ≤ 0 combined with inequalities

25) and (26) , K = Y Q 

−1 
2 . Then the system (33) is stable. 

roof. Using the function V̄ , the same reasoning as in the proof of Corollary 1 together with
q. (36) yields the result. �
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Remark 10. Solvability of the LMI introduced in Theorems 2 and 5 is a complex issue.
There are many factors having influence on existence of a solution. First, the longer maximal
allowable delay τ̄ the more difficult it is to find a solution. A trickier part is tuning the
constants ε and ρ2 B . Even though many problems lead to LMIs depending on such parameters,
no tuning method could be found in the available literature. Remarks about influence of these
parameters on the computational example is given in Remark 12 . 

5. Examples 

5.1. Example 1 

The system is composed of N identical symmetrically connected subsystems (for simula- 
tions, N = 8 was chosen) with the i th subsystem given by 

˙ x 1 ,i = x 2 1 ,i + x 2,i 

˙ x 2,i = −2x 1 ,i (x 
2 
1 ,i + x 2,i ) + 0. 6 x 2 1 ,i + 0. 3(x 2 1 ,i + x 2,i ) + 

25 

25 + x 2 1 ,i 

u i + 

N ∑ 

j =1 , j � = i 

0. 1 x 1 , j 

The exact linearization (see e.g. [36] , denoted by T above) which transforms the i th subsystem
into the form Eq. (3) is defined by 

ξ1 ,i = x 1 ,i , ξ2,i = x 2 1 ,i + x 2,i . 

By setting �(ξi ) = 0. 6 ξ 2 
1 ,i + 0. 3 ξ 2 

2,i and �(ξi ) = (1 + 

ξ 2 
1 ,i 

25 ) the dimension reduction can now
be carried out as described in the above sections. 

The matrices D i and E i , i = 1 , . . . , 4, are determined using the method described in
Remark 2 . In this example,we have D 1 = 0, E 1 = 0 and D 4 = 0, E 4 = 0. If we assume
| ξ 1, i ( t )| ≤1 and | ξ 2, i ( t )| ≤1 for all t > 0 then one has ‖ B( 

�(ξi ) 

�(ξi,τi ) 
− 1) ‖ ≤ 1 

25 . We choose F 3 ,i (t ) =
25( 

�(ξi ) 

�(ξi,τi ) 
− 1) , then clearly ‖ F 3, i ( t ) ‖ ≤1 for all t > 0. Defining D 3 = 

(
0 

0. 2 

)
and E 3 = 0. 2I , one

has B( 
�(ξi ) 

�(ξi,τi ) 
− 1) = D 3 F 3 ,i E 3 . Note that the function F 3, i is not available for the controller

design or implementation. However, knowledge of this function is not needed. Similarly, one 

can choose D 2 = 1 . 1 I , E 2 = 

(
0 0 
1 0. 5 

)
. 

Note that the matrix L is not changed by this transformation, L = 

(
0 0 

0. 1 0 

)
. The next step

is to define the transformation matrix T as in Eq. (14) . Using Eqs. ( 18 ) and ( 20 ) define also
the matrices 

A m 

= 

(
0 1 

N−1 
20 0 

)
, D A = 

(
0 0 

N+1 
20 0 

)
, E A = I . 

This yields the problem of finding a feedback matrix K such that the system (21) is stable.
A sufficient condition is to find a solution of the LMI Eqs. ( 24 )–( 28 ). 

The design parameters were chosen as ε = 0. 5 , ρ2 = 1 , ρ̄ = 1 and the delay in the feed-
back was τ̄ = 0. 1 s. The algorithm described in the previous section yields the control gain
K = (−2. 04, −1 . 99) for N = 8 . Simulations are shown on the Fig. 1 for initial conditions
x(0) = (r cos π i 

8 ) with r = 0. 6 i = 1 , . . . , N . For the sake of simplicity, only the state of the
first subsystem is depicted: state x 1, 1 (solid line) and x 1, 2 (dashed line). For comparison, the
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Fig. 1. State x 1,1 and x 1,2 in Example 1 . 

Table 1 
Values of the feedback gain. 

N 2 4 6 8 

K 

T 

(−1 . 67 
−2. 19 

) (−1 . 38 
−2. 28 

) (−1 . 32 
−2. 38 

) (−2. 04 
−1 . 99 

)

s  

w
 

r

R  

b  

b  

i  

o

R  

t  

o  

a  

s  

o

tate of the same system controlled by linear controllers with equal gain K is depicted as
ell: x 1, 1 (dotted line) and x 1, 2 (dash-dot line). 
The values of the feedback gain matrix K for different number of subsystems are summa-

ized in Table 1 . 

emark 11. The advantage of the presented method is twofold: not only is the convergence
etter, but also a larger range of initial conditions can be handled. While r = 0. 6 seems to
e the largest value for which the linear controller performs acceptably (higher values lead to
nstability of the control loop), the nonlinear controller yields good results for larger values
f this parameter. 

emark 12. Values of the parameters ε, ρ2 and ρ2 B were found using error and trial. While
he algorithm seems to tolerate a fairly wide range of values of the parameter ε, the region
f acceptable values of the parameters ρ1 and ρ̄ is probably rather small, roughly between 1
nd 10 in the example. Values out of this range lead to an infeasible optimization problem,
imilarly as too large uncertainties. No further investigation of this dependence was carried
ut. 
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5.2. Example 2 

Consider a set of N interconnected identical oscillators given by the equation 

ÿ i + 

y 2 i − 1 

5(1 + y 2 i + ˙ y 2 i ) ̇
 y i + y i + I i = u i , y i (0) = y 0,i , ˙ y i (0) = ˆ y 0,i . 

The term I i represents the interconnections; let k be a constant and 

I 1 = k(y 1 − y 2 ) , 

I i = k(y i − y i+1 ) + k(y i − y i−1 ) for i = 2, . . . , N − 1 , 

I N = k(y N − y N−1 ) . 

This oscillator is based on the example presented in [44] , however, unlike that article, no
disturbances are considered here; on the other hand interconnection terms are present. 

Define ξ1 , 0 = ξ1 ,N+1 = 0. Using the exact linearization of the auxiliary system: y = x 1 , ξ1 =
x 1 , ξ2 = x 2 and v = u − 2x 2 1 + ξ 2 

2 

5(1+ x 2 1 + x 2 2 ) 
x 2 one can obtain the equation describing the i th subsystem

in the form 

˙ ξ1 ,i = ξ2,i , 

˙ ξ2,i = − ξ 2 
1 ,i − 1 

5(1 + ξ 2 
1 ,i + ξ 2 

2,i ) 
ξ2,i − (1 + αi ) ξ1 ,i + u i − ξ1 ,i−1 − ξ1 ,i+1 

where α1 = αN = k, αi = 2k if i = 2, . . . , N − 1 . The slightly different form of the intercon-
nections of the first and last subsystems can be treated using the uncertainty expressed by the

terms D 1 F 1 ( t ) E 1 as introduced in Eq. (9) . Since − ξ 2 
1 ,i −1 

5(1+ ξ 2 
1 ,i + ξ 2 

2,i ) 
ξ2,i = 

1 
5 ξ2,i − 2ξ 2 

1 ,i + ξ 2 
2,i 

5(1+ ξ 2 
1 ,i + ξ 2 

2,i ) 
, one

can with help of the Remark 1 express the subsystem as 

˙ ξi = (Aξi + D 1 F 1 ,i (t ) E 1 ) ξi + 

(
0 

1 

)
(v i − ξ1 ,i−1 − ξ1 ,i+1 ) 

with matrices A , D 1 , E 1 defined as 

A = 

(
0 1 

−(1 + 

3 
2 ) k 

1 
5 

)
, D 1 = 

(
0 0 

1 
2 0 

)
, E 1 = 

(
1 0 

0 0 

)
, 

F 1 , 1 (t ) = F 1 ,N (t ) = −1 and F 1 ,i (t ) = 1 for i ∈ { 2, . . . , N − 1 } . Also, one can see that D 3 =
0, E 3 = 0, D 4 = 0, E 4 = 0 . Moreover, 

u i = v i + 

2ξ 2 
1 ,i + ξ 2 

2,i 

5(1 + ξ 2 
1 ,i + ξ 2 

2,i ) 
ξ2,i . 

The overall system can be written as 

d 

dt 

⎛ ⎜ ⎜ ⎜ ⎝ 

ξ1 , 1 

ξ2, 1 
. . . 

ξ2,N 

⎞ ⎟ ⎟ ⎟ ⎠ 

= 

(
A + D 1 F 1 (t ) E 1 + k(J � L) 

)⎛ ⎜ ⎜ ⎜ ⎝ 

ξ1 , 1 

ξ2, 1 
. . . 

ξ2,N 

⎞ ⎟ ⎟ ⎟ ⎠ 

+ B 

⎛ ⎜ ⎝ 

v 1 
. . . 

v N 

⎞ ⎟ ⎠ 
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ith matrices J and L are given by 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 . . . 0 0 

1 0 1 . . . 0 0 

0 1 0 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 . . . 0 1 

0 0 0 . . . 1 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, L = 

(
0 0 

−1 0 

)
. 

he matrix T is composed of eigenvectors of the matrix J . Due to symmetry of the matrix
 , there exists a full set of orthogonal eigenvectors. Hence T T T = I which implies μ = 1 .
e can define d̄ = 2, d = −2 as these values bound the eigenvalues of the matrix J . In the

equel we set D A = 

(
0 
2k 

)
, E A = (1 , 0) . This choice then satisfies Eq. (17) . 

Since the control is delayed, one has to define the uncertainties described by the matrices

 2 , E 2 and the functions F 2, i . To do this, define �(ξ1 , ξ2 ) = 

2ξ 2 
1 ξ2 + ξ 3 

2 

5(1+ ξ 2 
1 + ξ 2 

1 ) 
. Hence, 

�(ξ1 , ξ2 ) = 

( 

0 0 

2ξ1 ξ
2 
2 (2+ ξ 2 

2 ) 

5(1+ ξ 2 
1 + ξ 2 

1 ) 

2ξ2 (ξ
4 
1 −1) 

5(1+ ξ 2 
1 + ξ 2 

1 ) 
2 

) 

. 

f no variables exceed the value 2, one can choose the uncertainties as D 2 = 5 I , E 2 = I . 
Moreover, it is assumed that the delay in the feedback is τ ∈ [0, 0.1] s . 
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V

For the evaluation of the solution of the LMI problem, the values ε = 

1 
2 and ρ2 = 1 were

used. With these settings, the LMI optimization problem is feasible. The resulting feedback 

gain in K = (−3 . 50, −1 . 65) for k = 0. 1 . 
In the example, 11 subsystems were interconnected as described above. 

The initial conditions were chosen as (x 1 , 1 (0) , x 1 , 2 (0) , . . . , x 1 , 11 (0)) =
(2, −2, 1 . 5 , −1 , −2, 2, −2, −1 , 0, 1 , −2) . The states x 2, i were zero in all subsystems. 

There is a varying time delay in the feedback loop which models transmission of the
measured values and/or the control signals only in some discrete time values. The time delay
in the control loop satisfied τ ∈ [0, 0.1] s . Hence the feedback of the i th subsystem introduced
in Eq. (5) can be expressed as 

u 

∗
i (t ) = − 3 . 50x 1 ,i (t − τ ) − 1 . 65 x 2,i (t − τ ) + 

2x 2 1 ,i (t − τ ) + x 2 2,i (t − τ ) 

5(1 + x 2 1 ,i (t − τ ) + x 2 2,i (t − τ )) 
x 2,i (t − τ ) . 

The response of the 8th subsystem to the above choice of initial conditions is shown in
Fig. 2 for various values of the constant k : k = 

1 
2 (solid line), k = 

1 
3 (dashed line), k = 

1 
4 

(dash-dot line) and k = 

1 
10 (dotted line). The condition that no variables exceed the value 2,

used in the design process, has been verified for these initial conditions. 
The LMI problem is infeasible for k larger than 

1 
2 . 

6. Conclusions and outlooks 

An algorithm for the control of large-scale nonlinear symmetric system has been intro- 
duced. The method consists of two steps. The subsystem is linearized using exact input-output 
linearization first. Then, a system with a reduced dimension (equal to the double of the dimen-
sion of one subsystem) is found. Robust stabilization of this low-dimensional system implies 
stability of the overall large system. The results are illustrated by examples. Further research
will be devoted to the application of the proposed algorithm to chaotic systems and dynamical
networks with complex structure. Application of this method to the consensus problem will 
also be investigated in future. 

Appendix A. Proofs of Theorems 

Proof of Theorem 1 

For the sake of the proof of the Theorem 1 , define the vector η by ηT =
(z T , ̇  z T , 1 

τ̄

∫ t 
t−τ

˙ z (s) ds) . 
The Lyapunov function candidate for the system (22) is chosen in accordance with 

[20,21] as V = 

1 
2 z 

T P 1 z + 

∫ 0 
−τ̄

∫ t 
t+ α

˙ z T (s) R ̇  z (s) dsdα. The derivative of the function V is ex-
pressed using Eq. (22) as 

˙ 
 = z T P 1 ̇  z + (z T P 

T 
2 + ε ̇  z T P 

T 
2 )(A m 

+ μD 1 F m, 1 (t ) E 1 + μ ˜ d D 4 F m, 4 (t ) E 4 L 

+ D A F A (t ) E A + BK + μD 3 F m, 3 (t ) E 3 K ) z 

+ (μD 2 F m, 2 (t ) E 2 − BK − μD 3 F m, 3 (t ) E 3 K ) 

∫ t 

t−τ

˙ z (s) ds) + τ̄ ˙ z T R ̇  z 

−
∫ t 

t−τ̄

˙ z T (s) R ̇  z T (s) ds. (A.1) 
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Proceeding as in [21] , the last term is estimated using the Jensen’s inequality as ∫ t 

t−τ̄

˙ z T (s) R ̇  z T (s) ds ≤ −
∫ t 

t−τ

˙ z T (s) R ̇  z T (s) ds 

≤ −τ−1 
∫ t 

t−τ

˙ z T (s) dsR 

∫ t 

t−τ

˙ z T (s) ds 

≤ −τ̄−1 
∫ t 

t−τ

˙ z T (s) dsR 

∫ t 

t−τ

˙ z T (s) ds. 

Standard manipulations on the equation for ˙ V turn this inequality into the form 

˙ V = ηT �η

hich is negative for η � = 0. 

emark 13. For the sake of stability analysis, a more general form of the Lyapunov function
ay be used. Namely, one can look for matrices P 1 , P 2 , P 3 , R as proposed in [21] . However,

he controller design problem requires setting P 3 = εP 2 with ε> 0. 

Thanks to the Assumption 5 , one can define Q 2 = P 

−1 
2 , P̄ 1 = Q 

T 
2 P 1 Q 2 , R̄ = Q 

T 
2 RQ 2 , Y =

 Q 2 . 
The following propositions will be useful (see [45] for the proof, also [46] , Lemma 2 or

14] ): 

roposition 1. Let the matrices M , N , Q , F ( t ), P have compatible dimensions, P be sym-
etric positive definite and ‖F (t ) ‖ ≤ 1 for all t. Let ρ > 0 satisfy P − ρN N 

T > 0. Then 

 M + N FQ ) T P 

−1 ( M + N FQ ) < M 

T (P − ρN N 

T ) −1 M + 

1 

ρ
Q 

T Q . 

orollary 2. If X , Y are symmetric, Y < 0 and let the following LMI hold: 

 > 

⎛ ⎝ 

X M 

T Q 

T 

∗ Y + ρN N 

T 0 

∗ ∗ −ρI 

⎞ ⎠ (A.2)

 > Y + ρN N 

T (A.3)

or a some fixed value of the parameter ρ > 0 . Then for every F such that ‖F‖ ≤ 1 holds: 

X ( M + N FQ ) T 

∗ Y 

)
< 0. (A.4)

roof. Application of the Schur complement twice on the inequality (A.2) yields X +
1 
ρ
Q 

T Q + M 

T (−Y − ρN N 

T ) −1 M < 0. Then, Proposition 1 implies 

X + (M + N FQ ) T (−Y ) −1 (M + N FQ ) T < 0. The Schur complement then yields Eq.
A.4) . �

orollary 3. Let X be symmetric, Y < 0, Z > 0. Assume the following LMI hold for a
arameter ρ > 0 : 
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0 > 

⎛ ⎝ 

X M N 

∗ Y + Z 0 

∗ ∗ − 1 
ρ

I 

⎞ ⎠ (A.5) 

0 > 

(−Z Q 

T 

∗ −ρI 

)
(A.6) 

0 > Y + Z. (A.7) 

Then the following holds for every F , ‖F‖ ≤ 1 : (
X ( M + N FQ ) 

∗ Y 

)
< 0. (A.8) 

Proof. Using the Schur complement on Eq. (A.5) yields 

0 > 

(
X + ρN N 

T M 

∗ Y + Z 

)
. 

Moreover, the LMI Eq. (A.6) implies Z > 

1 
ρ
Q 

T Q , hence Eq. (A.7) yields Y + 

1 
ρ
Q 

T Q < 0.
From this inequality and Eq. (A.5) follows 

0 > 

(X + ρN N 

T M 

∗ Y + 

1 
ρ
Q 

T Q 

)
. 

Let � = X + ρN N 

T + M (Y + 

1 
ρ
Q 

T Q ) −1 M 

T . The last LMI is equivalent to 0>�. In

turn, the Proposition 1 guarantees that � > X + ( M + N FQ ) Y 

−1 ( M + N FQ ) T . Taking
the Schur complement, one sees that the latter inequality is equivalent to Eq. (A.8) . �

Proof of Theorem 2 

We proceed with following manipulations: 

1. Multiply the matrix � by diag( Q 2 , Q 2 , Q 2 ) from the right and by diag (Q 

T 
2 , Q 

T 
2 , Q 

T 
2 ) from

the left. Substitute the matrices P̄ 1 , R̄ , Y where possible. 
2. In the block at the position (1,1), use 

(D A F m,A (t ) E A Q 2 ) 
T + D A F m,A (t ) E A Q 2 < νA D 

T 
A D A + 

1 

νA 
Q 

T 
2 E 

T 
A E A Q 2 

(D 1 F m, 1 (t ) E 1 Q 2 ) 
T + D 1 F m, 1 (t ) E 1 Q 2 < ν1 D 

T 
1 D 1 + 

1 

ν1 
Q 

T 
2 E 

T 
1 E 1 Q 2 

(D 4 F m, 4 (t ) E 4 LQ 2 ) 
T + D 4 F m, 4 (t ) E 4 LQ 2 < ν4 D 

T 
4 D 4 + 

1 

ν4 
Q 

T 
2 L 

T E 

T 
4 E 4 LQ 2 

with νA > 0, ν1 > 0, ν4 > 0. The first inequality introduces both σ 1, 4 and σ 4, 4 , the second
one σ 1, 5 and σ 5, 5 and the fourth one σ 1, 12 and σ 12, 12 . 

3. Again, in the block at the position (1,1), use 

(D 3 F m, 3 (t ) E 3 K Q 2 ) 
T + D 3 F m, 3 (t ) E 3 K Q 2 < ν3 D 

T 
3 D 3 + 

1 

ν3 
Y 

T E 

T 
3 E 3 Y 

with ν3 > 0. Then, σ 1, 6 and σ 6, 6 appear. 
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4. Using the Corollary 2 and (28) , remove the terms containing uncertainties in the blocks
on the positions (1,2) and (2,1). This changes also the block on the position (2,2), also
σ 1,7 , σ 7,7 , σ 1,8 , σ 8,8 , σ 1,13 , σ 13,13 appear. 

5. Apply the Corollary 3 together with (27) on the term −τ̄μ
(

D 2 F m, 2 (t ) E 2 Q 2 
εD 2 F m, 2 (t ) E 2 Q 2 

)
on the positions

(1, 3), (2, 3) and (3, 1), (3, 2) with N = τ̄μ
(

D 2 
εD 2 

)
, F = F m, 2 , Q = E 2 Q 2 . 

6. In the same positions, apply the Corollary 3 on the term −μτ̄
(

D 3 F m, 3 (t ) E 3 Y 
εD 3 F m, 3 (t ) E 3 Y 

)
. The terms on

the positions (1,10), (2,10), (1,11), (2,11), (10,10) and (11,11) arise. 

Finally, use Theorem 1 . 
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