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Abstract
Dynamic contrast-enhanced magnetic resonance imaging
obtains information about tissue perfusion and perme-
ability. Following the administration of a contrast agent,
concentration-time curves measured in each voxel are
fitted by a pharmacokinetic model formulated as a
time-domain convolution of an arterial input function
(AIF) and an impulse residue function (IRF). Since the
measurement window contains hundreds of time samples,
the discrete convolution is demanding, even when it is
performed via discrete Fourier transform (DFT). Addi-
tionally, its discretization causes convergence complica-
tions in the curve fitting and it is not applicable to
functions without a closed-form expression in the time
domain, e.g. tissue homogeneity model IRF. Both issues
can be solved by formulating the functions in a closed
form in the Fourier domain. In the Fourier domain, the
model transforms to multiplication of IRF and AIF,
followed by the inverse DFT. To avoid time-domain
aliasing, the number of samples in the Fourier domain
must be higher than the sum of supports of the functions
in the time domain. If the functions are slowly decaying
exponentials, the support is theoretically infinite, which
dramatically reduces the computational performance. In
this contribution, we propose a modification of IRF in the
Fourier domain to consider the measurement window.
Our solution reduces the required number of samples to
three times the measurement window compared to dozens
needed without the modification and reduces the number
of DFTs. This provides faster evaluation of the pharma-
cokinetic model and its derivatives for each voxel in each
iteration of the curve fitting.
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1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging
has become an established tool to obtain information about
tissue perfusion and capillary permeability. Following the
administration of a contrast agent, a set of images in time is
acquired using an MRI scanner. These images are related to
concentration of the contrast agent in each voxel in each
time-instant of the measurement. These concentration-time
curves are fitted by a pharmacokinetic model to obtain the
perfusion and permeability parameters of interest. These
parameters are useful in diagnostics and monitoring of
treatment effects, mostly in oncology.

The pharmacokinetic model is usually formulated as a
time-domain convolution of an arterial input function
(AIF) and an impulse residue function (IRF). Since each
concentration-time curve contains hundreds of samples equal
to the number of image frames, the discrete time-domain
convolution is demanding, even when it is performed in the
frequency domain via the discrete Fourier transform (DFT).
Additionally, it causes convergence complications in the
curve-fitting procedure, because the imprecise time-domain
discretization causes local optima [1, 2, 3]. Furthermore, this
approach is not applicable to the functions without
closed-form expression in the time domain as e.g. the tissue
homogeneity (TH) IRF model [4]. Despite these problems,
the time-domain approach of evaluation of the pharmacoki-
netic model is widely used mostly in connection with basic
IRFs such as the Kety/Tofts model and its extension con-
taining a vascular contribution (see review [5]).

Use of advanced IRF models instead of the basic ones
provides estimation of a more complete set of perfusion
parameters. The requirement to use these advanced models
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however puts higher demands on the precise evaluation of
the convolution. One possibility is to find a closed-form
expression for the convolution and was shown in [2] for
adiabatic approximation of TH model (ATH) [6] and a
specific closed-form AIF [7]. Because the particular form of
the functions involved can be limiting, a correction scheme
for evaluation of the convolution was also proposed [2].
Another interesting approach of the pharmacokinetic model
evaluation was introduced by Garpebring [1]. It also natu-
rally overcomes the problem with the nonexistent
closed-form expression of the IRF in the time domain. As
above, the convolution is performed as a multiplication in
the Fourier domain but the IRF is evaluated directly in the
Fourier domain in contrast to the DFT case. Unfortunately,
the remaining problem of this approach is the speed of its
evaluation. Although it removes some of slow forward
DFTs, the number of function samples must be increased to
avoid a time-domain aliasing.

In this paper, we describe the above-mentioned approa-
ches of pharmacokinetic model evaluation and propose an
efficient modification of the Fourier domain approach
(FDA) [1]. This eliminates the increase in the number of
samples required to avoid the time-domain aliasing.

2 Pharmacokinetic Model

The pharmacokinetic model is in general described by a
system of partial differential equations. Using the Laplace
transform with boundary conditions taking the AIF into
account, the solution has the form:

Ct sð Þ ¼ ca sð Þh sð Þ ð1Þ
where Ct is contrast-agent concentration in a tissue unit, ca is
concentration in the arterial input of the tissue unit, i.e. the
AIF, and h is the IRF. s is the Laplace variable. If the
functions involved have a closed form in the time domain,
(1) can be written as a time-domain convolution of AIF and
IRF.

Equation (1) can also be formulated in the Fourier
domain using the substitution: s ! jx, where j is the
imaginary unit and x is the angular frequency. The substi-
tution is possible for stable functions. It was used for the TH
model [1] but it is valid for all IRFs because of their
decaying-exponential-like character guaranteeing stability.

2.1 Time Domain Approach—Discrete
Convolution

The most usual approach to evaluate (1) as the convolution
is based on the DFT. Here, the IRF is parametrized in the

discrete-time domain. The AIF is either directly measured in
the discrete-time domain or the discrete-time model is used.
The discrete convolution is then solved using the multipli-
cation of their DFTs and the subsequent inverse DFT. This
approach is possible for any AIF and for IRFs with a
closed-form temporal-domain formulation, i.e. not for the
TH model.

2.2 Time Domain Approach—Analytic
Evaluation

As the IRF models are mostly formulated and parametrized
in the continuous-time domain, a straightforward approach
to evaluation of (1) is to use an analytic expression of the
convolution of the IRF and AIF. This is possible only when
analytic time-domain formulations of both the AIF and IRF
are available (i.e. not for the TH model nor for a measured
nonparametric AIF). The feasibility of such solution was
shown in [2] for the AIF of [7] (Model 2) and the ATH
model [4]. Tractability of this approach for other AIF and
IRF models is not guaranteed.

2.3 Fourier Domain Approach

Another option is to use Fourier version of (1) with the AIF
and IRF represented directly in the Fourier domain with the
subsequent inverse DFT as proposed in [1]:

Ct½n� ¼ F�1
DFT ca½w�h½w�f g; 8w 2 0; 1; . . .

N �modðN; 2Þ
2

� �

ð2Þ
where “mod” is modulo. For an arbitrary function f in the
Fourier domain holds:

f w½ � ¼ f jDxwð Þ;Dx ¼ 2p
NDt

ð3Þ

The output of F�1
DFT should be real, thus it is assumed that

F�1
DFT also includes necessary complex conjugate sym-

metrization. The necessary number of samples N of the
resulting function is analyzed in the following section.

Time-domain aliasing. The use of (2) requires special care
about time-domain aliasing [1]. The aliasing effect (folding of
the end of Ct n½ � back to its beginning) is avoided, if the
number of samples in the time domain is: N ¼ NAIF þNIRF,
where NAIF;NIRF are lengths of the respective functions in the
time domain. In theory, the lengths NAIF;NIRF are infinite,
because of their decaying-exponential-like character. In
practice, the functions fall to zero with a time constant
defined by the respective exponentials. As proposed in [1] for
the TH model, this length of the IRF can be assumed:
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NIRF ¼ 6
kepDt

ð4Þ

where kep is one of the TH model parameters and the time
constant of the decaying “exponential”. Because most of the
known IRFs have similar decaying character, (4) can be used
in general.

Although it is possible to represent the AIF in the Fourier
domain as described in [8], here we assume, that ca w½ � is the
DFT of measured K samples of the AIF zero-padded to
length N ¼ KþNIRF as proposed in [1].

3 Methods

The drawback of the Fourier domain evaluation is the
variable length of the functions in the Fourier domain, which
depends on the support of the IRF, NIRF, which changes
during the iterations based on the current parameters of the
IRF. The number of samples can become very high during
the curve fitting. This reduces the performance, since the
evaluation of Ct k½ � is repeated several time for every voxel in
every iteration to evaluate the criterion function and its
partial derivatives with respect to its parameters. In this
section, a closed-form expression for a windowed IRF is
derived. This allows us to keep the number of samples to be:
N ¼ 2K, where K is the required number of samples in the
time domain.

3.1 Derivation of Windowed IRF

The windowed IRF in the time domain can be written as
hw tð Þ ¼ h tð ÞH tw � tð Þ, where H xð Þ is the Heaviside step
function and tw is a length of the measurement window.
However, the transformation of hw tð Þ to the Laplace domain
can be intractable. Also if the IRF does not exist in the time
domain in a closed form as the TH model, it can be
impossible to find its Laplace-domain windowed variant.

The presented solution is based on a simple consideration
that the Laplace transform of the windowed function is equal
to the original function minus the original function outside
the window.

The TH model IRF is parametrized by: pTH ¼ Fp; vp;
�

ve;PS; sg, including the bolus arrival time s and it is defined
by [1]:

hTH s; pTHð Þ ¼ e� aþ bsð Þ � 1
� �

aþ bsð Þ ave þ vp cbsþ að Þ� �
a2 e� aþ bsð Þ � 1ð Þ � aþ bsð Þsb c aþ bsð Þþ að Þ e

�ss;

a ¼ PS

Fp
; b ¼ vp

Fp
; c ¼ ve

vp

ð5Þ

To use the above-mentioned consideration, it is necessary
to formulate the IRF part outside the window. It seems
impossible to formulate it exactly but it can be approximated
based on the general knowledge about the IRFs. All IRFs in
the time domain have the form of a decaying-
exponential-like function. Thus if this is assumed together
with tw � vp=Fp, i.e. vascular phase takes only a short part
of the measured window, the windowed version of the TH
model can be approximated by the TH model minus
decaying exponential:

hwTH s; pTH; twð Þ ¼ hTH s; pTHð Þ � FEe�kep tw�s�Tcð Þ e�stw

sþ kep

ð6Þ

where the extraction fraction: E ¼ 1� exp �PS=Fp
� �

and
the mean capillary transit time: Tc ¼ vp=Fp. The expression
1= sþ kep

� �
is the Laplace transform of the decaying expo-

nential, exp �stwð Þ is its time shift to tw and the rest is a
constant correcting its amplitude. The derived windowed
function can be sampled using (3) with N ¼ KþNAIF, which
turns into N ¼ 2K, if used together with time-domain AIF.

3.2 Experiments

Validation. To validate our windowed TH model (6),
10,000 evaluations using (3) was repeated and transformed
to the time domain using the inverse DFT. The time axis was
defined by, t ¼ 0; 1; . . .;N � 1f g � 1:5=60 min, where N ¼
10000 samples, i.e. 0–250 min, to simulate an infinitely long
measurement avoiding aliasing effect. The length of the
window was set tw ¼ 10 min, i.e. K ¼ 400. The IRF
parameters were generated uniformly from intervals:
Fp 2 0:06; 0:75h i, vp 2 0:01; 0:20h i, ve 2 0:05; 0:70h i,
PS 2 0:05; 0:50h i, s ¼ 0 as in [1]. For each evaluated
function, a ratio ðRÞ of energy of the folded part ðEfÞ to
energy inside the window ðEwÞ as a function of the number
of samples in multiples of the window length was computed:

R qð Þ ¼ Ef m½ �
Ew

¼
PN�1

n¼0 hwTH n½ �2�Pm
0 hwTH m½ �2PK�1

k¼0 hwTH k½ �2 ; 8m\N � 1;

q ¼ mþK

K
ð7Þ

If (6) is a sufficient approximation of the windowed IRF,
R 2ð Þ ! 0, thus there will be no energy contaminating the
result of the convolution with the AIF. This should hold for
any combination of the parameters. The collected 10,000
ratios R qð Þ were statistically processed. The result was
plotted and visually analyzed.
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Evaluation time. The evaluation time of (6) in (2) was
compared to other evaluation variants discussed (see
Table 1). For each variant and each parameter set, 1000
function evaluations were repeated to stabilize the mea-
surement of the evaluation time. Their average represented
the evaluation time. The time scale t was generated similar to
previous experiment with NIRF defined in Table 1 (Number
of samples). The AIF model and its parameters were fixed
and same as in [7] (Model 2). The IRF parameters were fixed
to: Fp ¼ 0:06min�1, vp ¼ 0:04, PS ¼ 0:031min�1, s ¼
0:1min; except kep, where 10 values were generated on a
logarithmic scale from 10�2 to 1min�1. In variants “2.1”
and “2.2”, the TH model had to be replaced by the dis-
tributed capillary adiabatic tissue homogeneity model
(DCATH) [9] and the ATH model [2], [6], respectively.
The DCATH IRF instead of the ATH was used, because the
ATH in the time-domain approach (TDA) using DFT causes
convergence problems in practice. The additional DCATH
parameter was set to approximate the ATH model, r ¼ Dt,
as explained in [10, 11]. The number of samples in the
variant “3.1” reflects the result of the previous validation
experiment.

4 Results

Validation. The plot (Fig. 1) of the approximation error
based on the folding energy revealed that in most cases, the
derived windowed TH model is sufficient. Only in less than
10% of the cases, the result of the convolution inside the
measurement window would be contaminated by the ratio of
folding energy ranging from 10�4 to 10�2. It was discov-
ered, that this happened for the cases where the extraction
fraction E was close to 1 in combination with low flow Fp. It
is a regime, where the contrasted agent travels mainly
through an extracellular extravascular space. Although the
ratio is small and such cases are rare, it is recommendable to
use N ¼ 3K for sampling of the windowed TH model.

Evaluation time. The evaluation times for each variant in
Table 1 are plotted in Fig. 2. As expected, only method
“2.3” does not have a constant evaluation time. That is
caused by (4) defining the necessary number of samples to

avoid aliasing. Other variants have a constant number of
samples as listed in Table 1. The number of samples with its

Table 1 Tested variants of the pharmacokinetic model

Variant IRF No. of DFT

# Description Model h �ð Þ Equation No. of samples Forward/inverse

2.1 TDA—DFT DCATH t [10] (2) K 1/1

2.2 TDA—closed form ATH t [2] (A1) K 0/0

2.3 FDA—[1] TH x (5) Kþ f kep
� �� �

=2 0/1

3.1 FDA—proposed THw x (6) 3K=2 0/1

Fig. 1 Ratio of folding energy as a function of the addition of samples.
Solid lines are maximum, median, minimum and the dashed lines are
the resting 10-quantiles

Fig. 2 Comparison of the possible variants of the pharmacokinetic
model evaluation in terms of their evaluation time. The top-right plot is
a close-up
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type (real/complex) is not the only factor influencing the
evaluation time. The second factor is the number of needed
DFT operations, which is the most demanding operation and
its speed depends on the number of samples. The faster
evaluation of “2.3” in comparison with “3.1” for high kep is
in the area, where the proposed windowing is not needed and
thus can be eliminated in practice.

5 Discussion and Conclusion

It was shown, that the fastest approach to evaluate the
pharmacokinetic model in DCE-MRI is to use the
closed-form evaluation “2.2” [2]. This is not surprising,
since it does not use the DFT and the number of real samples
is the lowest possible, i.e. equal to the number of the
time-domain samples. The limitation of this variant is the
necessity to have a specific parametrized form of AIF (it is
not possible to use measured AIF directly) and also the IRF
is limited to specific models to derive a closed-form formula.

Our Fourier domain approach “3.1” allows both to use a
measured AIF or a parametrized one. Our derived
closed-form expressions for windowed IRF dramatically
speed up the evaluation in comparison with the original FDA
“2.3” [1] and with the conventional time domain approach
“2.1” using the DFT, although only 1.5 times. However, this
factor grows with the time resolution because of the DFT.
Additionally, the evaluation of the pharmacokinetic model
together with its derivatives is repeated many times in the
iterative estimation procedure for each voxel, thus even a
slight speed up can save a lot of time.
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