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In this paper, we provide comments on the recent paper by Bao Qiong Li et al. [1] that proposed a novel tool for
chemometric analysis of three-dimensional spectra using Tchebichef-Hermite image moment method. We show
that the proposed combined moments are not stable since the Tchebichef polynomials have a discrete instinct and
Hermite polynomials are continuous. We use Gauss-Hermite quadrature to discretize continuous Hermite poly-
nomials. A correct use of the discrete Hermite moments (DHMs) for numerical experiments is presented.

1. Introduction

The paper [1], that appeared in the May 2017 issue of this journal,
introduced a new kind of image moments called Tchebichef-Hermite
moments (THMs)" and proposed their usage in image analysis. The au-
thors of [1] pointed out that the THM method not only inherits common
advantages of these discrete orthogonal moments to deal with some
fundamental challenges during the analytical process of different kinds of
3D spectra, but also has its unique superiority in information extraction
ability that simplify the determination of optimum maximal orders in
moment methods.

However, the above statement is highly misleading. In Ref. [1], two
very important points are mentioned mistakenly. First, the THMs are
actually not discrete orthogonal moments. Moreover, the proposed
formulation is so unstable. Here, “stability” means the limitation of the
dynamic range of the computed moments which exhibits a convergence
behaviour when trying to reconstruct the signal from its moments. The
method [1] is based on Tchebichef moments, that were introduced to
image analysis community by Mukundan [2] and the well-known Her-
mite polynomials, which are also popular but which are orthogonal in a
continuous domain [3,4]. The authors of [1] merged a discrete orthog-
onal polynomial with a continuous orthogonal polynomial to find a new
discrete orthogonal moment. This is incorrect and does not make sense
for digital images, because any orthogonal polynomial must be dis-
cretized to act as an image feature generator.
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The aim of this paper is to distinguish between the continuous and
discrete polynomials with respect to their orthogonality and, conse-
quently, to show how the discretization of orthogonal Hermite poly-
nomials can be performed correctly. We believe this could be helpful for
the readers who want to use the method proposed in Ref. [1].

2. Discretization of Hermite polynomials

Classical continuous Hermite polynomials H,(x) are orthogonal on
(—o0, +00) with respect to weight function w(x) = e™" as

fir:H,, () H,(x)e " dx = 2"1)\/TSpm, (@))

where &, is the Kronecker delta. As the authors of [1] correctly pointed
out, Hermite polynomials are not orthonormal. To make them ortho-
normal, the normalization proposed in Ref. [4] can be applied

H,(x) = L(X) )
V2@

To discretize these continuous polynomials, we use Gauss-Hermite
quadrature which is an approximation of the definite integral of a func-
tion, usually stated as a weighted sum of function values at specified
points within the domain of integration. In this case
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1 English spelling of the surname of that Russian mathematician should be Chebyshev rather than Tchebichef. The latter form comes from the French transcription.
In this paper, we keep the form Tchebichef, which was used in Ref. [1], for the sake of consistency.
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where N is the number of sample points used. The x; are roots of Hermite
polynomial H,(x), and the associated weights w; are defined as
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Using the Gauss-Hermite quadrature rule converts the continuous
orthogonality of Hermite polynomials to a discrete orthogonality as

N-1
H, (35) Hy (3:) w (35, N) = p (1, N) . )
=0
where w and p are the weight and norm functions
1 2n—N+] n!NZ
WG N) = ———— 5, N) = ®)
T N!

Eq. (4) expresses the discrete weighted orthogonality of Hermite poly-
nomials. To achieve discrete orthonormality, we introduce weighted
discrete Hermite polynomials defined by

- B w(xj,N)
Hi () = Ha () PN ®)
Eq. (4) then becomes
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The graphs of the normalized continuous and weighted discrete
Hermite polynomials are shown in Fig. 1. The upper graphs illustrate the
low-order Hermite polynomials up to degree four. The curves at the
bottom show the high-order Hermite polynomials from degree 45 to 49.
In both cases of the discrete Hermite polynomials which are shown in
Fig. 1(b) and (d), the number of sample points was 50. It can be seen from
the graphs that the number of roots of the low order normalized
continuous Hermite polynomials are the same as the number of roots of
the high order weighted discrete Hermite polynomials. For example,
both Hy(x) and Hys(x;) have four roots.

3. Discrete-Hermite moments (DHMs) vs. Tchebichef-Hermite
moments (THMs)

As we mentioned in the introduction, the proposed THMs in Ref. [1]
are not correct. The authors of that reference claimed that the THMs are
in the category of discrete orthogonal moments which is not true. They
also tried to combine the advantages of the Tchebichef and the Hermite
moments but in their formulation, they only used the Hermite poly-
nomials in continuous form in both dimensions (from the text and the
terminology of [1], according to a widely-accepted nomenclature of
moments, the reader would expect a combination of Hermite poly-
nomials in one dimension and Tchebichef polynomials in the other one)
with the normalized factor of the Tchebichef polynomials p(n,N) (see
Egs. (5) and (6) of [1]). There is no mathematical justification of this
approach and it is not clear what the authors believe is the benefit of that.
Here, we show the correct form of the Hermite moments in discrete
domain instead of their simple continuous forms. Since there is no
combination between Tchebichef and Hermite moments in Ref. [1], we
propose the discrete-Hermite moments (DHMs) as a new basis for 1D/2D
signals analysis.
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Fig. 1. Comparison between the discrete continuous Hermite polynomials for low and high orders: (a) normalized continuous Hermite polynomials up to 4% order, (b)
weighted discrete Hermite polynomials up to 4% order (N = 50), (c) normalized continuous Hermite polynomials from order 45 up to 49 and (d) weighted discrete

Hermite polynomials from order 45 up to 49 (N = 50).
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Fig. 2. Moment value distribution of a 1D signal with the length of 60 samples: (a) 1D signal quantized into [0, 1], (b) THMs distribution in logarithmic scale (purple)
and DHMs distribution (red) for the signal in (a), (¢) 1D signal quantized into [0, 255], (d) THMs distribution in logarithmic scale (purple) and DHMs distribution (red)
for the signal in (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Thanks to their discrete orthogonality and even orthonormality (see
Eq. (7)), discrete normalized Hermite polynomials FI,,(xl-) can be effi-
ciently used in 2D signal/image analysis. We define DHMs as the “’pro-
jections” of discrete signal f onto the set of discrete normalized Hermite
polynomials. We can apply this approach in arbitrary dimensions.
Particularly, in 2D we have

N-1 M-1
DHMn,m(f) = Z Hn (xi)Hm (xj)f(iaj)7 (8)
=0 j=0
n=01,...N—-1 ; m=0,1,....M—1.

DHMs may serve as the signal features/signatures. They provide a
complete description of the signal, which means the original signal can
be precisely reconstructed from them. Due to the orthogonality, the
reconstruction is very simple since
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Fig. 3. Moment distribution of a 2D binary image: (a) the letter “E” of size 16 x 16, (b) THMs distribution, (c) DHMs distribution.

1061 = 3 > Hyl5) o (5) DHM, ). ©)

Eq. (9) is in fact an inverse moment transformation. Stability of the
inverse transformation is a very important indicator of the usefulness of
the descriptors. Although the reconstruction itself is not the main goal
(the main goal is a signal recognition by means of the descriptors), it
illustrates and measures the recognition abilities of the descriptors. The
possibility of a precise reconstruction is a proof that any two distinct
signals can be discriminated. On the other hand, if the reconstruction is
unstable, erroneous or even impossible, the recognition power of the
descriptors is limited. The authors in Ref. [1] neither presented a
reconstruction formula for their proposed THMs nor showed up any
reconstruction experiment. We derived the formula analogous to Eq. (9)
for THMs. However, since the kernel of their method includes two
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continuous polynomials {H,(x)H,(y)} which are applied in a discrete
double summation, the signal reconstruction from THMs is unstable, as
we demonstrate in the next section.

4. Numerical experiments
4.1. Dynamic range of the moments

In the first experiment, we illustrate that the dynamic range of THMs
is extremely high while that of DHMs is kept in a reasonably small in-
terval. Due to this fact, we face precision loss of THMs in high values,
which consequently contributes to wrong signal reconstruction.

We used two different discrete 1D signals with the same length of 60
samples. The range of amplitudes of these signals is [0,1] and [0, 255],
respectively, as is shown in Fig. 2(a) and (c). Fig. 2(b) and (d) compare
the moment distribution for the proposed DHMs and THMs. In Fig. 2(b),
the purple plot shows the values of the THMs of the first signal in the
logarithmic scale and the red plot shows the values of the DHMs. It is
clear from the graphs that the THMs are growing from 0 to extremely
high values such as 107® while the DHMs are bounded on [ — 1, 1]. If the
input signal has been quantized into [0, 255], the situation is similar — the
THMs are growing to 108! but the proposed DHMs are still within [—
250, 250] (see Fig. 2(d)).

For 2D signals, which we are mostly interested in, this effect is even
more prominent. To illustrate that, we took a binary 16 x 16 image of
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capital E (see Fig. 3(a)) and computed its THMs and DHMs up to order 16.
For the moment distributions, see Fig. 3(b) and (c).

4.2. Signal reconstruction

To show different reconstruction and recognition abilities of THMs
and DHMs, we carried out the following experiments.

First, we used 1D signal from Fig. 2(a). We calculated DHMs up to
order 60, which should theoretically provide a possibility of loss-less
reconstruction. We reconstructed the original signal by means of Eq.
(9) using various moment orders. Fig. 4(b)-4(i) illustrate the recon-
structed signals if DHMs up to the order of 60, 59, 50, 40, 30, 20, 10 and
1, respectively, were used. For the order 60, the reconstruction is precise;
for lower orders the precision slowly decreases.

Fig. 5 shows the same experiment using the THMs. It can be seen from
Fig. 5(b) that even the complete set of THMs yields a totally wrong
reconstruction due to the precision loss in moment computation.

In the second experiment, we performed the reconstruction test for
the binary image of “E” as showed in Fig. 3(a). Table 1 illustrates the
image reconstruction using the proposed DHMs. The maximum moment
orders, used for the reconstruction, were from 1 to 16. In Table 1, we
also present the reconstruction error for each moment order. Table 2
shows the same experiment using the THMs. As we can see, the recon-
struction errors are much higher than in the case of DHMs and do not
decrease if we increase the moment order, which contradicts the
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Fig. 4. 1D signal reconstruction using the DHMs with different maximum order of moments: (a) original signal, (b) reconstruction from DHMs up to the order 60, (c)
order 59, (d) order 50, (e) order 40, (f) order 30, (g) order 20, (h) order 10 and (i) order 1.
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Fig. 5. 1D signal reconstruction using the THMs with different maximum order of moments: (a) original signal, (b) reconstruction from THMs up to the order 60, (c)
order 59, (d) order 50, (e) order 40, (f) order 30, (g) order 20, (h) order 10 and (i) order 1.

Table 1

Image reconstruction of capital “E” of size 16 x 16 from orders 0 to 16 with their reconstruction errors using the proposed DHMs.

Original image

image

Max. order 15 12

Recons. error 0.0000 0.9400 0.9435 0.9476 0.9520 0.9784 0.9820 0.9895
Max. order 8 7 6 3 2

Recons. error  0.9901 0.9949 0.9963 0.9989 0.9991 0.9992 0.9997 0.9998

(continuous) theory.
5. Conclusion

The contribution of this paper is twofold. First, we pointed out and

87

corrected the mathematical mistakes that appeared in Ref. [1]. We
explained how Hermite polynomials should be applied in a discrete
domain. Second, we demonstrated that the discrete orthogonality of the
polynomials leads to much higher numerical precision than the approach
proposed in Ref. [1]. Consequently, the proposed DHMs perform
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Table 2
Image reconstruction of capital “E” of size 16 x 16 from orders 0 to 16 with their reconstruction errors using THMs.

Original image . image
Max. order

Recons. error 0.9890 0.9879 0.9867 0.9852 0.9834 0.9812 0.9785 0.9751

Max. order 7 6 5

Recons. error  0.9706 0.9646 0.9561 0.9435 0.9231 0.8868 0.8167 1.0000

incomparably better than the THMs from Ref. [1] in signal/image References
reconstruction and recognition.
[1] B.Q. Li, S.H. Lu, X. Wang, M.L. Xu, H.L. Zhai, Tchebichef-Hermite image moment
method: a novel tool for chemometric analysis of three-dimensional spectra,
ACkn()Wledgment Chemometr. Intell. Lab. Syst. 167 (Supplement C) (2017) 36-43.
[2] R. Mukundan, S. Ong, P.A. Lee, Image analysis by Tchebichef moments, IEEE Trans.

Barmak Honarvar has been financially supported by the Czech Sci- lmalge Process. }0 9 (2001)21357;1364 nalveie b il

. . Flusser, T. B. Zitovd, 2D and 3D Imz alysis by M s i
ence Foundation under the Grant No. 18-26018Y. Jan Flusser has been 3] éonsuq;(e);’() Suk, B. Zitova, 2D and 3D Image Analysis by Moments, John Wiley &
ﬁnancially supported by the Czech Science Foundation under the Grant [4] B. Yang, M. Dai, Image reconstruction from continuous Gaussian-Hermite moments

No. 18-07247S. Jan Flusser thanks the Joint Laboratory SALOME 2 for implemented by discrete algorithm, Pattern Recogn. 45 (4) (2012) 1602-1616.
non-financial support.

88


http://refhub.elsevier.com/S0169-7439(18)30034-0/sref1
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref1
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref1
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref1
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref1
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref2
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref2
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref2
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref3
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref3
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref3
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref4
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref4
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref4
http://refhub.elsevier.com/S0169-7439(18)30034-0/sref4

	Discrete Hermite moments and their application in chemometrics
	1. Introduction
	2. Discretization of Hermite polynomials
	3. Discrete–Hermite moments (DHMs) vs. Tchebichef–Hermite moments (THMs)
	4. Numerical experiments
	4.1. Dynamic range of the moments
	4.2. Signal reconstruction

	5. Conclusion
	Acknowledgment
	References


