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ABSTRACT 2. VECTOR FIELDS AND THEIR

Vector field (VF) is a special kind of multidimensional data. TRANSFORMATIONS

In each pixel, VF contains information about the directiod a By a total transformation we understand any transformation

the magnitude of the measured quantity. To detectthe patterin the vector field space, which acts simultaneously in spa-

of Ilntergs;[/\lln the field, spectlﬁl r(;]?tcmngdmetho?s mus(,jt be ?eﬁal and function domains. Even if this definition can be used
veloped. We propose a method for the description and ma Cf1]c3rarbitrary (non-linear) transformations, in this paperre-
ing of VF patterns under an unknown affine transformatlonstrict to linear ones

of the field. Unlike digital images, transformations of VFs Definition 1: Let A and B be regular matrices arfdoe

act not onl_y on the spatial coor_dlnat_es but also on the flel% vector field. The transformatidn- f, where
values, which makes the detection different. To measure the
similarity between the template and the field patch, we pro- f'(x) = Bf(A™1x) 1)

pose original invariants with respect to affine transfoiorat
designed from moments. Their performance is demonstrated calledindependent total affine transformatiaf field f.

by experiments on real data from fluid mechanics. Matrix A is calledinner transformation matrix (or just inner
Index Terms— Vector field, total transformation, affine transformation), while matri is calledouter transforma-
invariants, template matching, vector field moments tion matrix.

In reality, vector fields are mostly transformed by a sim-
pler transformation than (1) in which = B. Such a model is
calledspecial total affine transformatioend captures one of
2D vector fieldf(x) can be mathematically described as a paighe basic properties of vector f'?lds —if th_e f'.eld Is transfed
of scalar fieldsf(x) — (f1(x), fo(x)). At each pointx — in the space domain, the function domain (i.e. the vector val

- 1 vJ2 . — . . . .
(2, ), the value off(x) shows the orientation and the mag- ues) is transformelly the same transformatio his consti-

nitude of the measured vector. Scalar figléx) can be un- }ﬁzse‘; S\I,(C,]lerggnitsdiizrctehz?&;;ﬁnsgf\%m;:ontigigg::
derstood as a graylevel image. ges, y y y

A common task in the vector field analysis is the detectiontranSfOrmatlon Is effective.

of various patterns of interest. It comprises not only ditec
of singularities such as sinks, vortices and saddle pouts b 3. LITERATURE SURVEY
also detection of patterns which are not specific but are sim-
ilar to the pattern stored in the database. The detection d@lthough affine invariants of vector fields have never been
the patterns of interest is typically accomplishedémplate  studied, there are still two categories of papers conndoted
matching The search algorithm must be primariwariant  our currentwork: papers on rotation invariants of vectddéie
with respect to all possible pattern deformations whichithig and papers on affine invariants of scalar and color images.
be present. The problem of finding vector field invariants to total ro-
In this paper, we assume the template deformations ca@ation was raised for the first time by Schlemmer et al. [1].
be modeled by so callemtal affine transformatiofTAFT).  Rotation invariants from geometric complex moments have
We propose moment-based invariants w.r.t. TAFT, which cafiound several applications. Liu and Ribeiro [2] used them to
be efficiently used for template matching in vector fields. ~ detect singularities on meteorological satellite imadesis
ing wind velocity and Liu and Yap [3] applied them to the
This work was supported by the Czech Science Foundatiom{®la.

GA18-07247S) and by the Grant Agency of the Czech Technicaldusity !nd(?xmg and recognition Of. flnge_rprlnt '".‘ages' A general-
(Grant No. SGS18/188/0HK4/3T/14). We thank Professor Matiaw-  iZation to more than two dimensions using tensor contrac-

itschka for providing the Karman vortex street data. tion was proposed by Langbein and Hagen [4]. Bujack et al.
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[5] showed that the invariants can be derived also by means The combination of both constructions stated above leads
of the field normalization approach. Yang et al. improvedto the definition
the numerical stability of the invariants by using orthogbn

o] oo

Gaussian-Hermite [6] and Zernike [7] moments. Most re- B
cently, Bujack [8] introducedlexible basisof the invariants V() = / / H Ck;] 'ijl‘w H deidy; . (4)
to avoid moments that vanish on the given templates. In all “oo “oo k=1 =1
these papers, the authors considered the total rotatiomimod
only. V (f) is a relative invariant as
In contrast to the above group of papers on vector field ro-
tation invariantsaffine moment invariant&\MI) of graylevel V(") = JpJH|Jal"V (£), (5)

images have been studied in hundreds of papers and books

[9, 10, 11, 12, 13, 14]. Special AMIs were proposed for colotherev = 3 vi; andw = 3 ng; . The numbew is called
images [15, 16, 17]. weightof the invariant an@uv is its degree

To eliminateJ4 and.Jg and obtain an absolute invariant,
we have to normalize the relative invariant (4) by proper pow
ers of other two relative invariants such that both Jacabian
In this section, we proposeector field moment invariants 9€t canceled. Il = B, the normalization factor consists of
w.r.t. total affine transformatioVFAMI). The invariants are @ Single invariant only.
functions of geometric moments of the field. In case of 2D  If used extensively with many various parameters, equa-
vector fieldf with componentsf; and f, we may use stan- tion (4) yields a huge number of redundant invariants. The

4. CONSTRUCTION OF VFAMI

dard geometric scalar moments [18] given as first step to eliminate the redundancy is thatf) must be
composed solely of moments of fidlldConsidering all possi-

_ T 7 ble index pairgk, j), each of the pointér1, 1), . . ., (zr, yr)

m{l) = / / 2Pyt fi(z,y)dedy. (2)  must be involved just once in afi,;'s used. Hence, anyj;

can only equal 0 or Iy = /2 (r must be even), and,; = 0

o ) for all k& > j (this constraint is becausg,; = —Fj, and
Let us for simplicity assume thdtis compactly supported f,, — ). If vk; = 1, theNvm; = Vjm = Vkm = Vi = 0

and bothf; are piecewise continuous. Under these assumior a| index pairs different frontk, ;).

tions, all momentsny, of indicesp, ¢ = 0,1,2, ... are well- We may notice, that generating VFAMIs from Eq. (4),

defined and completely characterize fiéld even if the choice ofy; has been constrained as mentioned
We need to achieve invariance w.r.t. both inner and outeghove, leads to many invariants which are identically zero o

transformation. FirSt, to ensure the invariance to innamsr which are somehow dependent on the other invariants that

form, we use the method proposed in [9] and further elabohave been obtained from Eq. (4) with other settings of the

rated in [10]. parameters. Dependent invariants do not contribute to the
Let us consider two arbitrary points; = (z;,¥:), recognition power of the system and only increase the dimen-

i € {1,2}, from the support of. Let us denote the "cross- sjonality of the invariant set. It is highly desirable to idiéy

product” of these points aS12 = x1y2 — z2y: . GEOMetric  them and exclude them from the set.

meaning ofC'y, is the oriented double area of the triangle,  As an example, we show four simple VFAMIs in explicit

whose vertices arér:,y1), (¢2,92), and(0,0). After an  forms below; hundreds of other invariants generated from

affine transformationx’ = Ax has been applied, the cross- gq. (4) can be found on the web page [19].

product is transformed aS7, = Ja - C1a, WhereJy = The simplest non-trivial choice is= 2 andn, = v1, =

det( A) is the Jacobian of the transformation. This proves thail which yields

C12 is a relative invariant with respect to inner transforma-

tion A. Now we consider various numbers of poilis, ;)

and we integrate their cross-products over the suppoft of

These integrals can be expressed in terms of moments a . _ . o

after eliminating the Jacobian by a proper normalizatibeyt "fhe choice of - 2,12 = 1 andna, = 3yields

yield absolute affine invariants. (2 (2 N (2 (2
The invariance to outer transformation can be reached V> = mig/miy = 3miy)mi3) + 3miy myy —miglmig)

when using "component cross-products?; instead ofCy;

—00 —00

b, (2) (), (1)
0

_
Va = myymy, —mygmgy -

The parameters = 2, v15 = 1 andnis = 5 lead to the
Fij = fi(er,y) fo(j,95) — fi(xg,5) folew,ye) . (3)  Invariant
1,2

F; is arelative invariant w.r.t. outer affine transformatien a Ve = mgimgy — SmEfl)m,ﬁ) + 10m§12)m§§)
Fléj =Jg- ij , WhEI'EJB = det(B) _1omég)mg22> 4 5m$1)m4(121) _ mg}))mé%)
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The proof of all above statements follows immediately from
Eqg. (4) and from the definition of the corresponding graphs.

— We can see that the problem of generating all invariants is
equivalent to finding all connected bi-layer graphs, sgitisf
(@) (b) (c) (d) the constraints 1 —5. An algorithm for a systematic genenati

) o ) of all such graphs can be found on the webpage [19].
Fig. 1. The graphs representing invariaimis V;, V. and V.
The edges belonging 5, are shown in black, magenta edges
belong toFEs.

6. NUMERICAL EXPERIMENTS

If we chooser = 4, Uig =34 =1 andn12:n13:n24:n34:1,
ny; = 0 otherwise, we obtain

1 2 D (1) (2 (2

= o)
Hmirdnand nin )

—4(myy )2m20 Mgy + 4myy mgy Mo myy’ —

(miy)2 ()2

5. VFAMIAND BI-LAYER GRAPHS Fig. 2. The Karman vortex street with the template selected

In this section, we establish the correspondence betwedR" template matching.

VFAMIs generated by Eq. (4) artd-layer graphs

Definition 2: LetV be a set of vertices (nodes) aBg, F» In this experiment, we demonstrate the applicability of the
be sets of edgess = (V; Ey, E,) is called abi-layer graph ~ proposed invariants in an important problem from fluid dy-
onV. GraphGy = (V; Ey) is called thek-th layerof graph namics engineering — vortex detection in a fluid flow vector
G. field. We used the field showing the Karman vortex street,

An arbitrary invariant generated by Eq. (4) can be reprewhich is a repeating pattern of swirling vortices causedhay t
sented by a bi-layer graph as follows. Each pdint, v ) flow of a fluid around blunt bodies. In the Karman pattern, we
corresponds to a graph node, so we hamedes. Each cross- €an see several vortices arranged into two rows. The orienta
productCy,; corresponds ta;; edges of the first layer con- tion of the “street” is give_n py the main flow direction and is
necting thekth andjth nodes. The second layer is constructeddenerally not known a priori.

in a similar way — each intensity cross-produgt; corre- A patch with a typical vortex is used as atempla}te. In this
sponds tovg; edges. In Fig. 1, we can see the graphs reptaSk we used a vortex from the lower row (see Fig. 2), but
resenting invariant®, V;,, V. andV;, from Section 4. generally, the template may be extracted from anotheraimil

We can immediately make several simple statementlield. To simulate this, we deformed the field (the template
about the bi-layer graphs that represent VFAMIs from Eq. (4)was not deformed) by special TAFT with = B which com-
) prised anisotropic scaling with factors 5/4 and 7/4, respec
1. The number of nodes is even. tively (the TAFT parameters were of course not revealed to
2. Gl is amumgraph it may contain mu|t|p|e edges_ the matching algorlthm) The task is to find all vortices of
a similar shape modulo TAFT. Hence, our aim is to find the
3. InGy, all nodes have degree one.rlf> 2, thenGa is  |ower row of vortices. The search is performed in the space of

not a connected graph. invariantsV;, up to the specified order/weight. We search for

4. Neither layer is a directed graph. a:ldlocal minima of/s-distance below a user-defined thresh-
old.

5. Neither layer contains self-loops. In Fig. 3, we can see the matching results in a single

6. If G is not connected, then the corresponding invariantﬁ‘rl"rm"’t‘.n street_fr?me_ fotLtwlo different Sca“nc? ffcttorjrmbt
is a product of several simpler invariants, which corre-? ”vor |ﬁes, EXISting In th€ lower row, were detec eh sssee

spond to each connected componentof u y.'T € upper row was not detected', becguset e vortices

are flipped comparing to the lower row (if desirable, thisldou

7. Any invariant of the form (4) is in fact a sum, where be easily overcame by taking magnitudes of the invariants).
each term is a product efmoments. The order of the In order to perform an objective error analysis and to get
moments is preserved in all terms. The moment orderstatistical significance, we used a 300-frame video, shgwin
contained in a single term are the same as the degreése time-development simulation of the Karman street. We
of all vertices inGG. used the same vortex template as before and matched it to
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Fig. 3. Detected vortices by means of VFAMIs in the deformed fieldggotropic scaling by 5/4 and 7/4 horizontally, respec-
tively).

each frame individually. To avoid error propagation, n@inf  better than in the 7/4 case and why the invariants of weight 6
mation from the previous frames was used. In each frame, thend 7 do not improve the accuracy in the latter case. In this
algorithm identified from 15 to 20 vortices, which are simi- simulated case we could took the exact ellipses and improve
lar to the template. The videos with the vortex tracking forthe accuracy a lot but this would be unrealistic in practioe: a
various scaling and choice of maximal weights are at [20]. unfair.

To evaluate the accuracy, we measured the localization er-
ror of each vortex in each frame. The ground truth positions
were deduced from the fluid mechanics theory, which guar-
antees (under ideal conditions) the equidistant placemient
the vortices (this assumption, however, works approxiipate
only in the first half of the street; the second half behaves di
ferently and the ground-truth positions could not be estitia
there).

We measured the absolute localization errors of all tem-
plates in the first half of each frame. We noticed there are
two kinds of errors -gross errors when the template local- max. weight|| # matches  FN FP| mean
ization error is greater than 10 pixels, asrdall errors which 1688 1800 168 —
are normally distributed errors im andy not far from the 1870 454 524| 4.107
ground-truth location. The absolute "small” localizatier 1929 266 395! 4.055
rors in 2D follow Rayleigh distribution and we evaluate them 2053 381 634| 4171
by their mean. To evaluate the gross errors, we just counted 2268 319 787! 4.114
false positives (FP), i.e. the templates that were fourtti¢ar
than 10 pixels from the expected position, and false neggitiv Table 2. Matching statistics on the scale 7/4.
(FN), i.e. the cases when no template was found in the 10
pixel neighborhood of the expected position. The erroisstat
tics is summarized in Tables 1 and 2.

From these tables, we can make several conclusions. The
first one is that the proposed invariants are actually aldeto

max. weight| # matches FN  FP| mean
1748 343 291 6.673
1823 109 132 5.775
2030 81 311| 4.002
1840 96 136| 3.859
2082 82 364| 3.816

~NOo ok w

Table 1. Matching statistics on the scale 5/4.

~NOoO 0ok~ W

7. CONCLUSION

. . This paper introduced invariants of vector fields w.r.t. to-
tect templates in the VF which has undergone a TAFT. Th al affine transformation based on the moments of the vector

second observation is that the number of both FP and FN ﬁeld. The behavior of VFs under TAFT is significantly differ-

relatively high. This is caused by the choice of the neigh- . - .
. . . nt from lar an lor im nder affine transform n
borhood the invariants are calculated from. Since the TAF'F t from scalar and color images under affine transformatio

arameters were considered unknown. the neiahborhood Wand the traditional techniques cannot be used. We demon-
P ! 9 Qated the performance of the invariants on template match

aIv;/ayls a .C'Lctl)e %f thg Sﬁ mel dS|bze as tn.e temt[;Iate_. I-IIO\évever, ﬂ?ﬁg on the real data from fluid dynamics. However, the choice
actuai neighbornood snould be an ipse (the circle ™M of the neighborhood the invariants are calculated fromilis st
by matrix A). Since the invariants were calculated from non-

g . . an open problem.
corresponding patches, we obtained many mismatches. This

also explains why the detection in the 5/4 case was detected
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