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ABSTRACT

Vector field (VF) is a special kind of multidimensional data.
In each pixel, VF contains information about the direction and
the magnitude of the measured quantity. To detect the patterns
of interest in the field, special matching methods must be de-
veloped. We propose a method for the description and match-
ing of VF patterns under an unknown affine transformation
of the field. Unlike digital images, transformations of VFs
act not only on the spatial coordinates but also on the field
values, which makes the detection different. To measure the
similarity between the template and the field patch, we pro-
pose original invariants with respect to affine transformation
designed from moments. Their performance is demonstrated
by experiments on real data from fluid mechanics.

Index Terms— Vector field, total transformation, affine
invariants, template matching, vector field moments

1. INTRODUCTION

2D vector fieldf(x) can be mathematically described as a pair
of scalar fieldsf(x) = (f1(x), f2(x)). At each pointx =
(x, y), the value off(x) shows the orientation and the mag-
nitude of the measured vector. Scalar fieldfi(x) can be un-
derstood as a graylevel image.

A common task in the vector field analysis is the detection
of various patterns of interest. It comprises not only detection
of singularities such as sinks, vortices and saddle points but
also detection of patterns which are not specific but are sim-
ilar to the pattern stored in the database. The detection of
the patterns of interest is typically accomplished bytemplate
matching. The search algorithm must be primarilyinvariant
with respect to all possible pattern deformations which might
be present.

In this paper, we assume the template deformations can
be modeled by so calledtotal affine transformation(TAFT).
We propose moment-based invariants w.r.t. TAFT, which can
be efficiently used for template matching in vector fields.
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2. VECTOR FIELDS AND THEIR
TRANSFORMATIONS

By a total transformation we understand any transformation
in the vector field space, which acts simultaneously in spa-
tial and function domains. Even if this definition can be used
for arbitrary (non-linear) transformations, in this paperwe re-
strict to linear ones.

Definition 1: Let A andB be regular matrices andf be
a vector field. The transformationf → f′, where

f
′(x) = Bf(A−1

x) (1)

is called independent total affine transformationof field f.
Matrix A is calledinner transformation matrix (or just inner
transformation), while matrixB is calledouter transforma-
tion matrix.

In reality, vector fields are mostly transformed by a sim-
pler transformation than (1) in whichA = B. Such a model is
calledspecial total affine transformationand captures one of
the basic properties of vector fields – if the field is transformed
in the space domain, the function domain (i.e. the vector val-
ues) is transformedby the same transformation. This consti-
tutes a significant difference from transformations of scalar
images, whereB is usually the identity and only the inner
transformation is effective.

3. LITERATURE SURVEY

Although affine invariants of vector fields have never been
studied, there are still two categories of papers connectedto
our current work: papers on rotation invariants of vector fields
and papers on affine invariants of scalar and color images.

The problem of finding vector field invariants to total ro-
tation was raised for the first time by Schlemmer et al. [1].
Rotation invariants from geometric complex moments have
found several applications. Liu and Ribeiro [2] used them to
detect singularities on meteorological satellite images show-
ing wind velocity and Liu and Yap [3] applied them to the
indexing and recognition of fingerprint images. A general-
ization to more than two dimensions using tensor contrac-
tion was proposed by Langbein and Hagen [4]. Bujack et al.
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[5] showed that the invariants can be derived also by means
of the field normalization approach. Yang et al. improved
the numerical stability of the invariants by using orthogonal
Gaussian-Hermite [6] and Zernike [7] moments. Most re-
cently, Bujack [8] introducedflexible basisof the invariants
to avoid moments that vanish on the given templates. In all
these papers, the authors considered the total rotation model
only.

In contrast to the above group of papers on vector field ro-
tation invariants,affine moment invariants(AMI) of graylevel
images have been studied in hundreds of papers and books
[9, 10, 11, 12, 13, 14]. Special AMIs were proposed for color
images [15, 16, 17].

4. CONSTRUCTION OF VFAMI

In this section, we proposevector field moment invariants
w.r.t. total affine transformation(VFAMI). The invariants are
functions of geometric moments of the field. In case of 2D
vector fieldf with componentsf1 andf2 we may use stan-
dard geometric scalar moments [18] given as

m(i)
pq =

∞∫

−∞

∞∫

−∞

xpyqfi(x, y) dxdy . (2)

Let us for simplicity assume thatf is compactly supported
and bothfi are piecewise continuous. Under these assump-
tions, all momentsm(i)

pq of indicesp, q = 0, 1, 2, . . . are well-
defined and completely characterize fieldf .

We need to achieve invariance w.r.t. both inner and outer
transformation. First, to ensure the invariance to inner trans-
form, we use the method proposed in [9] and further elabo-
rated in [10].

Let us consider two arbitrary pointsxi = (xi, yi),
i ∈ {1, 2}, from the support off . Let us denote the ”cross-
product” of these points asC12 = x1y2 − x2y1 . Geometric
meaning ofC12 is the oriented double area of the triangle,
whose vertices are(x1, y1), (x2, y2), and (0, 0). After an
affine transformationx′ = Ax has been applied, the cross-
product is transformed asC′

12 = JA · C12, whereJA =
det(A) is the Jacobian of the transformation. This proves that
C12 is a relative invariant with respect to inner transforma-
tion A. Now we consider various numbers of points(xi, yi)
and we integrate their cross-products over the support off .
These integrals can be expressed in terms of moments and,
after eliminating the Jacobian by a proper normalization, they
yield absolute affine invariants.

The invariance to outer transformation can be reached
when using ”component cross-products”Fkj instead ofCkj

Fkj = f1(xk, yk)f2(xj , yj)− f1(xj , yj)f2(xk, yk) . (3)

Fkj is a relative invariant w.r.t. outer affine transformation as
F ′

kj = JB · Fkj , whereJB = det(B).

The combination of both constructions stated above leads
to the definition

V (f) =

∞∫

−∞

· · ·

∞∫

−∞

r∏
k,j=1

C
nkj

kj · F
vkj

kj ·

r∏
i=1

dxi dyi . (4)

V (f) is a relative invariant as

V (f ′) = Jv
BJ

w
A |JA|

rV (f) , (5)

wherev =
∑

vkj andw =
∑

nkj . The numberw is called
weightof the invariant and2v is its degree.

To eliminateJA andJB and obtain an absolute invariant,
we have to normalize the relative invariant (4) by proper pow-
ers of other two relative invariants such that both Jacobians
get canceled. IfA = B, the normalization factor consists of
a single invariant only.

If used extensively with many various parameters, equa-
tion (4) yields a huge number of redundant invariants. The
first step to eliminate the redundancy is thatV (f) must be
composed solely of moments of fieldf . Considering all possi-
ble index pairs(k, j), each of the points(x1, y1), . . . , (xr , yr)
must be involved just once in allFkj ’s used. Hence, anyvkj
can only equal 0 or 1,v = r/2 (r must be even), andvkj = 0
for all k ≥ j (this constraint is becauseFkj = −Fjk and
Fkk = 0). If vkj = 1, thenvmj = vjm = vkm = vmk = 0
for all index pairs different from(k, j).

We may notice, that generating VFAMIs from Eq. (4),
even if the choice ofvkj has been constrained as mentioned
above, leads to many invariants which are identically zero or
which are somehow dependent on the other invariants that
have been obtained from Eq. (4) with other settings of the
parameters. Dependent invariants do not contribute to the
recognition power of the system and only increase the dimen-
sionality of the invariant set. It is highly desirable to identify
them and exclude them from the set.

As an example, we show four simple VFAMIs in explicit
forms below; hundreds of other invariants generated from
Eq. (4) can be found on the web page [19].

The simplest non-trivial choice isr = 2 andn12 = v12 =
1, which yields

Va = m
(1)
10 m

(2)
01 −m

(2)
10 m

(1)
01 .

The choice ofr = 2, v12 = 1 andn12 = 3 yields

Vb = m
(1)
30 m

(2)
03 − 3m

(1)
21 m

(2)
12 + 3m

(1)
12 m

(2)
21 −m

(1)
03 m

(2)
30 .

The parametersr = 2, v12 = 1 andn12 = 5 lead to the
invariant

Vc = m
(1)
50 m

(2)
05 − 5m

(1)
41 m

(2)
14 + 10m

(1)
32 m

(2)
23

−10m
(1)
23 m

(2)
32 + 5m

(1)
14 m

(2)
41 −m

(1)
05 m

(2)
50 .
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Fig. 1. The graphs representing invariantsVa, Vb, Vc andVd.
The edges belonging toE1 are shown in black, magenta edges
belong toE2.

If we chooser = 4, v12 = v34 = 1 andn12=n13=n24=n34=1,
nkj = 0 otherwise, we obtain

Vd = −(m
(1)
20 )

2(m
(2)
02 )

2 + 4m
(1)
20 m

(1)
11 m

(2)
11 m

(2)
02

+2m
(1)
20 m

(1)
02 m

(2)
20 m

(2)
02 − 4m

(1)
20 m

(1)
02 (m

(2)
11 )

2

−4(m
(1)
11 )

2m
(2)
20 m

(2)
02 + 4m

(1)
11 m

(1)
02 m

(2)
20 m

(2)
11 −

(m
(1)
02 )

2(m
(2)
20 )

2 .

5. VFAMI AND BI-LAYER GRAPHS

In this section, we establish the correspondence between
VFAMIs generated by Eq. (4) andbi-layer graphs.

Definition 2: LetV be a set of vertices (nodes) andE1, E2

be sets of edges.G = (V ;E1, E2) is called abi-layer graph
onV . GraphGk = (V ;Ek) is called thek-th layerof graph
G.

An arbitrary invariant generated by Eq. (4) can be repre-
sented by a bi-layer graph as follows. Each point(xk, yk)
corresponds to a graph node, so we haver nodes. Each cross-
productCkj corresponds tonkj edges of the first layer con-
necting thekth andjth nodes. The second layer is constructed
in a similar way – each intensity cross-productFkj corre-
sponds tovkj edges. In Fig. 1, we can see the graphs rep-
resenting invariantsVa, Vb, Vc andVd from Section 4.

We can immediately make several simple statements
about the bi-layer graphs that represent VFAMIs from Eq. (4).

1. The number of nodes is even.

2. G1 is amultigraph, it may contain multiple edges.

3. InG2, all nodes have degree one. Ifr > 2, thenG2 is
not a connected graph.

4. Neither layer is a directed graph.

5. Neither layer contains self-loops.

6. If G is not connected, then the corresponding invariant
is a product of several simpler invariants, which corre-
spond to each connected component ofG.

7. Any invariant of the form (4) is in fact a sum, where
each term is a product ofr moments. The order of the
moments is preserved in all terms. The moment orders
contained in a single term are the same as the degrees
of all vertices inG1.

The proof of all above statements follows immediately from
Eq. (4) and from the definition of the corresponding graphs.
We can see that the problem of generating all invariants is
equivalent to finding all connected bi-layer graphs, satisfying
the constraints 1 – 5. An algorithm for a systematic generation
of all such graphs can be found on the webpage [19].

6. NUMERICAL EXPERIMENTS

Fig. 2. The Kármán vortex street with the template selected
for template matching.

In this experiment, we demonstrate the applicability of the
proposed invariants in an important problem from fluid dy-
namics engineering – vortex detection in a fluid flow vector
field. We used the field showing the Kármán vortex street,
which is a repeating pattern of swirling vortices caused by the
flow of a fluid around blunt bodies. In the Kármán pattern, we
can see several vortices arranged into two rows. The orienta-
tion of the “street” is given by the main flow direction and is
generally not known a priori.

A patch with a typical vortex is used as a template. In this
task we used a vortex from the lower row (see Fig. 2), but
generally, the template may be extracted from another similar
field. To simulate this, we deformed the field (the template
was not deformed) by special TAFT withA = B which com-
prised anisotropic scaling with factors 5/4 and 7/4, respec-
tively (the TAFT parameters were of course not revealed to
the matching algorithm). The task is to find all vortices of
a similar shape modulo TAFT. Hence, our aim is to find the
lower row of vortices. The search is performed in the space of
invariantsVk up to the specified order/weight. We search for
all local minima ofℓ2-distance below a user-defined thresh-
old.

In Fig. 3, we can see the matching results in a single
Kármán street frame for two different scaling factors. Almost
all vortices, existing in the lower row, were detected success-
fully. The upper row was not detected, because the vortices
are flipped comparing to the lower row (if desirable, this could
be easily overcame by taking magnitudes of the invariants).

In order to perform an objective error analysis and to get
statistical significance, we used a 300-frame video, showing
the time-development simulation of the Kármán street. We
used the same vortex template as before and matched it to
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Fig. 3. Detected vortices by means of VFAMIs in the deformed fields (anisotropic scaling by 5/4 and 7/4 horizontally, respec-
tively).

each frame individually. To avoid error propagation, no infor-
mation from the previous frames was used. In each frame, the
algorithm identified from 15 to 20 vortices, which are simi-
lar to the template. The videos with the vortex tracking for
various scaling and choice of maximal weights are at [20].

To evaluate the accuracy, we measured the localization er-
ror of each vortex in each frame. The ground truth positions
were deduced from the fluid mechanics theory, which guar-
antees (under ideal conditions) the equidistant placementof
the vortices (this assumption, however, works approximately
only in the first half of the street; the second half behaves dif-
ferently and the ground-truth positions could not be estimated
there).

We measured the absolute localization errors of all tem-
plates in the first half of each frame. We noticed there are
two kinds of errors –gross errors, when the template local-
ization error is greater than 10 pixels, andsmall errors, which
are normally distributed errors inx and y not far from the
ground-truth location. The absolute ”small” localizationer-
rors in 2D follow Rayleigh distribution and we evaluate them
by their mean. To evaluate the gross errors, we just counted
false positives (FP), i.e. the templates that were found farther
than 10 pixels from the expected position, and false negatives
(FN), i.e. the cases when no template was found in the 10
pixel neighborhood of the expected position. The error statis-
tics is summarized in Tables 1 and 2.

From these tables, we can make several conclusions. The
first one is that the proposed invariants are actually able tode-
tect templates in the VF which has undergone a TAFT. The
second observation is that the number of both FP and FN is
relatively high. This is caused by the choice of the neigh-
borhood the invariants are calculated from. Since the TAFT
parameters were considered unknown, the neighborhood was
always a circle of the same size as the template. However, the
actual neighborhood should be an ellipse (the circle deformed
by matrixA). Since the invariants were calculated from non-
corresponding patches, we obtained many mismatches. This
also explains why the detection in the 5/4 case was detected

better than in the 7/4 case and why the invariants of weight 6
and 7 do not improve the accuracy in the latter case. In this
simulated case we could took the exact ellipses and improve
the accuracy a lot but this would be unrealistic in practice and
unfair.

max. weight # matches FN FP mean
3 1748 343 291 6.673
4 1823 109 132 5.775
5 2030 81 311 4.002
6 1840 96 136 3.859
7 2082 82 364 3.816

Table 1. Matching statistics on the scale 5/4.

max. weight # matches FN FP mean
3 1688 1800 1688 –
4 1870 454 524 4.107
5 1929 266 395 4.055
6 2053 381 634 4.171
7 2268 319 787 4.114

Table 2. Matching statistics on the scale 7/4.

7. CONCLUSION

This paper introduced invariants of vector fields w.r.t. to-
tal affine transformation based on the moments of the vector
field. The behavior of VFs under TAFT is significantly differ-
ent from scalar and color images under affine transformation
and the traditional techniques cannot be used. We demon-
strated the performance of the invariants on template match-
ing on the real data from fluid dynamics. However, the choice
of the neighborhood the invariants are calculated from is still
an open problem.
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