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ABSTRACT

Image deblurring is one of the standard problems in image
processing. Recently, this area of research is dominated by
blind deblurring, where neither the sharp image nor the blur
are known. The majority of works, however, target scenarios
where the captured scene is static and the blur is caused by
camera motion, i.e. the whole image is blurred. In this work
we address a similar yet different scenario: an object moves
in front of a static background. Such object is blurred due to
motion while the background is sharp and partially occluded
by the object. The problem of blind deblurring in such setting
has not been properly addressed in literature. We formally
define the problem, discuss its solvability, and explain why
it cannot be viewed as a special case of classical blind de-
blurring. We propose a solution to the presented problem for
a particular class of motions and demonstrate results on real
data.

Index Terms— blind deblurring, object deblurring, mo-
tion estimation, alternating minimization

1. INTRODUCTION

Blind image deblurring (BD), the problem of removing blur
from the observed image without knowing the blur itself, re-
ceived considerable attention by the image processing and
computer vision community in the last two decades. Meth-
ods based on various principles have been proposed and sev-
eral surveys compiled [1, 2]. Early approaches considered
space-invariant cases in which the same blur degrades the
whole image [3, 4, 5, 6, 7, 8]. Later, space-variant scenar-
ios were tackled, such as blur induced by complex camera
motion [9, 10, 11]. Less frequently studied scenario is the
multichannel BD [12, 13, 14], which assumes multiple dif-
ferently blurred images of the same scene. Still, majority
of works target scenario where static scene is blurred due to
camera motion or incorrect focus and very few attempts in-
clude blur due to relative motion of objects and background.
This is a surprising omission considering that objects in mo-
tion commonly appear in diverse real-world images or video
sequences.

The notion of a fast moving object (FMO) was introduced
in the context of object tracking in [15] as an object that
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moves over a distance exceeding its size within the expo-
sure time. In this work we are interested in image deblur-
ring, we therefore relax the definition and denote by FMO any
bounded object that non-negligibly moves over static back-
ground. We refer to the task of restoring the FMO appear-
ance and motion from the input image as the FMO deblurring
problem. Resemblance to BD is evident, yet the two problems
differ in several important ways. In particular, let us empha-
size that FMO deblurring cannot be viewed as a special case
of space-variant deblurring. The acquisition model implies
that the FMO image and background are blended together and
the background is partially occluded by the FMO, which can-
not be modeled by space-variant convolution. Also, in its full
generality, the FMO problem deals with complex object mo-
tion (3D rotation), which is again outside the scope of space-
variant BD. The FMO problem is undoubtedly an interesting
spin-off of image deblurring with clear ties to real-world ap-
plications.

Image blur is commonly considered a nuisance, so the
main goal of BD is to estimate the sharp image and the estima-
tion of blur is only a necessary intermediate step. In the FMO
problem, on the other hand, the blur could be of interest on
its own since it contains information about the object motion.
There are scenarios when the object appearance is known (e.g.
in various ball sports) and estimating motion blur becomes of
primary interest because it enables us to determine the object
trajectory and rotation during exposure.

To our knowledge, the FMO deblurring problem has not
been properly addressed in the literature, which makes this
paper the first attempt in this direction. We focus on a sim-
plification of the full FMO deblurring problem, namely a 2D
object of known shape undergoing arbitrary motion and 2D
rotation. Examples of such scenario is a flat object sliding
on a table. Although the more general 3D case is principally
the same, the increased computational and implementational
complexity is significant and we do not include it here. Also,
we assume that the background is known, which is not a re-
strictive assumption because the background image can be ac-
quired separately or easily estimated from a video sequence.

Let us review some related work on motion deblurring
similar to the FMO setting. One category of such methods
considers the foreground-background blending due to mo-
tion and exploits the blurred object transparency map (alpha
matte). Blind deconvolution of the transparency map is better
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posed, since the latent sharp map is a binary image, which
makes the blur estimation easier [16]. The same idea ap-
plied to rotating objects was proposed in [17]. An interesting
variation was proposed in [18], where linear motion blur
is estimated locally using a relation similar to optical flow.
The main drawback of these methods is that they require a
very accurate estimation of the transparency map as input,
which is nearly impossible to achieve for typical FMO sce-
narios. The alpha matte estimation is traditionally aimed at
segmentation-like tasks where most pixels are known to be
background or foreground and very few pixels have fractional
transparency. In addition, the color texture of both foreground
and background needs to be simple [19], which is the key idea
exploited in [16]. In the typical FMO input, however, the area
of fractional transparency is large, the image textures com-
plex and the alpha matte estimation ultimately fails despite
manual help, see Fig. 1. The input image (a) contains ICIP
logo moving over Athens background, in (b) scribbles are
manually placed to indicate pure foreground and pure back-
ground, which is the required input for alpha matte estimation
algorithms like [19] and difficult to do automatically. The re-
sult in (c) is still far too inaccurate for any subsequent PSF
estimation, the true alpha matte is in (d).

(a) Input (b) Manual scribbles

(c) Output of [19] (d) True alpha matte

Fig. 1. Matte estimation results for FMO input. (a) Input
image, (b) manually placed scribbles indicating foreground
and background (requirement of the alpha matte estimation),
(c) result of matte estimation by [19], (d) actual alpha matte.

Another approach is to ignore the blending model and in-
stead estimate linear motion locally by exploiting the fact that
autocorrelation increases in the direction of blur [20, 21]. Au-
tocorrelation, however, requires large neighborhood to esti-
mate blur parameters, which means that it is not suitable for
small moving objects, non-uniform motion (rotation), and if
the background blending is significant.

Interestingly, the FMO deblurring problem was men-
tioned in [22] as a rather marginal note, but the formulation is

exactly the same as ours, though restricted to simple motions
without rotations. The authors only theoretically suggested
a semi-blind solution using hybrid camera setup and object
tracking in a video sequence, it was not however carried out in
practice. Applicability of such solution would be significantly
limited to the proposed method.

The contribution of this work is as follows: We formulate
the FMO acquisition model, corresponding deblurring prob-
lem, and present solution to the inverse problem to estimate
the FMO appearance and motion from a single image and
background. We discuss its properties and relationship to the
BD problem. Finally we demonstrate the efficacy and some
properties of the proposed method on several experiments on
real data.

2. PROBLEM FORMULATION

Let the object with its 2D image denoted by f move in front
of a static background b. Let the blurred appearance of f
be the result of a linear blur operator H , that is Hf . For
example, if the motion is pure translation then Hf will be
convolution Hf = h ∗ f for some Point Spread Function
h. As the object passes in front of the background, parts of
the background get fully or partially occluded depending on
how much time (as a fraction of exposure) any part of the
object covers the particular background pixel. Let m denote
the binary image of the object shape (indicator function of the
object), thenHm is the fraction of exposure the object spends
in front of each background pixel. As a result, we have the
following model for the acquired image g, which describes
the blending of f and b:

g = Hf + (1−Hm) · b. (1)

The last product denoted by dot is pixelwise multiplication.
The blur operator H is characterized by a set of inde-

pendent motion parameters h, as in the pure-translation case
above where h is the PSF. More formally, if (f, h) → y is
the bilinear blurring function of object f undergoing motion
given by h, then H and F are the corresponding restrictions
H = (·, h) and F = (f, ·).

Assume that b andm are known, then the FMO deblurring
problem consists of estimating the object appearance f and
motion h from the input image g. To this end, we propose to
solve the following minimization problem, inspired by work
in classical deblurring

min
f,h

1

2
‖Hf − (Hm) ·b− (g−b)‖22+αf TV(f)+αh‖h‖1

s.t. fi ∈ [0, 1] ∀i and hi ≥ 0 ∀i, (2)

where TV(f) =
∑

i ‖∇fi‖2 is the total variation and i de-
notes the pixel index. We assume that the sought image f is
in the [0, 1] intensity range. As is common in BD, we solve
this problem by alternatingly minimizing w.r.t. f and h. Be-
low we highlight the most important aspects of the numerical
solution.
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2.1. Estimation of f
Minimizing (2) w.r.t. f amounts to solving

min
f

1

2
‖Hf−b·Hm−(g−b)‖22+αf

∑
i

‖Dif‖2+P[0,1](f),

(3)
where Di denotes the gradient operator at the location i, and
P is the set indicator function (infinite potential well) defined
as

P[a,b](x) =

{
0 if xi ∈ [a, b] ∀i,
+∞ otherwise.

(4)

To solve this problem we use ADMM [23] with splitting
z1 = Df due to the TV term and z2 = f due to the bound-
edness term with u1,2 and ρ being the corresponding (scaled)
duals and penalty weight, respectively. According to ADMM
theory, we minimize (3) w.r.t. f and z1,2 alternatingly and
update u1,2 in each iteration.

Minimization w.r.t. f is the linear system(
HTH + ρDTD

)
f =

HT (b ·Hm+ (g − b)) + ρDT (z1 − u1). (5)

Minimization w.r.t. z1 is soft-thresholding of Df + u1, [23].
Minimization w.r.t. z2 is projection of f + u2 into [0, 1].

2.2. Estimation of h
Estimating h is similar to f estimation. The relevant subprob-
lem of (2) is

min
h

1

2
‖Fh−BMh−(g−b)‖22+αh

∑
i

|hi|+P[0,∞](h), (6)

where F and M are the linear operators performing blurring
with fixed f , m resp. and B is the (diagonal) operator per-
forming pixelwise multiplication with b. Again, we utilize
ADMM with splitting z = h due to `1 and positivity terms
with u being the corresponding dual. The minimization w.r.t.
h is the linear system(

(F −BM)T (F −BM) + ρI
)
h =

(F −BM)T (g − b) + ρ(z − u). (7)

Minimization w.r.t. z is again soft-thresholding of h + u and
truncation to [0,∞].

2.3. Rotational motion
The operator H can in principle represent blurring due to any
kind of motion or shape/appearance change. In this paper,
we limit ourselves to the case of translation and 2D rotation.
Every motion blur can be approximated by a superposition of
discretized orientations and positions

Hf =
∑
ij

hijTjRif =
∑
i

HiRif, (8)

where Tj is a (fixed) translation operator into position j, Ri

is a (fixed) rotation operator into orientation i and hij is a

Input Result Ground truth

Fig. 2. Deblurring result of real motion blurred object.

weight of the corresponding pose TjRi, i.e. h is the general-
ized blur that contains the unknown motion parameters. The
second equality in (8) comes from the observation that the
weighted sum of translations is convolution, Hi =

∑
j hijTj ,

where Hi is a convolution operator. To summarize, we dis-
cretize the admissible rotation range into finite number of an-
gles with corresponding Ri and then decompose H into these
rotations each followed by standard convolution. The objec-
tive of motion estimation is to find hij , the convolution ker-
nels hi corresponding to each angle i.

2.4. Remarks on problem solvability
For simplicity of the discussion, let us consider the pure-
motion case, although the same arguments can be made with
little modification in the rotational-motion case. Standard
blind image deblurring solves the problem of finding f and
h such that h ∗ f = g, therefore minimizes the error term
‖h ∗ f − g‖. The problem is that there are solutions (f̂ , ĥ)
that minimize the error term perfectly and yet are practically
useless. The most striking example is the so-called no-blur
solution ĥ = δ, f̂ = g, where δ is the Dirac delta function.
Then obviously ĥ ∗ f̂ = δ ∗ g = g and the error term vanishes
(in the noiseless case), so this solution presents a strong (al-
beit possibly local) minimum and is one of the reasons why
the functional minimization is practically problematic.

In the FMO deblurring problem, there are circumstances
when this trivial solution, and as a consequence correspond-
ing minimum of the functional in (2), do not exist. Let us
assume that the object f has support (given by m) smaller
than input image g, so that there is room for motion, and that
the true motion h is non-trivial, h 6= δ. Then the area affected
by the object motion in the input image g is larger than the
support of f . Let ĥ = δ be arbitrarily placed δ function, then
there is no f̂ such that the pair (f̂ , ĥ) satisfies eq. (1), because
δ ∗ f̂ − (δ ∗m) · b is nonzero only in the neighborhood of δ
given by the support of f (equiv. m) while (g− b) is nonzero
in larger area due to the assumption of motion non-triviality.

The discussion above is not exhaustive, but it nevertheless
shows that in some aspects the FMO deblurring problem is
actually easier to solve than classical BD.

3. EXPERIMENTAL VERIFICATION

We demonstrate the efficacy of our method on several real au-
thentically blurred images. In the experiment we slid a picture
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Input Result Ground truth

Fig. 3. Deblurring result of real motion blurred object.
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Fig. 4. Deblurring of the image in Fig. 1a with inaccurate
object size. The upper plot shows the restored image PSNR
when deblurred with smaller or larger prescribed object size
than accurate. The bottom row shows the original object and
some selected results.

on a table while capturing the table with a video camera. We
then took one frame from the sequence as the input to deblur-
ring and used the neighboring frames to determine the back-
ground image. The object shape m was estimated by simple
background subtraction from one of the frames in which the
object was at rest. The deblurring results are in Fig. 2-3. The
simple image in Fig. 2 is restored quite well while the card
in Fig. 3 lost some of its details. The estimated SNR of the
camera is approx. 39dB, which is quite low, and it is one of
the reasons why fine details are hard to recover after severe
blurring.

The proposed method requires knowing the object shape
m as an input to the deblurring. We are working on an ex-
tension to be published in the future which removes this re-
quirement, it is nevertheless informative so see how critical
the precise knowledge of the shape is for successful deblur-
ring. For this purpose we prepared a synthetic experiment in
which we deblur the image in Fig. 1a using slightly smaller or
larger object mask and measured the quality of the result. The

(a) Input (b) Fixed rotation (c) With rotation
estimation

Fig. 5. Deblurring with and without rotation handling. The
input in (a) rotates by approx. 3◦ during exposure, the re-
stored images PSNRs are 21dB and 28dB, resp. Superim-
posed are the estimated motion PSFs with color-coded orien-
tation angle. Image in (b) is deblurred considering fixed mean
orientation while in (c) the orientation is estimated as part of
motion estimation.

results are in Fig. 4. The error of 1px in shape size (radius of
the logo) constitutes approx. 1.5% of the object size, so we
can see that the restoration quality deteoriates quickly as the
size error increases. Some of the restored images as well as
the original are in the bottom row of Fig. 4. We can conclude
that accurate shape knowledge is quite important.

Equally important is correct motion handling, e.g. includ-
ing rotation in the model even if it is very small. The image in
Fig. 5a rotates by mere 3◦ during exposure and yet ignoring
rotation in the deblurring results in visible loss in quality and
approx. 7dB drop in PSNR, as seen in Fig. 5bc along with the
estimated motion and rotation.

The runtime of the method is difficult to specify, as it
depends strongly on the image and motion size and pre-
scribed convergence criteria. As a reference, deblurring of
100px×100px image with 30px long PSF and 15◦ rotation
takes roughly 1 minute in our MATLAB implementation.

4. CONCLUDING REMARKS

We have presented a problem with practical applications that
falls into the category of blind image deblurring and which
has not been properly addressed by existing methods. We
have also proposed a method to solve a simplified version of
the problem, namely with known object shape and motion
limited to 2D, and discussed some theoretical aspects of its
solvability. Experiments on real data demonstrate the efficacy
of the proposed method as well as some of its properties. The
method is sensitive to noise and therefore works well partic-
ularly with images for which loss of detail due to noise is not
very prominent. Accurate knowledge of the object shape as
well as correct motion modeling prove to be critical, our fu-
ture work therefore naturally leads in this direction. To make
the proposed method more practically useful, we are working
on an extension to estimate the object shape from the blurred
input, include 3D motions and objects, model real-world ef-
fects such as illumination changes and camera perspective
distortion, and increase robustness to noise.
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