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Abstract. This paper introduces new variational formulation for recon-
struction from subsampled dynamic contrast-enhanced DCE-MRI data,
that combines a data-driven approach using estimated temporal basis
and total variation regularization (PCA TV). We also experimentally
compares the performance of such model with two other state-of-the-art
formulations. One models the shape of perfusion curves in time as a sum
of a curve belonging to a low-dimensional space and a function sparse
in a suitable domain (L+S model). The other possibility is to regular-
ize both spatial and time domains (ICTGV). We are dealing with the
specific situation of the DCE-MRI acquisition with a 9.4T small animal
scanner, working with noisier signals than human scanners and with a
smaller number of coil elements that can be used for parallel acquisition
and small voxels. Evaluation of the selected methods is done through sub-
sampled reconstruction of radially-sampled DCE-MRI data. Our analysis
shows that compressed sensed MRI in the form of regularization can be
used to increase the temporal resolution of acquisition while keeping a
sufficient signal-to-noise ratio.

Keywords: DCE-MRI, iterative reconstruction techniques, compressed
sensing

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a method
for quantification of parameters describing tissue perfusion. It is based on data
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capturing spatiotemporal distribution of a contrast agent. Reconstruction of
DCE-MRI data in general aims to reconstruct an image sequence from the raw
k-space data. The result is subsequently used for pharmacokinetic modeling and
perfusion-parameter estimation for each reconstructed-image voxel. In more re-
cent years it is benefiting from both parallel imaging [2] and compressed sensing
(CS) [3] due to their abilities to significantly reduce the number of acquired
k-space data. The latter technique relies on adding sparsifying transformations
to the acquired image sequence, such as the Fourier or the Wavelet transform
[4], spatiotemporal finite differences [5], or combinations of these [6] and exploit-
ing underlying temporal dynamics by employing principal component analysis
(PCA) [8]. These data-driven sparsifying transforms assume that the image se-
quence can be represented by a matrix of low-rank or as a combination of low-
rank and sparse components. Namely, this is the case of L+S model applied in [9],
[10], however, these models presume global separability of the dynamic data and
the background and such a separation is not generally applicable. A current im-
provement of this approach employs a patch-based decomposition [12] or applies
PCA to obtain temporal basis functions from low-resolution data [8]. These are
used as L1-penalized model-consistency constraints rather than imposing strict
low-rank assumptions, while the model order needs to be determined heuristi-
cally. Generalizing CS approaches, variational models for image reconstruction
allow to introduce different assumptions on an unknown object which weights
regularization against data fidelity. A possible extension of the well-known total
variation (TV) is the total generalized variation (TGV) functional [13], which
balances between different orders of differentiation, enforcing linear or polyno-
mial smoothness while still allowing sharp discontinuities [14]. Such a model was
shown to be useful for still images [15] and highly parallelized CINE cardiac
data [7]. This paper aims to assess selected approaches to reconstruct DCE-MRI
image sequences from signal attained at small animal scanners, that have usually
small parallelization (fewer elements of array coils) than clinical scanners and
can have a smaller signal-to-noise ratio (SNR).

2 Models

2.1 TV regularization with pre-estimated temporal basis

Proposed variational formulation using total variation as a spatial image prior
[1] combining temporal regularization using a PCA basis of the given data [8]
(PCA TV) can be written as

min
u

∑
t,i

1

2
‖yt,i − FtSiBtu‖22 + λ‖∇Btu‖1

 , (1)

where index t enumerates time frames, i receiver coils. In our study, non-Cartesian
golden angle k-space sampling is assumed as one of the most popular compressed-
sensing MRI acquisition method. Therefore, the Fourier transform for the time-
frame t, denoted by Ft, is automatically assumed in its non-uniform variant [17].
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All coil sensitivity maps Si, i being a coil index, were estimated using the ES-
PIRiT algorithm proposed in [18]. Temporal basis functions at time frame t are
denoted by Bt and are estimated using the PCA method from low-resolution
data. Order of the basis is given to the model as an input parameter, ‖ · ‖1 is the
sparsity enforcing L1 norm and Frobenius norm ‖ · ‖2 measured closeness to the
measured k-space data yi, t for time-frame t and coil i. Solution x∗t = Btu for
each time-frame t can be achieved using iterative technique Alternating Direction
Method of Multipliers (ADMM) [16].

2.2 Low-rank plus sparse (L+S)

The L+S decomposition method [10] assumes that each time-frame xt can be
decomposed into a sum of two matrices, xt = lt + st, where matrix lt represents
the low-rank part of the signal and matrix st is assumed sparse in the sense of
a linear transformation T (in this case temporal Fourier transformation). The
overall formulation is

min
l,s

 ∑
t,i

1

2
‖yt,i − FtSi(lt + st)‖22 + λl‖l‖∗ + λs‖Ts‖1

 , (2)

where ‖ · ‖∗ stands for the nuclear norm giving the sum of singular values and
enforcing low rank. Contrasting with the previous model the temporal basis
functions are estimated automatically.

2.3 ICTGV model

A possible extension of the TV regularization is employed in the ICTGV model
proposed in [7]. This formulation regularizes data by weighting two TGV by
infimal convolution

min
x

∑
t,i

1

2
‖yt,i − FtSixt‖22 + λICTGV2

β1,β2,γ(x)

 , (3)

The ICTGV model itself was not implemented, but the reconstruction software
AVIONIC written by its authors [7] was rather used for comparison with other
methods.

3 Data acquistion and evaluation methods

Synthetic data were generated from a real DCE-MRI dataset (rat with brain
tumor) [19]. 42 manually segmented regions of interests (ROIs) were assigned
its reference perfusion parameters based on the values estimated from the real
dataset as described in [19]. The concentration curves were constructed using
the same pharmacokinetic model as the one used in [19]. 2D golden-angle radial-
sampling k-space data were then constructed assuming a 2D SPGR acquisition
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with TR = 15 ms, flip angle = 20 deg and acquisition time = 15 min, 128
samples per echo signal, a 4-element surface coil (sensitivities derived from the
real recording), with additive corruption by Gaussian noise to average SNR =
26.7 dB (calculated as SNR = 10 log10(Psignal/Pnoise), where Psignal is the mean
power of the echo signals and Pnoise the power of noise) to match the real data.

Real data originate from an in-vivo experiment with a normal Sprague-
Dawley rat on a 9.4T Bruker BioSpin small animal scanner, 2D golden-angle
SPGR acquisition with TR = 17 ms, flip angle = 25 deg, acquisition time = 14
min, 128 samples per echo signal, 4-element surface coil.

For both datasets, different levels of subsampling (skipping projections in the
measured signal) were tested to explore the abilities of the models to reconstruct
comparable intensity curves with higher temporal resolution. As a reference for
evaluation of the algorithms, gridding [17] of fully-sampled data (i.e. 200 pro-
jections per time-frame) was used. In order to provide comparability between
different models with various parameter settings, output curves were scaled to
the [0, 1] interval.

4 Results and discussion

Firstly, the selected models (L+S, PCA TV and ICTGV) were evaluated on
a synthetic dataset. Image sequences were computed using various settings of
parameters, levels of subsampling and ranks of temporal basis. Fidelity of recon-
struction for a typical benchmark voxel (corresponding to a simulated tumour)
can be found in Figure 1. It can be seen, that the nearest solution (in the sense
of mean squared error) was achieved by the L+S model and the PCA TV recon-
struction with a priori estimated basis functions of rank 3. The ICTGV method
was not resulting in good fits to the reference curves, but it was the best at
localising the position of the intensity peak.

Overall, it can be stated, that both L+S and PCA TV proved to be the best
and the most robust (in terms of subsampling stability) models for synthetic
data.

However, comparison on the real data showed a different situation. In order
to avoid over-fitting of the models to the one specific experiment, rank 3 was
assumed for both the PCA TV and the L+S model. Temporal basis functions
were exploited from the regridded data and are shown in Figure 2.

The PCA TV model with estimation of the temporal basis of rank 3 led to a
stable solution (in terms of mean squre error). It seems to allow to downsample
(and thus increase the temporal resolution) up to the factor of 7 (see Figure 3).
Surprisingly, the L+S model did not achieve as good results as for the synthetic
data and the output intensity curves notably differed from the reference. The
ICTGV model resulted in quite noisy, but with overall good fit to the reference. It
is possible, that this behaviour can be improved by fine-tuning the reconstruction
parameters. In selected regions, given the information about the temporal basis,
the PCA TV model gave the best results for the measured data.
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Fig. 1. One time-frame of the reference phantom image sequence(upper left) and the
corresponding reconstructed time-frame (lower left) with output intensity curves for the
marked pixel (tumour). Fully-sampled data use 200 radial projections per time-frame,
subsampled reconstructions take 28 projections (i.e. 7x subsampling).

5 Conclusions

We have evaluated three different iterative methods for reconstruction of DCE-
MRI data. The evaluation was done on both generated and real data, where it
showed quite different results. It can be stated that models assuming a low-rank
temporal basis (smaller than 3) were outperformed by those without this pre-
sumption or with the PCA-TV model working with a priori information about
the character of the temporal dynamics. This can be due to the inability of a
small basis to correctly describe the dynamics of the data or due to a lower SNR
and fewer array-coil elements of a small-animal NMR scanner compared to clin-
ical NMR scanners. In our experiments, PCA TV was the best reconstructoin
method in terms of image quality and computational speed (enabling increas-
ing time resolution up to the factor of 10). To draw stronger conclusions, the
evaluation will be extended to a comparison of the reference and reconstructed
data on the level of estimated perfusion parameters for various pharmacokinetic
models.
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Fig. 2. Temporal basis functions of the real data ordered by significance
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Fig. 3. Image reconstruction of real data with signal intensity curves of different meth-
ods in marked pixel (temporalis muscle).
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