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Summary. The initialization is known to be a critical task for running a mixture
estimation algorithm. A majority of approaches existing in the literature are related
to initialization of the expectation-maximization algorithm widely used in this area.
This study focuses on the initialization of the recursive mixture estimation for the
case of normal components, where the mentioned methods are not applicable. Its
key part is a choice of the initial statistics of normal components. Several initial-
ization techniques based on visual analysis of prior data are discussed. Validation
experiments are presented.

1.1 INTRODUCTION

The initialization is known to be a critical task for running a mixture es-
timation algorithm. Mixture models are often used for description of multi-
modal systems, whose behavior can switch among different working modes.
Such modeling is demanded in a variety of application areas, including, e.g.,
fault detection (fault or non-fault mode), car diagnostics (eco-driving or sport
mode, etc.), traffic flow control (the level of service), big data issues, etc., see,
for instance, [1, 2, 3].



The mixture model consists of several components that describe the indi-
vidual working modes of the observed system and of their switching model.
The last is considered as the random Markov process called the pointer [4, 5],
and its value at the corresponding time instant indicates the currently ac-
tive component (i.e., the working mode). In reality, parameters of neither the
components nor the pointer model are available. Thus the mixture estimation
problem consists, in general, in estimation of the component and the pointer
model parameters, and also in the pointer value estimation.

The mixture estimation approaches found in the literature are mainly
based on (i) the iterative expectation-maximization (EM) algorithm [6], see,
e.g., [7, 8]; (ii) the approximative Variational Bayes approach [9, 10]; (iii) sam-
pling Markov Chain Monte Carlo techniques, e.g., [11, 12, 13]. Closely related
tasks are also discussed in [14, 15].

A different non-numerical approach is given by the recursive Bayesian es-
timation theory for static mixtures [4, 5], individual normal components [16]
and dynamic mixtures [17], which, unlike the above mentioned sources, rep-
resent on-line data-based estimation algorithms avoiding numerical iterative
computations. The present research project supports their philosophy in de-
veloping the mixture estimation algorithms.

The mixture estimation algorithm should be initialized before starting.
In the considered context the initialization primarily lies in specifying (i)
distributions of components, (ii) the number of components, and (iii) the prior
probability density functions (pdfs) describing parameters of components and
of the pointer model. The present paper is limited by mixtures of normal
components.

A series of papers was found in the area of the mixture initialization. For
instance, the paper [18] proposes the initialization of the EM algorithm via
a strategy defining mean vectors by choosing points with higher concentra-
tions of neighbors. It uses a truncated normal distribution for the preliminary
estimation of covariance matrices.

Another paper [19] describes a new method for random initialization of the
EM algorithm based on selecting the feature vector from a set of candidate vec-
tors, located farthest from already initialized components. The Mahalanobis
distance is used. The paper [20] is devoted to simple and fast approaches of
the initialization of the EM algorithm based on the well-known clustering al-
gorithms. The paper [21] proposes the EM initialization method by partition
of the training set to be modeled individually by single experts and the subse-
quent initialization of models on a partition subset. The paper [22] initializes
a mixture via the EM algorithm using a product kernel estimate of pdfs and
the gradient method for local extrema finding.

It is seen that the majority of studies is primarily oriented at application
of the EM algorithm. Under the adopted theory [5, 4, 16, 17] not using the
EM algorithm, the initialization focuses on the number of components and
the initial statistics of the Gauss-inverse-Wishart parameter pdfs. In this field



the paper [23] is found, which (applied to the presented subproblem) leads to
weighting the initial statistics of the parameter pdfs.

The present paper is the extended version of the work [25]. It considers the
initialization primarily based on detecting the initial centers of components
via the visualization analysis of the prior or expert knowledge. In the case
of static normal components this expert-based procedure is rather effective.
For dynamic mixture components the task is more complicated. The paper
considers several ways of initialization of dynamic components: (i) fixation
of covariance matrices; (ii) imitation of the static case; (iii) repeated use of
the data sample, see, e.g., [4]; and (iv) weighting the initial statistics [23],
and validates them experimentally on real data. The paper demonstrates that
a relatively small amount of prior data used for the mixture initialization
contributes to a faster stabilization of parameter estimates during the on-line
estimation.

The paper is organized in the following way. Section 1.2 introduces models.
Section 1.3 gives necessary basic facts about the mixture estimation algorithm
and specifies the initialization problem. Section 1.4 describes the mentioned
initialization approaches. Section 1.5 provides results of experiments. Conclu-
sions and open problems are given in Section 1.6.

1.2 MODELS

Let’s consider a multi-modal system, which at each discrete time instant
t = 1, 2, .... generates the continuous data vector yt. It is assumed that the
observed system works in mc working modes, each of them is indicated at
each time instant t by the value of the unmeasured dynamic discrete variable
ct ∈ {1, 2, . . . ,mc}, which is called the pointer [5].

The observed system is supposed to be described by a mixture model,
which (in this paper) consists of mc components. The components can be
represented either by

the static pdf f (yt|Θ, ct = i) , ∀i ∈ {1, 2, . . . ,mc}, (1.1)

or by the dynamic pdf f (yt|ψt−1, Θ, ct = i) , (1.2)

where Θ is a collection of parameters of all components, and Θ ≡ {Θi}mc
i=1,

where Θi includes parameters of the i-th component in the sense that
f (yt|Θ, ct = i) = f (yt|Θi) for ct = i, and ψt−1 = [yt−1, yt−2, . . . , yt−n]′ is
the regression vector with the memory length n.

This paper focuses on using the pdfs (1.1) or (1.2) with the normally
distributed white noise. In this case the pdfs are specified as follows.

1.2.1 Static Components

The pdf (1.1) has the form ∀i ∈ {1, 2, . . . ,mc}



(2π)−N/2|ri|−1/2 exp

{
−1

2
[yt − θi]′r−1i [yt − θi]

}
, (1.3)

where N denotes a dimension of the vector yt; θi represents the center of
the i-th component; ri is the covariance matrix of the involved normal noise,
which defines the shape of the component (i.e., in the case of the diagonal ri
the component is round-shaped), and Θi ≡ {θi, ri}.

1.2.2 Dynamic Components

The pdf (1.2) is specified as

(2π)−N/2|ri|−1/2 exp

{
−1

2
[yt − θiψt−1]′r−1i [yt − θiψt−1]

}
, (1.4)

where unlike (1.1) the parameter θi is a collection of regression coefficients of
the i-th component, whose number corresponds to the memory length n used
for the regression vector ψt−1. A rest of notations are identical to the previous
case.

1.2.3 Dynamic Pointer Model

Switching the active components, either (1.1) or (1.2), is described by the
dynamic model

f (ct = i|ct−1 = j, α) , i, j ∈ {1, 2, . . . ,mc}, (1.5)

which is represented by the transition table

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc
· · · αmc|mc

where the parameter α is the (mc ×mc)-dimensional matrix, and its entries
αi|j are non-negative probabilities of the pointer ct = i (expressing that the
i-th component is active at time t) under condition that the previous pointer
ct−1 = j.

1.3 RECURSIVE MIXTURE ESTIMATION

Formulation of the initialization problem requires a preliminary outline of the
recursive approach to the Bayesian mixture estimation. The algorithm to be
effectively initialized is based on the paper [5], which proposes the solution



for normal mixtures with the static pointer model, and on [17] considered
the problem for the dynamic pointer model. In the context of the introduced
mixture of components (1.1) or (1.2) and of the pointer model (1.5), the esti-
mation problem concerns the unknown parameters Θ and α and the pointer
value ct. Derivations are based on construction of the joint pdf of all vari-
ables to be estimated and application of the Bayes rule and of the chain rule,
see e.g., [16]. Here they are outlined briefly to present the necessary theoreti-
cal background for static components (1.1) with a subsequent explanation of
changes in the case of using (1.2).

Assuming that Θ and α, and yt and α, and ct and Θ are mutually in-
dependent, and denoting the data collection y(t) = {y0, y1, . . . , yt}, where y0
stands for prior data, the joint pdf of all variables to be estimated has the
form ∀i, j ∈ {1, 2, . . . ,mc}

f(Θ, ct = i, ct−1 = j, α|y(t))︸ ︷︷ ︸
joint posterior pdf

(1.6)

∝ f(yt, Θ, ct = i, ct−1 = j, α|y(t− 1))︸ ︷︷ ︸
via chain rule and Bayes rule

= f (yt|Θ, ct = i)︸ ︷︷ ︸
(1.1) or (1.2)

f(Θ|y(t− 1))︸ ︷︷ ︸
prior pdf of Θ

× f (ct = i|ct−1 = j, α)︸ ︷︷ ︸
(1.5)

f(α|y(t− 1))︸ ︷︷ ︸
prior pdf of α

f(ct−1 = j|y(t− 1))︸ ︷︷ ︸
prior pointer pdf

.

Recursive formulas for estimation of ct, Θ and α via (1.6) are obtained using
the marginalization of (1.6) firstly over the parameters Θ and α. It results in
the posterior pdf f(ct = i, ct−1 = j|y(t)), which is joint for both ct and ct−1.
Further the resulted joint pdf should be again marginalized over the values of
ct−1 for obtaining the posterior pdf f(ct = i|y(t)) of the current pointer.

1.3.1 Component Parameters

The integral of (1.6) over Θ is evaluated by substituting the point estimates
of θi and ri available from the previous time instant t − 1 and the currently
measured yt into the corresponding i-th normal component, either (1.1) or
(1.2). The mentioned point estimates of parameters of the i-th component
are computed based on using the conjugate prior Gauss-inverse-Wishart pdf
with the recomputable (initially chosen) statistics (Vt−1)i and ki;t−1 in the
Bayes rule, which according to [16, 5] gives the algebraic recursion for static
components

(Vt)i = (Vt−1)i + wi;t

[
yt
1

]
[yt, 1] , (1.7)

for dynamic components



(Vt)i = (Vt−1)i + wi;t

[
yt
ψt−1

]
[yt, ψt−1] , (1.8)

and valid for both of them

κi;t = κi;t−1 + wi;t, (1.9)

where wi;t will be explained later. The needed point estimates are computed
at time t for each component as follows [16]:

(θ̂t)i = V −11 Vy, (r̂t)i =
Vyy − V

′

yV
−1
1 Vy

κi;t
, (1.10)

where (Vt)i is partitioned (for simplicity with the omitted subscript i)

(Vt)i =

[
Vyy V

′

y

Vy V1

]
, (1.11)

so that in the static case Vyy is the square matrix of the dimension N of the
vector yt, V

′
y is N -dimensional column vector and V1 is scalar. For dynamic

components (1.2), the partition changes according to the memory length n
used in the regression vector ψt−1, i.e., Vy and V1 become matrices of appro-
priate dimensions. The substitution of (1.10) and yt into the corresponding
i-th normal pdf provides the proximity of each component to the current data
item.

1.3.2 Pointer Parameters

Similarly, the integral of (1.6) over α provides the computation of its point
estimate using the previous-time statistics denoted by ϑt−1 of the conjugate
prior Dirichlet pdf according to [4]. Here the mentioned statistics is the square
mc-dimensional matrix, whose entries for ct = i and ct−1 = j are recursively
computed in the following way:

ϑi|j;t = ϑi|j;t−1 +Wi,j;t, (1.12)

where Wi,j;t will be explained a bit later, and which was introduced by [17]
with the approximation based on the Kerridge inaccuracy [24]. However, here,
for simplicity, it is updated similarly to [5], but modified for the dynamic
pointer model. The point estimate of α is then obtained by simple normalizing
the updated statistics

α̂i|j;t =
ϑi|j;t∑mc

k=1 ϑk|j;t
. (1.13)



1.3.3 Component Weights

Here the above denotations wi;t and Wi,j;t are explained. After the described
marginalization the posterior pdf f(ct = i, ct−1 = j|y(t)) is obtained by entry-
wise multiplying the proximity obtained from each component, the previous-
time point estimate of α (1.13) and the prior pointer pdf (ct−1 = j|y(t− 1)).
The last is the weight of the components at the previous time instant, and it
is denoted by wj;t−1 and expresses the (initially chosen and then actualized)
probability of the activity of the j-th component at time t− 1.

For all i, j ∈ {1, 2, . . . ,mc}, the posterior pdfs f(ct = i, ct−1 = j|y(t))
are entries denotes by Wi,j;t of the square mc-dimensional matrix, which is
normalized and summed up over rows to obtain the posterior pdf f(ct =
i|y(t)). The last provides the updated weight wi;t of each i-th component at
time t. The maximal weight wi;t defines the currently active component, i.e.,
the point estimate of the pointer ct at time t.

1.3.4 Initialization Problem Specification

The outlined relations are summarized as the following algorithm steps per-
formed on-line for t = 2, . . .:

1. Measure the new data yt.
2. Obtain proximities of all components, using the previous-time point esti-

mates (1.10).
3. Multiply entry-wise the proximities, the prior weighting vector wt−1 and

the previous-time point estimate α̂t−1.
4. The result of this entry-wise multiplication is the matrix with entries
Wi,j;t. Normalize this matrix.

5. Perform the summation of the normalized matrix over rows and obtain
the updated vector wt with entries wi;t.

6. Update all statistics, using wi;t and Wi,j;t according to (1.7) or (1.8), (1.9),
and (1.12).

7. Recompute the point estimates of all parameters according to (1.10) and
(1.13) and go to Step 1.

Thus, the initialization of this on-line part of the algorithm lies in setting at
time t = 1:

• the number of components mc,
• the initial statistics of all components (V0)i, κi;0 and the pointer statistics

ϑ0 (the initial estimates in Steps 2 and 3 are computed from them),
• the initial mc-dimensional weighting vector w0,

where mc and (V0)i are the key ones and they will be the focus of the sub-
sequent sections. The rest of statistics can be initialized either uniformly or
randomly in combination with their updating by prior data.



1.4 EXPERT-BASED MIXTURE INITIALIZATION

The proposed initialization is based on convincing that in the beginning of
the mixture estimation (as well as generally description of the multi-modal
system) in a specific domain some type of prior or expert knowledge is al-
ways available. Such a kind of the knowledge can be in the form of spe-
cially previously measured data, realistic simulations (e.g., from Aimsun
(www.aimsun.com) in the traffic flow control area) or, at least, the expert
information about the expected number of components (disease symptoms in
medicine, types of failures in car diagnostics, success in elections, etc.).

Anyway the start of the estimation is always critical due to a risk of domi-
nance of a single active component resulted from the temporary non-activeness
of others as well as noisy data. This can lead to joining other components and
finally the failure of the estimation. To avoid the mentioned dominance the
following expert-based procedures can be performed:

• fixing the covariance matrices of components as diagonal ones with entries
0.1 and running their estimation later, which is very simple and effective
way;

• detection of the initial component centers by the visual analysis;
• repeated use of the prior data sample inspired by [4, 23].
• suppressing the influence of the first measured data on the estimation to

support the initial estimates obtained from the initial statistics to produce
proper weights of components based on [23].

These ways of processing the prior data to extract the information necessary
for a successful initialization is described below. Thus, in this section the time
instant t corresponds to prior data items. The implementation is prepared in
the open source programming environment Scilab (www.scilab.org).

To determine the area of the interest in the data-parameter space it is
suitable to work with the normalized data with zero expectations and the
unit covariance matrices. This is reached by extracting the mean value from
each prior data item and division by the standard deviation. However, it is
not a necessary condition.

1.4.1 Static Component Initialization

For the initialization of static components (1.1) it is extremely important to
detect the initial centers of clusters in the data space. This task covers both
the determination of the number of components and of the initial statistics.
Covariance matrices for the normalized data could be used as diagonal ones
with entries 0.1.

For this aim the prior data sample is processed as follows. Individual entries
of the multidimensional vector yt are visualized by pairs against each other.
The analysis of the visualization gives a possibility to distinguish the number
of plotted components and get their centers. Here for demonstration, the real



data sample measured on a driven vehicle is taken, where the vector yt contains
the following entries: (i) y1;t is the instantaneous fuel consumption [µl], (ii)
y2;t is the vehicle speed [km/h], (iii) y3;t is pressing the gas pedal [%], (iv) y4;t
is the engine speed [rpm]. The sampling period is 1 second. The number of
prior data is 400.

Two-dimensional clusters of each variable are shown in Figure 1.1. The
visualization represents the upper triangular matrix of figures, where each
row corresponds to the entry of the vector yt from y1;t to y4;t plotted firstly
against itself and then against the rest of entries. The normalized data with
zero expectations and unit variances are used, which means that values on
axes do not express real ranges of data items. Individual figures are denoted
by numbers l, k ∈ 1, . . . , N corresponding to the entries indices. Under as-
sumption that the processed data are of a multi-modal character, clusters are
clearly visible. Here three clusters are seen, thus mc = 3. For detection of ini-
tial centers of components, figures 1-2, 2-3 and 3-4 located above the diagonal
are of the main interest.

Figure 1-2 exhibits three clusters at positions [0, −0.5], [0.5, 1] and [1, −1],
which indicate three positions of clusters of the variable y2;t: i.e., -0.5, 1 and
-1. These values are explored in the second figure 2-3 on the x axis, where the
variable y2;t is shown. Figure 2-3 gives the coordinates [−0.5, 0.5], [−1, −1.2]
and [1, 0.5], which provide positions 0.5 a -1.2 for the entry y3;t. Using them in
figure 3-4 the centers of components between entries y3;t and y4;t are detected
as [0.5, −0.3], [0.5, 0.7] and [−1.2, 0].

Based on this visual analysis, positions of the four-dimensional initial cen-
ters denoted by si ∀i{1, . . . ,mc} are summarized in Table 1.1.

Table 1.1. Initial centers of static components

Data entry s1 s2 s3
y1;t 0 0.5 1

y2;t -0.5 1 -1

y3;t 0.5 -1.2 0.5

y4;t -0.3 0.7 0

The i-th initial center is substituted into the initial statistics (V0)i of the
i-component as follows:

(V0)i =


1 0 0 0 (s1)i
0 1 0 0 (s2)i
0 0 1 0 (s3)i
0 0 0 1 (s4)i

(s1)i (s2)i (s3)i (s4)i 1

 (1.14)

where (sl)i ∀l{1, . . . , N} is the l-th entry of the vector si.
Thus, the expert-based initialization procedure for static components in-

cludes the steps: (i) normalize data (optionally); (ii) plot all data entries



Fig. 1.1. Visualization of pairs of the normalized data vector against each other.
Notice visible clusters plotted in figures denoted by 1-2, 2-3 and 3-4.

against each other, (iii) find subsequently positions of clusters in correspond-
ing figures (here above the diagonal). The constructed initial statistics is used
in the on-line part of the estimation algorithm. Validation of the approach is
discussed in Section 1.5.

1.4.2 Dynamic Component Initialization

A character of dynamic components (1.2) requires both to support the dy-
namics of models and to avoid a preliminary dominance of any of components
due to noisy data. The following initialization procedures can be considered
(notice that they can be also combined).

Static Case Imitation

The first one is to imitate the static case described above and to detect both
the number of components and their initial centers, using the visual analysis of



prior data. The initial statistics (V0)i in this case is constructed with the help
of substituting a matrix of the form (1.14) with the detected initial centers
instead of its part V1 in (1.11). The rest of corresponding matrix entries are
zero values. Such the initialization can be in many cases efficient, i.e., for data
with the rather slow dynamics.

Initial Centers with Support of Dynamics

Another option is to combine the above approach with diagonal matrices,
entries of which represent the chosen initial model dynamics. In this case
(using the diagonal noise covariance matrix too) the component is decomposed
into independent equations (in dependence on a dimension of the vector yt).
This allows to use the stabilized positions of centers for the initial statistics.

Construction of the initial statistics (V0)i is based on the fact that the
initial centers detected for static components are their constant expectations.
Thus for the dynamic model (here for simplicity for the first order component
with n = 1) the constant in (1.2), or precisely (1.4), is determined from

yl;t − (al|l)iyl;t−1 − (sl)i, (1.15)

where {ai, si} ∈ θi of the i-th component, and (al|l)i is the diagonal entry of
the matrix of regression coefficients ai with l ∈ {1, . . . , N}, and (sl)i is the
entry of the vector si. Then the diagonal entry (al|l)i expressing the dynamics
(a small value about 0.1 brings more dynamics, and a value approaching 1 cor-
responds to slow dynamics) can be used for constructing the initial statistics.
For the previous example, the initial statistics of the i-th strongly dynamic
component is constructed by substituting

Vy =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

(s1)i (s2)i (s3)i (s4)i

 (1.16)

into (1.11). It also defines V ′y , and the rest of submatrices are the unit matrices.

Repeated Use of the Data Sample

Another expert-based procedure, which is rather helpful in the initialization
mostly under condition of the lack of data is the repeated use of the avail-
able prior data sample [4, 23]. Firstly the estimation starts according to the
algorithm from Section 1.3.4 with small diagonal initial statistics (V0)i. The
actualized statistics after the course of the estimation with the whole sample
of prior data are used as the new initial one, and the estimation algorithm
starts again. The resulted updated statistics are used as initial for the on-line
estimation.



This way of initialization can be also combined with weighting the initial
statistics to suppress the influence of data in the beginning of the algorithm
running, which is described below.

Weighting the Initial Statistics

This initialization approach is primarily based on [23], which in the considered
context takes the following form.

The prior or expert given data are firstly substituted in the extended
regression vectors [yt, ψt−1]

′
used then in the statistics update (1.8). The

amount of the used extended regression vectors should correspond to the
number of parameters (regression coefficients) to be estimated. The statistics
κi;0 expresses the number of the used data.

The Bayesian estimation is strengthened with gradually measuring new
data, which means that a weight of the new data item is inversely proportional
to the statistics, and therefore the possible disturbance in data takes the
inversely proportional effect on the estimation. Thus the same prior regression
vectors multiplied by the chosen weight are used again for the initial statistics
as follows:

(V0)i = µ(V0)i, κi;0 = µ, (1.17)

where µ expresses the number of the used prior data items, which means that
the first newly measured data item takes the effect 1

µ on the estimation.
Improvements brought by the mentioned initialization methods appear

primarily in the speed of finding the stabilized estimates of regression coef-
ficients during the on-line mixture estimation. Validation of the enumerated
approaches is presented below.

1.5 EXPERIMENTS

The initialization of the mixture estimation algorithm can be validated in
accordance with the following criteria.

1.5.1 Weight Evolution

The first one concerns with the initialized number of components, which is
identical both for the static and dynamic components. It is verified by the
evolution of the component weights during the on-line part of the estima-
tion algorithm using 6400 data. For better visibility, fragments with 1200
data items are shown. The evolution should demonstrate a reasonable way of
switching the components. In that case it confirms that the model is correctly
established. For the prior data used in Section 1.4.1 the evolution of the cor-
responding entries of the weighting vector wt of three detected components is
shown in Figure 1.2.



Fig. 1.2. The evolution of the activity of three components. Notice that values of
the weights are approaching 0 or 1.

It can be seen that (i) the components switch in a reasonable way, (ii) the
plotted values of probabilities are mostly approaching 1 or 0, which means
the unambiguous decision for the currently active component.

1.5.2 Parameter Estimate Evolution

The evolution of the component centers for static components (1.1) and of
the estimates of regression coefficients for dynamic ones (1.2) is a sufficient
indicator of the successful initialization.



Stabilization of positions of component centers in the data space after their
initial search indicates that the estimation is correct. Otherwise, if some re-
sulting centers are identical or very close one to another, this mostly signalizes
that too many components are chosen, and their number should be reduced.

The evolution of the component centers can be seen in Figure 1.3 in the
parameter space for the normalized entries y1;t and y2;t, and y3;t and y4;t
plotted against each other.

The evolution of the estimation of regression coefficients of the components
is shown in Figure 1.4. The stabilization of the estimation can be seen, where
after the initial search the steady-state is reached.

Fig. 1.3. Evolution of three component centers. The start position is denoted by
’x’, and the end of the search is marked by ’o’. The density of points corresponds to
the speed of movement.



Fig. 1.4. Evolution of regression coefficients of three components. Notice that after
the initial search the stabilized state is reached. In the bottom figure the initialization
has given the already stabilized values.

1.5.3 Validation via Data Prediction

The graphically represented comparison of the predicted data items obtained
from components with the substituted estimates and the real data is shown
in Figure 1.5. Normalized entries of the data vector yt are shown. Graphs
demonstrate the coincidence between predictions and real data items.

The presented results are shown for the combination of the visual analysis
with the dynamics support initialization, the repeated use of the prior sample
and weighting the initial statistics, which gives the minimal prediction error
in comparison with other combinations.

1.5.4 Closely Located Components

Another series of experiments has been performed with a set of data with the
same sampling period, where the vector yt contains three entries: (i) y1;t is
position of the gas pedal [%], (ii) y2;t is lateral acceleration in multiples of



Fig. 1.5. Results of data prediction. Notice that predicted values correspond to real
data items.

gravimetric acceleration, and (iii) y3;t is road altitude (height above sea level)
[m]. The number of prior data was 200.

As it can be seen in Figure 1.6, it is difficult to distinguish individual
components with the help of the prior data visualization. The plot 2-3 can be
used for a prior guess about 5 components with coordinates [2, −0.5], [0, −1],
[1, 1.2], [−1, 1.5], [−3, 1]. However, the rest of plots does not confirm that,
and centers of components cannot be constructed.



Fig. 1.6. Visualization of data entries against each other. Here only plot 2-3 can be
used for the initialization purposes.

Under assumption of existing 5 components the prior data set with 200
values of the gas pedal position can be used for discretization within 5 in-
tervals, which are further used as prior known values of the pointer. Another
possibility, often available in practice, is a help of an expert, who can assign
values of modeled entries to components. Here the technique of the repeated
use of the data sample [4, 23] described in Section 1.4.2 is combined with
application of 5 discretized values of the gas pedal position as the known
pointer. The estimation is running firstly for 200 prior data items with small
diagonal initial statistics of 5 components. Only the statistics of the active
component (according to the pointer supposed to be known) are updated.
Then the resulted updated statistics are used as initial for the on-line part of
the algorithm.

Switching the components is shown in Figure 1.7, where the point es-
timates of the pointer as the maximum entries of the weighting vector are
plotted. All 5 components demonstrate activity, which means that the choice
of the number of components is adequate.

Dynamic components of the first order are used. Data prediction of mod-
eled entries of the vector yt can be found in Figure 1.8.

1.6 CONCLUSION

The presented approach is based on the availability of prior or expert data,
which is always the case in real application fields. Thus the intervention of
an expert in processing the prior data is realistic and, as it can be seen,
advantageous for such a critical task as the mixture initialization. This pa-



Fig. 1.7. Switching the components. Notice that all components are regularly active.

Fig. 1.8. Results of data prediction with 5 dynamic components.



per focuses on initialization of mixtures of normal components. However, the
present research project aims at the recursive estimation of mixtures of dif-
ferent distributions (namely, categorical, exponential, uniform components),
which all require specific initialization approaches. This will be part of the
future project work.
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