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Abstract— The paper deals with the design and com-
parison of model-based predictive control and anisotropic
control formulated for the motion control of industrial
robots-manipulators. Stochastic disturbances, usually occurring
and entering a control process, are taken into account in the de-
sign to attenuate their undesirable influences. The explanation
refers a specific online control parameter tuning for predic-
tive control and introduces a single-pass offline optimization
for anisotropic control. The aim is to point out features
of the proposed advanced approaches in transition situations.

I. INTRODUCTION

The model predictive control (MPC) represents a well-
known control strategy [1]. Its design pursues to minimize
the expected cost of a relevant objective function that
combines dominant powerful feedforward and complemen-
tary feedback. The feedforward is employed to optimize
control actions for future reference values. The feedback
serves for suppression of inaccuracies in the feedforward
and for managing of bounded stochastic influences [2], [3].
Nevertheless, the broader use increases demands on MPC
stability and robustness. The robustness property of MPC re-
specting uncertain model parameters and imprecisely known
external stochastic disturbances is not provided in full for real
time control of complex robotic systems [4].

The controllers operate usually under stochastic condi-
tions including reference and system signals. The measured
signals mostly include random errors. Furthermore, the real
parameters of a controlled system can differ from the param-
eters of its model used for control design. A consideration
of the conditions in the design may lead to a more efficient
and safe actuation with a potential increase of the motion
accuracy of industrial robots-manipulators.

There exist various approaches for a disturbance attenu-
ation in the control theory. The typical H2 and H∞ de-
sign for linear time invariant systems uses the evaluation
of the H2 and H∞ norms of matrix-valued transfer func-
tions [5]. However, the H2 and H∞ work only if assump-
tions on the disturbances are met well as well as a model
of controlled system is accurate enough or else they may
lead to low control quality or to undue conservatism [6].
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Such problems can be solved by a specific control design
based on an anisotropic control theory. Anisotropic control
is relatively novel approach [7], in which the statistic un-
certainty of disturbance is measured in terms of a relative
entropy rate using the mean anisotropy functional. The dis-
turbance attenuation capabilities of the controlled system are
quantified by a specific anisotropic norm [7], a stochastic
counterpart of the H∞ norm. The H2 and H∞ norms
are the limiting cases of the anisotropic norm. Minimization
of such a norm (specifically, the norm of a closed-loop
system as a performance criterion) leads to the controller,
which is less conservative than the H∞ and more efficient
for attenuating the disturbances than the H2 (LQG).

As distinct from some other well-known approaches
for hybridizing H2 and H∞ control schemes, including
minimum entropy controls, risk sensitive controls, and mixed
H2/H∞ controls, the anisotropy-based approach explicitly
incorporates different representations of the stochastic dis-
turbance distribution into a single performance index [8].
The solution leads to a unique optimal controller com-
puted from the solution of cross-coupled algebraic Riccati
equations. Recently, the suboptimal (but close to optimal)
anisotropic design was focused on the solutions by linear
matrix inequalities (LMI) and convex optimization [9], [10].

The paper aims at unified introduction of the predictive
control and novel anisotropic control in relation to the robot
motion under stochastic disturbances. The solution is in-
troduced both for predictive control as a specific tuning
problem and for anisotropic control as an integral part
of the optimization.

In MPC, the criterion is an optimal value minimizing
a quadratic cost function. It is very close to evaluation of H2

norm, which, in case of LQG control, can be expressed
identically. This affinity substantiates to investigate motion
control task with a relatively novel anisotropic control lying
between H2 and H∞ design. The investigated approaches
(predictive and anisotropic control) are explained on a one
generalized state-space model used for description of vari-
ous multi-input multi-output robotic systems.

The paper is organized as follows. In the section II, there
are definitions of used notation and control task specifica-
tion. The sections III and IV introduce unified predictive
and anisotropic motion control design. The section V deals
with a description of used model of robotic structure [11]
and shows time histories of simulation tests implemented
on this structure. Finally, the section VI summarizes fea-
tures and potentialities of proposed ways for practical use
in the motion control.
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II. PRELIMINARIES

The notation of the paper arises from stochastic and ro-
bust control theory [5], [12]. This section makes its brief
overview.

A. Generalized Model of the Controlled System

A linear discrete time-invariant (LDTI) generalized state-
space model is considered. The model is defined with the fol-
lowing sequences: X for nx-dimensional internal states
xk, W for nw-dimensional noise inputs wk, R for mr-
dimensional reference inputs rk, U for mu-dimensional con-
trol inputs uk, Z for mz-dimensional controlled outputs zk,
and Y for my-dimensional outputs yk purely selected from
states xk. All signals are discrete-time sequences related
to each other by a state-space equation (1), controlled output
equation (2) and measured output equation (3) forming to-
gether LDTI generalized state-space model of the controlled
system:

xk+1 = A xk + Bxw wk + B uk (1)
zk = Czx xk + Dzr rk + Dzu uk (2)
yk = C xk (3)

where A is the state-space matrix, Bxw is the noise matrix,
B is the input matrix; Czx is the output-weight matrix,
Dzr is the reference-weight matrix, Dzu is the control
weight matrix; and C is the output matrix. The model corre-
sponds to lower linear fractional transformation (LFT) used
for synthesis problems [5]. Eqs. (1) and (3) follow mainly
from nominal deterministic model of the controlled system
from mathematical physical analysis. On the other hand,
controlled output equation (2) represents tunable weighted
terms of controlled system input and state or output, which
determine the balance between input energy and demanded
control accuracy.

As an available prior information, the disturbance se-
quence W = (wk)−∞<k<+∞ is assumed to be a stationary
sequence of random vectors wk with zero mean Ewk = 0,
unknown covariance matrix Ewkw

T
k = ΣW � 0, (E de-

notes the expectation) and with Gaussian probability density
function

p(wk) := (2π)−mw/2(det ΣW )−1/2 exp

(
−1

2
‖wk‖2Σ−1

W

)
(4)

where ‖wk‖Σ−1
W

=
√
wTk Σ−1

W wk .

B. Control Law and Transfer Function of the Closed-Loop

A control task of the robot motion can be specified such
that a given robot should perform the desired user motion
trajectories represented by reference signals. The tracking
of the reference signals should be provided by a controller
taking into account feedback from the system, reference
signals and the available mathematical model in a real
(stochastic) environment. The described task is in Fig. 1,
which shows the general block diagram of closed-loop
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Fig. 1. Closed-loop system and appropriate diagram of lower LFT.

system, which correspond to the model (1)-(3). A suitable
controller can be expressed generally as follows

uk = Kx xk +Kr rk (5)

To describe the whole closed-loop system (Fig. 1), let us
consider the following matrix transfer function

Tzw(z) = C(zI −A)−1B + D (6)

that will be used in further explanation. It represents
the closed-loop system from the external disturbance input
W to the controlled output Z. Involved matrices in (6) are
defined by the following way[

A B

C D

]
=

[
Ã+ B̃K B̃xw

C̃zx +DzuK 0

]
(7)

Individual submatrices arise from the generalized state-space
model description (1)-(3) and parameter definitions (13)
in the context of the motion control. They are defined
as follows

Ã :=

[
A 0
0 Imr

]
, B̃xw :=

[
Bxw

0

]
, B̃ :=

[
B
0

]
,

C̃zx :=
[
Czx Dzr

]
, C̃ :=

[
C 0

]
(8)

A gain K :=
[
Kx Kr

]
represents the searched joint

control gain corresponding to the assumptive control law (5).

III. MODEL PREDICTIVE CONTROL

MPC represents a multi-step control strategy, which allows
the online optimization of control actions with respect to fu-
ture reference signals and varying nonlinear robot dynamics.
This is achieved by the optimization within a finite time-
horizon towards future time instants. Specifically, in the each
instant, MPC minimizes a quadratic cost function involv-
ing updated specific predictions of future system outputs.
The predictions express future outputs in relation to searched
control actions.
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A. Equations of Predictions and Cost Function

The predictions are based on the model of the system
(1) and (3). The cost function and predictions are expressed
as follows [1]:

Jk = E

Np∑
j=1

ẑTk+j ẑk+j

= E
(
‖QY (Ŷk+1 −Rk+1)‖22 + ‖QUUk‖22

)
(9)

ẑk+j = Czx x̂k+j +Dzr rk+j +Dzu uk+j−1 (10)

Ŷk+1 = Fp,k xk +Gp,k Uk (11)

where ẑk+j is an expected controlled output adapted to pre-
dictive control [2]; vectors Ŷ , R and U represent sequences
of predictions (future expected system outputs), references
and control actions (searched system inputs) within a given
horizon of prediction Np : Ŷk+1 =

[
ŷk+1, · · · , ŷk+Np

]T
,

Rk+1 =
[
rk+1, · · · , rk+Np

]T
, Uk =

[
uk, · · · , uk+Np−1

]T
;

and QY and QU are square-roots of weighting matrices:

QY =

 Qy · · · 0
...

. . .
...

0 · · · Qy

, QU =

 Qu · · · 0
...

. . .
...

0 · · · Qu

;
consist of output and input penalization matrices, selected
usually as: Qy = qyImy

and Qu = quImu
; and matrices

Fp,k and Gp,k are defined as follows:

Fp,k =

CAk...
CA

Np

k

, Gp,k =

 CBk · · · 0
...

. . .
...

CA
Np−1
k Bk · · · CBk

 (12)

The cost function (9) corresponds to the following parame-
ters of controlled output equation (2):

Czx =

[
Qy C

0

]
, Dzr =

[
−Qy

0

]
, Dzu =

[
0
Qu

]
(13)

B. Minimization Procedure

The minimization of the cost function (9) can be provided
beside usual procedures [2] in one-shot as a least squares
problem solution of algebraic system of equations [13], [14]:[

QY 0
0 QU

][
Ŷk+1 −Rk+1

Uk

]
= 0

where Ŷk+1 = Fp,k xk +Gp,k Uk

⇒
[
QY 0
0 QU

][
Gp,k Rk+1−Fp,k xk
I 0

][
Uk
−I

]
= 0 (14)

The usual result of the minimization is a sequence of control
actions Uk, where only first term uk of the sequence Uk is
really applied to the controlled system.

However, for the comparison with H2 and other proposed
control methods, a usual procedure of the cost minimization
is used [15]:

uk = MUk = M(GTp,k Q
T
Y QY Gp,k +QTU QU )−1

×GTp,k QTY QY (Rk+1 − Fp,k xk) (15)

where a rectangular matrix M is defined as follows

M =
[
Imu , 0mu , · · · , 0mu

]
(16)

Thus, the matrix M selects only the appropriate control ac-
tions corresponding to the time instant k. The expression (15)
can be decomposed and expressed by comparable control law
as in case of H2 control as indicated:

uk = MKX,k xk +MKR,k Rk+1 (17)

where matrix gains KR and KX are given as follows:

KR,k = (GTp,k Q
T
Y QY Gp,k+QTU QU )−1GTp,k Q

T
Y QY (18)

KX,k = −KR Fp,k (19)

If the selection rk+j = rk for j := 1, 2, · · · , Np is con-
sidered, i.e. the future reference values are constant, unknown
or equal to current reference value in the time instant k,
then the control law is equivalent to the assumed law (5)
with varying Kx and Kr given as follows

Kx = MKX,k, Kr = MKR,k [ Imr
, Imr

, · · ·, Imr
]
T (20)

The right expression in (20) represents only appropriate sums
of elements of MKR,k with respect to the constant reference.

C. Tuning with Respect to Stochastic Influences

Predictive control usually runs under constant control
parameters. However, sudden stochastic disturbances can
generate sharp control actions. It is caused by discrepancy
of used model and controlled system. Such discrepancy
can partially be solved by specific tuning of the control
parameters Qy and Qu. Such tuning can be realized by corre-
spondence of parameters to so called precision or covariance
matrices [16] with reasonable lower Q∗ and upper Q∗
element bounds

Qy ≤ Qy|Qy∝ C−1
y
≤ Qy , Qu ≤ Qu|Qu∝ C−1

u
≤ Qu (21)

Note that elements Qy< Qy
∧
Qu> Qu would lead to ex-

cessive control attenuation whereas Qy > Qy
∧
Qu < Qu

to excessive control amplification causing system instability.
Due to proportional dependency of control parameters, which
was denoted in (21) by symbol ∝ , it is sufficient to tune
only one parameter e.g. let Qu constant and tune Qy only
according to model precision evolution [17], [18]:

Qyk ∝ C−1
yk

= (E{(yk − ŷk) (yk − ŷk)T })−1 (22)

This solution is reasonable, but it is suitable as a temporal
solution only. At continuing substantial stochastic influences,
it can cause controller insensitivity or inadequate small
control actions. More efficient solution in this point is offered
by anisotropic control introduced in the next section.
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IV. ANISOTROPIC CONTROL

This section deals with a novel formulation of anisotropic
control theory for motion control tasks. Here, the input
stochastic disturbance W entering the controlled system
(Fig. 1) is characterized in terms of the mean anisotropy
as a magnitude of the statistical uncertainty of the signal.
The robust performance of the closed-loop control system
with respect to statistically uncertain input is characterized
by its anisotropic norm, which is an anisotropy-constrained
stochastic version of the induced norm of the system.
A solution of the tracking problem via anisotropic control
is introduced as well. The anisotropic control can perform
a standard reference tracking with powerful attenuation
of stochastic influences of the input disturbances including
a robust property for the model parameter imperfections.

A. Mean Anisotropy of Disturbance Inputs

To characterize the statistical uncertainty of the exter-
nal disturbance W, the concept of the mean anisotropy is
used [7]. Let Lm2 denote the class of square integrable
Rm-valued random vectors distributed absolutely continu-
ously with respect to the m-dimensional Lebesgue measure.
The external disturbance W is assumed to be a stationary
sequence of vectors wk ∈ Lm2 interpreted as a discrete-
time random vector signal. Assemble the elements of W
associated with a time interval [s, t] into the column random
vector Ws:t := [wTs , · · · , wTt ]T . It is assumed that W0:N

is distributed absolutely continuously for every N ≥ 0.
It should be noted that not only the one-point covariance
matrix EwkwTk is unknown, but in fact, the covariance matrix
E(W0,NW

T
0,N ) is supposed to be unknown.

The mean anisotropy of the sequence W is defined
as the anisotropy production rate per time step [19]:

A(W ) := lim
N→+∞

A(W0:N )

N

where the anisotropy A(W0:N ) is defined as the minimal
value of relative entropy D(fW0:N

‖fm(N+1),λ) with re-
spect to the Gaussian distributions fm(N+1),λ in Rm(N+1)

with zero mean and scalar covariance matrices λIm(N+1):

A(W0:N ) := min
λ>0
D(fW0:N

‖fm(N+1),λ)

=
N + 1

2
ln

(
2πe

m(N + 1)
E(|W0:N |2)

)
−h(W0:N ) (23)

having a minimum at λ = E(|W0:N |2)/(m(N + 1)),
where h(W0:N ) denotes the differential entropy of W0:N (see
e.g. [20]). The anisotropy functional (23) is an entropy
theoretic measure of deviation of the unknown actual noise
distribution from the family of Gaussian white noise laws.

Furthermore, the disturbance W is supposed to have
the bounded mean anisotropy, i.e. A(W ) ≤ a. Thus,
the input mean anisotropy level a represents a measure
of the statistical uncertainty of the model.

B. Anisotropic Norm of System

The robust performance of the closed-loop system is char-
acterized by its anisotropic norm [7]. Let us denote the set
of the input signals with bounded mean anisotropy as follows

Wa := {W ∈ `mP : A(W ) ≤ a},
where

`mP :={W = (wk)−∞<k<+∞ :wk ∈ Lm2 and ‖W‖P<+∞}

is the space of weakly stationary square-integrable sequences
and the power-norm of W is generally defined as

‖W‖P :=

(
lim
N→∞

1

2N + 1

N∑
k=−N

E|wk|2
)
1/2

Since the second moments EwjwTk of the weakly stationary
sequence depend only on the time difference j−k and E|wk|2
does not depend on k, then the sequence W is:

‖W‖P =
√
E|wk|2 =

√
E|w0|2

with an arbitrary k. The anisotropic norm of the closed-loop
system Tzw(z) is defined as

|||Tzw|||a := sup
W∈Wa

‖Z‖P
‖W‖P

(24)

The anisotropic norm (24) is a nondecreasing continuous
function of the mean anisotropy level a, which satisfies

1√
m
‖Tzw‖2 = |||Tzw|||0 ≤ |||Tzw|||a

|||Tzw|||a ≤ lim
a→+∞

|||Tzw|||a = ‖Tzw‖∞

These relations show that the scaled H2 and H∞ norms are
the limiting cases of the anisotropic norm as a → 0,+∞,
respectively [7]. An important property of the anisotropic
norm is that it coincides with the scaled H2 norm of the sys-
tem for a = 0 and converges to the H∞ norm as a →
∞. Therefore, ||| · |||a is an anisotropy-constrained stochastic
version of the induced norm of the system which occupies
a unifying intermediate position between the H2 and H∞
norms as control performance criteria [6].

C. Anisotropic Suboptimal Controller Synthesis

Now let us proceed to the synthesis problem statement:
given LDTI state-space model (1) - (3), a mean anisotropy
level a ≥ 0 of the external disturbance W , and some
designed threshold value γ > 0, find a time-invariant
state-feedback controller in the form (5), which internally
stabilizes the closed-loop system Tzw(z) with the state-space
realization (6) and ensures that its anisotropic norm does not
exceed a threshold γ, i.e. the following inequality holds true:

|||Tzw|||a < γ (25)

The solution of this problem can be expressed as a system
of convex inequalities. The inequality (25) holds true if there
exist η ∈

(
γ2, γ2(1− e−2a/mw)

)
and some real (nx × nx)-

matrix Φ = ΦT � 0 that satisfy following inequalities [9]

−
(
det(ηImw

−BTΦB)
)1/mw

< −
(
η − γ2

)
e2a/mw (26)
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[
ATΦA− Φ + CTC ATΦB

BTΦA BTΦB− ηImw

]
≺ 0 (27)

To obtain the solution, let a suitable slack (mw×mw)-matrix
variable Ψ = ΨT � 0 be considered so that

η −
(
e−2a det Ψ

)1/mw
< γ2 (28)

Ψ ≺ ηImw
−BTΦB (29)

The inequality (28) is the first of the convex inequality
system. Now, let us take into account the inequality (29).
It is equivalent to

Ψ− ηImw −BT (−Π−1)B ≺ 0, (30)

where Π := Φ−1. Applying Schur’s Lemma [21] to this
inequality with respect to (7), the second convex inequality
can be obtained Ψ− ηImw B̃Txw 0

B̃xw −Π 0
0 0 −Ipz

 ≺ 0 (31)

By double application of Schur’s Lemma [21] to the in-
equality (27) with further multiplication from both sides
by blockdiag (Π, Imw , Inx , Ipz ) � 0 and introduction
of the linearizing change of variable Λ := KΠ, the last
convex inequality can be expressed as follows

−Π 0 ΠÃT +ΛT B̃T ΠC̃Tzx+ΛTDT
zu

0 −ηImw B̃Txw 0

ÃΠ+B̃Λ B̃xw −Π 0

C̃zxΠ+DzuΛ 0 0 −Ipz

≺ 0(32)

Then, for suitably selected a ≥ 0, γ > 0, the desired state-
feedback controller exists if the system of inequalities above
is feasible with respect to the scalar variable η, real (mw ×
mw)-matrix Ψ, real ((nx + pr)× (nx + pr))-matrix Π

η > γ2, Ψ � 0, Π � 0 (33)

and real (mu × (nx + pr))-matrix Λ.
Thus, the solution of the system of convex inequali-

ties (28), and (31) - (33) gives the unknown variables Ψ,
Λ and Π and the searched state-feedback controller gain
matrix is determined by

K =
[
Kx Kr

]
= ΛΠ−1. (34)

Note that the inequalities (28), (31) - (33) are not only convex
in Ψ and affine with respect to Π and Λ, but also linear in γ2.
Obviously, minimizing γ2 under these convex inequalities,
γ is minimized under the same constraints. So, the con-
ditions (28), (31) - (33) allow to compute the minimal γ
via solving the convex optimization problem

minimize γ2

over Ψ,Π,Λ, η, γ2 satisfying (28), (31) - (33). (35)

If the convex problem (35) is solvable, the state-feedback
controller gain matrix is given by (34). The anisotropic
controller for minimal γ2 is called γ-optimal. The prob-
lem (35) can be efficiently solved offline e.g. by tool-
box YALMIP [22]. The explanation in this section com-
pletes realizable implementation of the anisotropic control
for the motion control under stochastic disturbances, com-
patible with the predictive control algorithms.
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Fig. 2. Functional model of the robot ‘Moving Slide’; wireframe repre-
sentation; and used testing ‘S’-shape trajectory with time marks.

V. SIMULATION EXAMPLES
This section demonstrates the proposed predictive

and anisotropic control applied to robot motion specifically
to a robotic system ‘Moving Slide’ (Fig. 2). It represents
a planar parallel robot-manipulator [11] intended for top
milling operations. It has four control inputs u (torques
of drives) and three outputs y (positions xc, yc and angular
rotation ψc of a robot platform). The control should ensure
the motion of the platform along reference trajectory.

A. The Nominal Model of Robotic System

The robot model follows from Lagrange equations, which
lead to the system of nonlinear differential equations (ideal
mathematical-physical model)

ÿ(t) = f(y(t), ẏ(t)) + g(y(t))u(t) (36)

The system (36) for MPC is linearized using specific decom-
position technique [23], keeping equalities A(x(t))x(t) =
[ẏT(t), f(y(t), ẏ(t))T ]T , B(t) = [0, g(y(t))T ]T and leading
to the usual continuous state-space model, and discretized
to the following discrete model

xk+1 = Ak xk + Bk uk (37)
yk = C xk (38)

The elements of state matrix Ak and input matrix Bk depend
on current system state xk = [yk, ẏk]T that includes system
output y and its time derivative ẏ, i.e. xk = x(t)|t=k Ts :
A(xk)→Ak and {A(xk), B(xk)}→Bk.

MPC, within the finite horizon, applies state-dependent
time-varying state-space model to each time step of online
optimization. Anisotropy-based approach is primarily devel-
oped as single-pass offline robust control design consider-
ing one representative model averaged along the trajectory
(Fig. 2, right) with the parameter uncertainty, i.e. for the sam-
pling Ts = 0.01s and given robot, the averaged state-space
matrices were the following:

A=


1 0 0 0. 01 1. 8789·10−9 −6. 3286·10−13

0 1 0 −5. 8784·10−10 0. 01 −4. 0357·10−12

0 0 1 1. 9878·10−6 −1. 7937·10−5 0. 01

0 0 0 1 3. 8207·10−7 −1. 2168·10−10

0 0 0 −2. 2561·10−7 1 −8. 0817·10−10

0 0 0 0. 00039757 −0. 0035874 1

 (39)

B=


−5.507·10−5 −5.4653·10−5 5.5052·10−5 5.4642·10−5

5.3431·10−5 −5.3128·10−5 −5.346·10−5 5.3159·10−5

−0.0017779 −0.0017399 −0.0017781 −0.0017403
−0.011014 −0.010931 0.01101 0.010929

0.010686 −0.010626 −0.010692 0.010632
−0.35558 −0.34797 −0.35561 −0.34807

 (40)

C = Imy×nx , Bxw = Inx (41)
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Fig. 3. Time histories [s] of errors of system outputs and control actions for the identical settings (left) and for the individual (‘the best’) settings (right).

B. Evaluation of the Examples

Obtained control actions were applied to the initial non-
linear model (36), used as a simulation model substituting
the real robot (Fig. 2, left). The parameters of examples
were selected with respect to the identical fixed and ‘best’
individual settings:
• the identical controller settings for the comparison:

MPC, H2, H∞, Ha : Np = 10, Qy = 5 · 10−2 Imy ,
Qu = 1·10−4 Imu

, with rk+j=rk+1, j :=1, · · ·, Np
• the ‘best’ individual settings of the controllers leading

to ‘best’ trajectory tracking (smaller control errors):
MPC : Np = 10, Qy tuned (III-C), Qu = 1 · 10−4 Imu

H2, H∞, Ha : Qy = 7 · 10−1 Imy , Qu = 5 · 10−5 Imu

The mean anisotropy level a was 0.25 in both cases to show
difference among anisotropic, H2, and H∞ strategies.

The examples were realized with noise disturbance vari-
ance Var(wki) = (5 ·10−5)2, i := 1, · · ·, nx=6 with ten-
fold amplifications in time intervals 〈2.2, 3.2〉, 〈4.2, 5.2〉,
〈6.2, 7.2〉 [s]. The noise simulates stochastic influences
in the measurement of the robot state. Fig. 3 (left) for iden-
tical parameters shows the difference among H2, H∞
and anisotropic control. It serves to markedly demonstrate
intermediate anisotropic control behavior. Fig. 3 (right)
is for individual the most suitable (‘the best’) settings that
lead to the minimal control error of the trajectory tracking.

It is proved that MPC tracks the reference trajectory well
especially if the trajectory shape is substantially changed
e.g. in the transitions between abscissa and arc segments
or two arc segments, where the kinematic parameters
of the reference trajectory are changed rapidly.

However, at the disturbance increase, MPC (Fig. 3, left)
tries to compensate that increase by the increase of control
actions with their oscillation. In case of anisotropic, H2

and H∞ control, the situation is different. Their tracking
is smooth, but due to their static and single-step character,
they are not able to manage changes of reference trajectory
as MPC. In Fig. 3 (right), the MPC was under online tuning
of weighting parameter Qy according to idea described
in subsection III-C. At increasing of uncertainty caused
by increase of the noise, the weight Qy is decreased and vice
versa. This idea can suppress sharp changes in control actions
but at the cost of accuracy control.

During execution, MPC run online with Ts = 0.01s
whereas anisotropic, H2 and H∞ control used fixed single-
pass offline pre-computed gains. The fixed gains were opti-
mized by YALMIP with no more than 30 iterations per con-
trol for various param. setting (on average 22 iterations).

VI. CONCLUSION

The paper introduces a novel anisotropic control approach,
as specific convex optimization problem, intended for motion
control of industrial robotic systems in analogy to known
MPC. The explanation focuses on the attenuation of stochas-
tic influences. In this regard, specific online tuning of MPC
and detailed synthesis of stochastic anisotropic control were
shown. Advantage of the anisotropic control is in the con-
tinuous tuning between H2 and H∞ as its limiting cases.
It enables user to select adequate level of the control con-
servatism relative to required control accuracy.
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