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Abstract. This paper deals with a novel nonlinear design of the discrete
model predictive control represented by two algorithms based on the fea-
tures of linear methods for the numerical solution of ordinary differential
equations. The design algorithms allow more accurate motion control
of robotic or mechatronic systems that are usually modelled by nonlinear
differential equations up to the second order. The proposed ways apply
nonlinear models directly to the construction of equations of predictions
employed in predictive control design. These equations are composed
using principles of explicit linear multi-step methods leading to straight-
forward and unambiguous construction of the predictions. Examples
of the noticeably improved behaviour of proposed ways in comparison
with conventional linear predictive control are demonstrated by compar-
ative simulations with the nonlinear model of six-axis articulated robot.
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1 Introduction

The integration of industrial robot applications in production increases rapidly.
Such continuous trend proceeds with the advent of Industry 4.0 and it will con-
tinue in future as well [10]. The robots in industrial production perform huge
number of operations. Their efficiency depends on used motion control that can
exploit available information from used robot and measured data [9].

Nowadays, necessary information, data and computing power are broadly
available, however, the designers are not able to use them effectively. In industrial
production, there exist a lot of elaborated strategies that follow from long-term,
empirical experiences [24]. Unfortunately, such strategies are usually not general
enough. They are not scalable or transferable for different or modified systems.

From mathematical point of view, the robots, manipulators, such as
a mechanical structure of articulated robot class shown in Fig. 1, represent
dynamic systems that are usually described by systems of ordinary differential
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equations (ODEs) as suitable models of dynamics [23]. These models can be con-
sidered as a proper substitution of the real physical robot mechanism for com-
puter simulations and motion control design as well.

The aforementioned ODE systems reflect various relations among individual
elements of the robot constructions. These relations are usually nonlinear. It is
given by nonlinear operations on descriptive variables and related derivatives [1].
Thus, usual linear control theory [25] cannot be directly applied without some
modifications.
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Fig. 1. Wire-frame model of the articulated robot class [2].

In practice, several common solutions are considered. They employ local lin-
earization [21] by means of Taylor series, partial derivative models or switching
local linear models and discretization to obtain discrete linear-like model, often
in state-space form. Then, usual linear design of discrete model predictive con-
trol can be applied [3,5,6,18,20,25]. Further approaches consider linear models
with stochastic uncertainties as substitution of initial nonlinear models [16]. Dif-
ferent solutions can be realized by neural network [19] or by the direct nonlin-
ear optimization such as in [11,14,15,26,28]. However, mentioned ways are not
immediately applicable as straightforward multi-step design in control process.

This paper deals with a novel way of the design of the discrete model pre-
dictive control (single-pass algorithm) that however employs a continuous-time
nonlinear ODE model of the robot dynamics. This way was initially introduced
in [2] and this paper extends its idea for a novel general way (two-cycle algo-
rithm) using nonlinear prediction. The new algorithm serves as a specific etalon
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or ideal for demonstrated fast single-pass algorithm. It is given by computation
demands. The two-cycle algorithm is more demanding, slower but gives results
near the ideal in comparison with the single-pass algorithm that is fast and fully
comparable in computation demands with the conventional linear approach [25].
However, the conventional linear approach cannot achieve comparable results.

The model in both algorithms is employed directly by means of specifically
adapted explicit linear multi-step numerical methods. These methods are used
for the construction of equations of predictions or using of these methods sub-
stitutes conventional equations fully. Considered equations of predictions can be
applied in usual way to the common quadratic cost function and optimization
criterion. The explanation is introduced with Adams-Bashforth method as a rep-
resentative of the aforementioned explicit methods [8]. Features of the proposed
solutions are discussed and compared with usual linear design of model predictive
control [20,25] that considers conventional repeated linearization and discretiza-
tion along motion trajectories of the robot.

2 Nonlinear Robot Model

The model of the given class “articulated robots” is generally represented
by a nonlinear function expressing relations between control actions (robot
inputs, joint torques τ = τ(t)) and descriptive variables (robot outputs, joint
angles and their derivatives q = q(t), q̇ = q̇(t) and q̈ = q̈(t)):

q̈ = f(q, q̇, τ) (1)

The model (1) expresses equations of motions [22,23] that reflect robot dynamics.
Such a model is mostly composed by Lagrange equations, e.g. in the following
form

d

dt

(
∂Ek

∂q̇

)
T

−
(

∂Ek

∂q

)
T

+
(

∂Ep

∂q

)
T

= τ (2)

where q, q̇, Ek, Ep and τ are generalized coordinates and their appropriate
derivatives, total kinetic and potential energy and vector of generalized force
effects corresponding to generalized coordinates [23].

The individual elements of (2) are defined as follows

d

dt

(
∂Ek

∂q̇

)
T

= H̃(q, q̇) q̇ + H(q) q̈ (3)

−
(

∂Ek

∂q

)
T

= S(q, q̇) q̇ − 1
2
H̃(q, q̇) q̇ (4)

(
∂Ep

∂q

)
T

= g(q) (5)
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where, with specific simplified notation, the matrices H = H(q), S = S(q, q̇)
and H̃ = H̃(q, q̇) = d

dt (H(q)) relate to inertia effects and vector g = g(q) corre-
sponds to effects of gravity.

Then, the model (the equations of motion of articulated robots) can be writ-
ten as follows

q̈ =

f(q, q̇, τ)︷ ︸︸ ︷
−H−1

(
1
2
H̃ + S

)
q̇

︸ ︷︷ ︸
f(q, q̇)

− H−1g

︸ ︷︷ ︸
fg(q)︸ ︷︷ ︸

fc(q, q̇)

+ H−1τ

︸ ︷︷ ︸
gτ(q) τ

= f(q, q̇) + u (6)

where f(q, q̇) = −H−1
(

1
2H̃ + S

)
q̇ and u = H −1 (− g + τ).

Thus, Eq. (6) can be considered as a particular form of the model (1):

q̈ = fc(q, q̇) + gτ(q) τ = f(q, q̇) + fg(q) + gτ(q) τ

= f (q, q̇) + g(q)u (7)

where g(q) is added just for the generality; it is identity matrix here. In (7),
the effects of gravity fg(q) are included into robot inputs as outer forces that
cannot be reduced or suppressed in the control design due to their static and fixed
character.

Note that final torques required on appropriate drives (reference torques
for local drive control) are given by

τ = H u + g (8)

i.e. backward recomputation of designed control actions to real torques including
a compensation of effects of gravity.

3 Integration Concept

To design nonlinear predictive control in discrete form, let us consider individ-
ual time instants of the initial continuous nonlinear function in the model (1)
as follows (i.e. only time sampling, but no model discretization)

fk = f(q, q̇, τ)|t= kTs
, k = 0, 1, · · · (9)

where Ts is appropriately selected sampling period. Let the same be applied
to the terms from (7)

fk = f(q, q̇) gk = g(q) | t= kTs
(10)
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The propositions (9) or (10) will be apt for a specific construction of the pre-
dictions towards unknown control actions u(t) within in an ordered finite set
of discrete time instants t ∈ {k Ts, (k+1)Ts, · · · , (k+N −1)Ts}, where N is
a prediction horizon. The predictions still take into account the continuous non-
linear model, but only the indicated discrete time samples that will be applied
to discrete design of predictive control. This concept can be realised by means
of numerical methods [8] used for the numerical approximation of the solution
of the first-order ordinary differential equations (ODEs):

ẏ = f(t, y) with initial condition y0 = y|t=0 (11)

Thus, these methods are used to find a numerical approximation of the exact
integral over a particular time interval, e.g. t ∈ 〈k Ts, (k+1)Ts〉

yk+1 = yk +

(k+1)Ts∫
k Ts

ẏ dt = yk +

(k+1)Ts∫
k Ts

f(t, y) dt

ŷk+1 = yk + h δ(t, y) (12)

where yk = y|t=k Ts
is an initial condition of the given time interval, ŷk+1 is

an approximation of the exact solution yk+1 = y|t=(k+1)Ts
, δ(t, y) means in gen-

eral the function approximating ẏ so that ŷk+1 would be the adequate approxi-
mation of yk+1 and h is a step of integration method, which is selected as h = Ts .
From a large number of the methods, let us take into account linear multi-step
methods that are convenient for the predictions in predictive design. Generally,
linear multi-step methods are expressed as follows

ŷk+1 =
r∑

i=0

αi yk−i + h

s∑
j=−1

βj fk−j (13)

where ŷk+1 is a result of the numerical integration arose from the previous yk−i .
For the design, the explicit methods are useful. One their representative

is explicit Adams-Bashforth method of fourth order with r = 0, α0 = 1, s = 3
and βj = γj

24 , j ∈ {−1, 0, 1, 2, 3}, where γ−1 = 0, γ0 = 55, γ1 = −59, γ2 = 37
and γ3 = −9, as follows

ŷk+1 = yk + h ( − 9
24 fk−3 + 37

24 fk−2 − 59
24 fk−1 + 55

24 fk) (14)

Note, for completeness, that the function approximating ẏ from (12) is as follows:

δ(t, y) = − 9
24 fk−3 + 37

24 fk−2 − 59
24 fk−1 + 55

24 fk.

The aforementioned Adams-Bashforth linear method [8] will be used explicitly
in an explanation of the single-pass algorithm in the following section.

belda@utia.cas.cz



Nonlinear Model Predictive Control Algorithms 235

4 Nonlinear Design of Model Predictive Control

The nonlinear model predictive design focusses recently on the solution of non-
linear optimal control problem with integral criterion of optimality. It repre-
sents general solution using sophisticated nonlinear optimization algorithms.
But it leads to sequential quadratic programming (QP) representing one-ahead
spreading-in-time-optimization process, thus iteratively approximating the non-
linear problem with QP [11,28]. Alternatively, common additive forms of the cri-
terion employed in linear control theory can be considered as well. The operation
of integration is just moved from the criterion towards predictions composed
by means of the numerical methods for ODEs involving the continuous-time
model (7). This idea will be introduced and employed in the proposed design.

Let us start just from the continuous model (7) considered in the discrete
time samples (time instants) as was indicated in (10). Moreover, let us take
more usual, universal notation into account: instead of q use for outputs symbol
y, i.e. yk = qk as well as for appropriate derivatives ẏk = q̇k and ÿk = q̈k

ÿk = fk + gk uk (15)

From (6), the function fk holds fk|[ẏ =0, y ∈R)] = 0 whereas term fg k| y ∈ R �= 0
in (7) for the given spatial articulated robot class as well as specially for ver-
tical planar robot configurations. Note, for completeness, fg k| y ∈ R = 0 applies
to horizontal planar robot configurations. The knowledge of the property of fk

is useful for maintaining the stability in the control design.
Using the model (15), the specific design of the nonlinear model predictive

control will now be explained in the following three sections.

4.1 Criterion and Cost Function

The criterion for predictive control design can generally be written as follows

min
Uk

Jk ( Ŷk+1,Wk+1, Uk ) (16)

subject to: Ŷk+1 = f(yk, ẏk, δ(t, y, ẏ))

ÿk = fk + gk uk

where the function δ(t, y, ẏ) arises from the second order model ÿk = fk +gk uk,
and fk = f(y, ẏ) as was shown in (10). Vectors Ŷk+1, Wk+1 and Uk represent
the sequences of the robot output predictions, references and control actions
from given current time sample up to the horizon of prediction N , respectively

Ŷk+1 = [ŷT
k+1, · · · , ŷT

k+N ]T (17)

Wk+1 = [wT
k+1, · · · , wT

k+N ]T (18)

Uk = [uT
k , · · · , uT

k+N−1]
T (19)
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Thereafter, the cost function Jk is chosen in usual quadratic form as follows

Jk =
N∑

i=1

{||Qyw (ŷk+i − wk+i)||22 + ||Qu uk+i−1||22}

=(Ŷk+1 − Wk+1)T QT
Y W QY W (Ŷk+1 − Wk+1)

+ UT
k QT

U QU Uk (20)

where QT
Y W QY W and QT

U QU represent penalizations defined by the following
matrix form

QT
� Q� =

⎡
⎢⎣

QT
∗ Q∗ 0

. . .
0 QT

∗ Q∗

⎤
⎥⎦ (21)

where the symbolic subscripts �, ∗ have the following interpretation: � ∈
{Y W, U} and ∗ ∈ {yw, u}.

However, the cost function can be selected differently according to user re-
quirements, e.g. considering incremental terms that can slightly moderate
and smooth the robot motion [18] or suppress steady-state control error, as shown
in [7,25]. It means that cost function (20) may also be selected in some specific
incremental form from control action point of view, for instance, as follows

Jk =(Ŷk+1 − Wk+1)T QT
Y W QY W (Ŷk+1 − Wk+1)+ �UT

k QT
�U Q�U �Uk (22)

However, a minimization of the cost functions may be provided by similar opti-
mization procedure. Such procedure will be introduced at the end of this section.

4.2 Equations of Predictions – Algorithm with Nonlinear Prediction

The algorithm with nonlinear prediction (two-cycle algorithm) is developed to
improve accuracy of predicted outputs ŷ by specific approximation of nonlin-
earities of the robot model by specific equations of predictions involving specific
nonlinear prediction. The algorithm consists of two cycles as follows from Fig. 2.

The main cycle represents usual control cycle extended by internal simula-
tion cycle. Internal cycle composes the essential part of the control usim k and
predicts future values of the system state –xsim k:k+N . For these operations,
the general predictive control algorithm and numerical integration of nonlinear
model (i.e. function f(x) + g(x)u (= f(x, u)) are used. Obtained values are
stored for computations in main cycle. In it, at first, the models determined
by states xsim k:k+N are calculated. Then, they are used for composition of
equations of predictions serving for generating of increments of control actions.
Finally, the increments are added to actions from internal cycle usim k. Final
control actions uk are applied to controlled systems. Now, this generally defined
algorithm can be mathematically formulated.
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Incremental algorithm
with nonlinear prediction

Evaluation
x 1:Tfinal / Ts

End of algorithm

List of results

Start of algorithm

Initialization: step i = 1
(state x1, reference w (1: Tfinal / Ts))

Main cycle I.
for k = 2 : Tfinal / Ts

Simulative cycle II.
for i = 1 : N

linearization
(including transformation
to state-space formulation)

discretization

computation
of control ui

storing x to xsim k+i

if i == 1 

storing ui to usim k

real object (robot)
or

numerical integration
x = ∫ (f (x ) +g (q) uk)

composition
of control action
uk = usim k + uk

storing x to xk 

computation
of state-space

models (xsim k:k+N)
and predictions

computation
of increments uk
of control actions

y

N

computation
of nonlinear model

(parameters f (q, q), g (q)).

numerical integration
x = ∫ (f (x ) +g (q) ui)

Fig. 2. Flowchart of the algorithm with nonlinear prediction.

In detail, the specific equations of predictions are constructed as follows

xk+1 = Akxk + Bkusim k︸ ︷︷ ︸ +Bk �uk

x̂k+1 = xsim k+1 + Bk �uk

xk+2 = Ak+1xk+1 + Bk+1usim k+1 + Bk+1 �uk

x̂k+2 = Ak+1xsim k+1 + Bk+1usim k+1︸ ︷︷ ︸ +Ak+1Bk �uk + Bk+1 �uk+1

x̂k+2 = xsim k+2 +Ak+1Bk �uk + Bk+1 �uk+1

...
... (23)

x̂k+N = xsim k+N + Ak+N−1 · · · Ak+1Bk �uk

+ · · · + Ak+N−1Bk+N−2 �uk+N−2 + Bk+N−1 �uk+N−1
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In (23), xsim k+1, usim k (etc. xsim k+i, usim k+i−1, i = 1, · · · , N) are vec-
tors of state and control actions given from pre-simulation in considered reced-
ing horizon of incremental control algorithm. Furthermore, Ak = A(xk), Bk =
B(xk), Ak+i = A(xsim k+i), Bk+i = B(xsim k+i), i = 1, · · · , N−1 are matrices of
state-space model given by model linearization and discretization repeating in
every time instant k. C is an output matrix. All terms follow from state-space
form:

[
ẏ
ÿ

]
︸︷︷︸
ẋ

=
[

0 I
0 f(ẏ, y)

]
︸ ︷︷ ︸

A(t)

[
y
ẏ

]
︸︷︷︸

x

+
[

0
I

]
︸︷︷︸
B

u (24)

y =
[

I 0
]

︸ ︷︷ ︸
C

[
y

ẏ

]
(25)

that is discretized: A(t), B |Ts
⇒ Ak, Bk by first-order-hold method [12]

and arranged as

ŷk+1 = CAkxk + C Bk uk (26)

The derivation of the Eq. (23) follows from usual construction of equations of
predictions, i.e. suitably repetitive substitution for predicted future states and
outputs, respectively. However, the structure of the equations of predictions is
more complex due to variable state-space matrices within optimisation interval
given be horizon of prediction N .

⎡
⎢⎢⎢⎣

ŷk+1

ŷk+2

...
ŷk+N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Cxsim k+1

Cxsim k+2

...
Cxsim k+N

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

CBk · · · 0

CAk+1Bk

...
...

. . . 0
CAk+N−1 · · · Ak+1Bk · · · CBk+N−1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

�uk

�uk+1

...
�uk+N−1

⎤
⎥⎥⎥⎦ (27)
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A corresponding condensed matrix notation is as follows

Ŷk+1 = Ŷsim k+1

+ Ḡk

× �Uk

∣∣∣∣ Ŷk+1 = [ŷk+1, ŷk+2, · · · , ŷk+N ]T

�U = [�uk,�uk+1, · · · ,�uk+N−1]T

(28)

Ŷk+1 = F̄k + Ḡk �Uk (29)

where vector F̄k = Ŷsim k+1 and matrix Ḡk follow from the structure (27).

4.3 Equations of Predictions – Single-Pass Algorithm

As was already mentioned, the equations of predictions can also be composed
with the nonlinear continuous model (15) and by means of the idea of the approx-
imation of the exact integral as indicated in (12). It can be ensured by the exem-
plarily selected linear multi-step Adams-Bashforth method of fourth order (14)
for the solution of the first-order ODEs.

However, the considered nonlinear model of the robot (15) represents a sys-
tem of the second-order ODEs. To apply the chosen suitable numerical method,
but without loss of information about included nonlinear relations, the model
(15) has to be specifically transformed into ODEs of the first order. For such nec-
essary rearrangement, the following backward Euler formula can be applied

ˆ̇yk+1 =
ŷk+1 − yk

h
(30)

This specific formula ensures the coupling (propagation) of nonlinear rela-
tions from the model (15) into positional estimates, since the numerical methods
represent only linear combinations within rows of the ODEs. Hence, usual rear-
rangement via addition of further ODEs decreasing the order of initial ODE
system would not be useful because of the loss of information.

Considering the aforementioned features, then the positional estimate ŷk+1

can be determined by the velocity estimate ˆ̇yk+1 that includes fully the initial
nonlinear model (15), as follows

ŷk+1 = yk + h ˆ̇yk+1 (31)

where the estimate ˆ̇yk+1 is generally given by the numerical integration
of the ODE set as indicated

ˆ̇yk+1 = ẏk + h δ(t, y, ẏ) (32)

Note, for completeness, if the appropriate robot model would be set of first-order
ODEs only, i.e. ˜̇yk = f̃k + g̃k uk as e.g. in [13,27], this step is not needed.
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Now, the real equations of predictions can be composed considering the initial
nonlinear model (15), together with a specific numerical method (32) (here,
the Adams-Bashworth method (14)) and the transformation to the first-order
ODE set as indicated by (31).

The equations of predictions, expressed in a condensed matrix form, are de-
fined for the velocity vector ˆ̇Yk as follows

ˆ̇Yk+1 = ẏk FI + Fk + Gk Uk (33)

and as well as for the position vector ˆ̇Yk as

Ŷk+1 = yk FI + Lk + Mk Uk (34)

where the individual terms represent multiple identity matrix: FI = [ I · · · I ]T ,
specific free responses: “ẏk FI +Fk”, “yk FI +Lk” and forced responses: “Gk Uk”,
“Mk Uk”, respectively. Fk and Gk can be defined using the following sequences
for velocities, where, for clear arrangement, particular time instants are separated
by horizontal lines:

ˆ̇yk+1 = ẏk + F1,k

+ β0 gk uk

F1,k = β3 ÿk−3+ β2 ÿk−2+ β1 ÿk−1+ β0 fk

ˆ̇yk+2 = ẏk + F2,k

+ (β1 + β0) gk uk + β0 ĝk+1 uk+1

F2,k =F1,k+β3 ÿk−2+β2 ÿk−1+β1 fk +β0 f̂k+1

...

ˆ̇yk+N = ẏk +FN,k + {
3∑

j=0

βj} gkuk

+ · · · + β0 ĝk+N−1 uk+N−1

FN,k = FN−1,k +
4∑

j=1

βj−1f̂k+N−j (35)

Note that in step k, the topical value ẏk as well as its appropriate past values
ÿk−1, ÿk−2 and ÿk−3 are known from measurements or possibly from some suit-
able running state estimation. The coefficients βj appearing in (35) are identical
to the coefficients βj that were introduced in the Eq. (13).
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Consequently, vector Fk and matrix Gk from (33) can be defined as follows:

Fk =

⎡
⎢⎢⎢⎢⎢⎢⎣

F1, k

F2, k

...

FN, k

⎤
⎥⎥⎥⎥⎥⎥⎦
, Gk =

⎡
⎢⎢⎢⎢⎢⎢⎣

β0 gk 0 · · · 0

(β1 + β0) gk β0 ĝk+1

...
...

. . .
...

{
3∑

j=0

βj} gk · · · · · · β0 ĝk+N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

where f̂k+i and ĝk+i can be substituted by the future reference values as follows
f̂k+i = fk+i(wk+i, ẇk+i) and ĝk+i = gk+i(wk+i).

Similarly in the construction of the Eqs. (34), Ŷk+1, Lk and Mk can be defined
by analogical sequences for positions as follows (again for clear arrangement,
particular time instants are separated by horizontal lines):

ŷk+1 = yk + L1, k + hβ0 gk uk

L1, k = h ẏk + hF1, k

ŷk+2 = yk + L2, k

+h (β1 + 2β0) gk uk +hβ0 ĝk+1 uk+1

L2, k = L1, k + hF2, k

...

ŷk+N = yk + LN, k

+ h {
3∑

j=0

(N−j)βj} gk uk

+ · · · + hβ0 ĝk+N−1 uk+N−1

LN, k = LN−1, k + hFN, k (37)

Then, vector Lk and matrix Mk from (34) are:

Lk =

⎡
⎢⎢⎢⎢⎢⎢⎣

L1, k

L2, k

...

LN, k

⎤
⎥⎥⎥⎥⎥⎥⎦
,Mk =

⎡
⎢⎢⎢⎢⎢⎢⎣

hβ0 gk 0 · · · 0

h (β1 + 2β0) gk hβ0 ĝk+1

...
...

. . .
...

h{
3∑

j=0

(N−j)βj}gk · · · · · · hβ0 ĝk+N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

Note that the two-step equations of predictions (33) and (34) are used here
with respect to the second order of ODEs.
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4.4 Square-Root Minimization

To minimize the cost function (20), let us consider the following expression

min
Uk

Jk = min
Uk

J
T
k Jk ⇒ min

Uk

Jk (39)

that indicates the square-root minimization of the vector Jk instead of min-
imization of the scalar Jk. The reason is that minimizing the square-root is
more suitable in terms of calculation. Thus, the square-root of the criterion (16)
with the cost function (20) can be expressed as follows

min
Uk

Jk = min
Uk

[
QY W 0

0 QU

] [
Ŷk+1 − Wk+1

Uk

]
(40)

The indicated minimization (40) can be solved as a specific least-squares prob-
lem by the following system of algebraic equations [17] that involves equations
of predictions (34) for Ŷk+1[

QY W Mk

QU

]
Uk =

[
QY W (Wk+1 − yk FI − Lk)

0

]
(41)

A similar least-squares problem can also be written specifically for the cost
function (22) used in the two-cycle algorithm with nonlinear prediction (29):

[
QY W Ḡk

QU

]
�Uk =

[
QY W (Wk+1 − F̄k)

0

]
(42)

The system (41) or (42), that is over-determined, can be written in condensed
general form (43). It can be transformed to another form (44) by orthogonal-
triangular decomposition [17] and solved for unknown Uk (or �Uk)

AUk = b (43)

QT AUk = QT b assuming that A = QR

R1Uk = c1 (44)

where QT is an orthogonal matrix that transforms matrix A into upper triangle
R1 as it is indicated by the following equation diagram

A Uk = b

⇒

�
�

��

R1

0

Uk = c1

cz

(45)
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Vector cz represents a loss vector, Euclidean norm ||cz|| of which equals
to the square-root of the optimal cost function minimum, i.e. scalar value

√
J ,

where J = cT
z cz. Only the first elements corresponding to uk are used from com-

puted vector Uk . Note that for � Uk it is necessary to add the control action
value usim k from internal cycle as follows: uk = usim k+ � uk, where � uk is
the appropriate first vector element from �Uk obtained from the main cycle.

5 Simulation Examples

The examples demonstrate the behaviour of the articulated robot along a
selected testing trajectory. The corresponding wire-frame model of the given
robot including trajectory is shown in Fig. 1. Trajectory in detail is in Figs. 3
and 4. The depicted trajectory was time parameterized with acceleration poly-
nomial of fifth-order [4,23]. The specification of individual trajectory segments
is listed in the Table 1, where G19, G01 and G02 are G-codes of plane selec-
tion for full definiteness of circles, motion with linear and circular interpolation,
respectively.

The model of given robot dynamics (7) and (8) from (2)–(6) took into account
the parameters of ABB robot IRB 140 (Fig. 5). The number of actuated (driven)
axes of the robot is six as well as a number of degrees of freedom of the robot.
Six degrees of freedom correspond to six inputs: torques τ1:6 (N·m), six outputs:
joint coordinates y = q1:6 (rad) relating to the adequate Cartesian coordinates:

E = [ {xe, ye, ze (m)}, {αze
, βye

, γxe
(rad) } ]T

Fig. 3. Testing trajectory with specific time marks [2].
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Fig. 4. Cartesian coordinates and derivatives (time in (s)) [2].

Table 1. Testing trajectory in G code (mm).

001 : N010 G19

002 : N020 G01 X630 Y-200 Z400

003 : N030 G01 X630 Y200 Z400

004 : N040 G01 X630 Y0 Z400

005 : N050 G02 X430 Y-200 Z400 I-200 J0 K0

006 : N060 G02 X430 Y200 Z400 I0 J200 K0

007 : N070 G02 X630 Y0 Z400 I0 J-200 K0

008 : N080 G01 X630 Y-200 Z400

009 : N090 G01 X630 Y200 Z400

010 : N010 G01 X630 Y0 Z400

and twelve state variables: x = [ q T
1:6 (rad), q̇ T

1:6 (rad · s−1) ] T corresponding
to joint coordinates and their respective derivatives. Note that end-effector was
oriented to be parallel with axis x0. Thus, the orientation angles are considered
to be constant: αze

= βye
= γxe

= 0 rad. However, corresponding reference
values in joint space w1:6,∀k, k = 1, 2, · · · , are time-varying according to appro-
priate inverse kinematic transformations [23], specific for the considered robot.
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qq

qq

xe
ye
ze

ze
ye
xe

E =qq

qqqq

qq

Fig. 5. Six-axis multipurpose ABB robot IRB 140 [2].

5.1 Simulation Setup

Introduced nonlinear design of model predictive control, i.e. two-cycle algorithm
(PreSim MPC) and the fast single-pass algorithm (NonLin MPC), was tested
with the following parameters:

– sampling period: Ts = 0.01 s

– horizon of prediction: N = 10

– output penalization: Qyw = I(6×6)

– input penalization: Qu = 2 · 10−4 I(6×6)

where I is the identity matrix.
The both algorithms were compared with normal model predictive control

(Normal MPC, MPC) [25] having identical setting involved in its equation:

Uk = (G̃T
k QT

Y W QY W G̃k + QT
U QU )−1× G̃T

k QT
Y W QY W (Wk+1−F̃k xk) (46)

where matrices F̃ and G̃ are derived from the nonlinear model (7) as follows:

F̃k =

⎡
⎢⎣

CAk

...
CAN

k

⎤
⎥⎦ , G̃k =

⎡
⎢⎣

CBk · · · 0
...

. . .
...

CAN−1
k Bk · · · CBk

⎤
⎥⎦ (47)

The details on used normal MPC can be found e.g. in [20,25].
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5.2 Summary of the Results

The comparative simulations were performed with the aforementioned setting
and with artificially added mismatch between the model used for control design
and the model for the simulation. The mismatch consisted in the four-times
increased weight of the last, the sixth robot link in the simulation model against
model for the design, i.e. m6 = 0.25 kg and m̃6 = 4 × m6.

The Figs. 6, 7 and 8 show control errors at the robot motion along the testing
trajectory. They represent the errors in Cartesian coordinate system. The values
of the appropriate Cartesian coordinates were determined from ‘measured’ values
of joint coordinates by appropriate direct kinematic transformations [23].

The corresponding errors in the joint space for the most exposed joints q2
and q3 to load are shown in Figs. 9 and 10. The exposition is caused by the robot
motion itself or its character across the symmetry plane x0z0| y0=0. The afore-
mentioned figures show the lower tracking errors for the both proposed algo-
rithms. Considering moving-mass distribution in the robot: m1 = 35 kg, m2 =
16 kg, m3 = 14 kg, m4 = 6kg, m5 = 0.75 kg and m6 = 0.25 kg, then the highest
vertical load is on the second link between joints q2 and q3, which is actuated
in joint q2.

 Normal MPC   NonLin MPC   PreSim MPC

Fig. 6. Time histories of errors in the axis x.

 Normal MPC    NonLin MPC    PreSim MPC

Fig. 7. Time histories of errors in the axis y.
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 Normal MPC    NonLin MPC    PreSim MPC

Fig. 8. Time histories of errors in the axis z.

For the chosen trajectory or its orientation, the joint q2 together with joint q3
influence dominantly the motion in the direction parallel to axis x0 and axis z0
whereas joint q1 (rotation around axis z0) influences the motion in the direction
of axis y0, especially if the motion trajectory leads to a specific robot orientation
through the mentioned vertical symmetry plane x0z0| y0 =0.

Since the both proposed algorithms as well as normal MPC design have
positional character, then specific steady-state errors are perceptible. This is
especially obvious for the vertical axis z (Fig. 8) and a bit less for the hori-
zontal axis x (Fig. 6), which is coupled with the joints serving predominantly
for the motion in the direction of axis z, i.e. joints q2 and q3.

The Fig. 11 shows joint coordinates qi corresponding to Cartesian coordi-
nates in Fig. 4. It is evident that the most difficult motion phase is around 2.9 s,
because the robot arms and end-effector are in full motion speed and the trajec-
tory decomposed into the individual joint angles varies rapidly. Figure 12 shows
corresponding situation in designed control actions τi generated during control
process.

 Normal MPC    NonLin MPC    PreSim MPC

Fig. 9. Time histories of control error for joint q2.
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 Normal MPC    NonLin MPC    PreSim MPC

Fig. 10. Time histories of control error for joint q3.

Such rapid turn or change cause variations in the model parameters, which
cannot be expressed with one linearized model (24) fixed within respective mov-
ing time intervals at standard design (46) instead of flexible varying nonlinear
model along the same time intervals at proposed algorithms based on equations
of predictions (29) or (33) and (34), respectively.

 Normal MPC    NonLin MPC    PreSim MPC

Fig. 11. Time histories of joint coordinates: qi, i = 1, · · · , 6 .
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 Normal MPC    NonLin MPC    PreSim MPC

Fig. 12. Time histories of control actions, joint torques: τi, i = 1, · · · , 6 .

6 Conclusion

The proposed nonlinear design algorithms are characterized by a specific
straightforward use of initial nonlinear continuous model in the construction
of predictions. For the fast single-pass algorithm, the design is fully with-
out any linearization and conventional model discretization. The introduced
algorithms can consider reasonable prediction horizon as normal MPC. How-
ever, they can offer more accurate tracking the desired motion trajectories in
comparison with the use of conventional linear control approaches containing
linearization of used nonlinear models.

The emphasis in further research will be placed on the selection analy-
sis of adequate numerical method, incremental prediction forms for offset-free
motion and on a general point-to-point motion in unconstrained and constrained
robot workspace.
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6. Belda K, Vošmik D (2016) Explicit generalized predictive control of speed and
position of PMSM drives. IEEE Trns Ind Electron 63(2):3889–3896
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