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ABSTRACT
This paper presents a new approach to design an observer-based optimal fuzzy state feedback
controller for discrete-time Takagi–Sugeno fuzzy systems via LQR based on the non-monotonic Lya-
punov function. Non-monotonic Lyapunov stability theorem proposed less conservative conditions
rather than common quadratic method. To compare with optimal fuzzy feedback controller design
based on common quadratic Lyapunov function, this paper proceeds reformulation of the observer-
based optimal fuzzy state feedback controller based on common quadratic Lyapunov function. Also
in both methodologies, the dependence of optimisation problem on initial conditions is omitted.
As a practical case study, the controllers are implemented on a laboratory twin-rotor helicopter to
compare the controllers’ performance.
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1. Introduction

Fuzzy control systems have had a vast growth of interest
in engineering applications during recent years. In fact,
fuzzy control, as one of the applications of fuzzy sets and
fuzzy logic theory, has proven to be one of the most suc-
cessful controllers for many complex nonlinear systems.
However, their stability proof has remained a challenging
issue.

The Takagi and Sugeno (T-S) model is provided by
Takagi and Sugeno (1985) to represent or approximate
the nonlinear systems by fuzzy IF-THEN rules. Themain
feature of this fuzzymodel is to express the nonlinear sys-
tem by some local linear dynamic models of each rule.
This fuzzymodel provides an appropriate basis for stabil-
ity analysis and control design of fuzzy control systems.

Stability analysis is an important issue to design con-
trol systems. The Lyapunov stability theorem is the main
applicable theorem for stability analysis or stabilisation of
control systems. One of the prominent properties of T-S
fuzzy systems is the ability to use state feedback struc-
ture in order to analyse the stability and design stabilised
controller by the Lyapunov theorem.

In the Lyapunov direct method, a single quadratic
function should be found to prove the global stabil-
ity of the T-S fuzzy systems (Tanaka & Sugeno, 1992;
Wang, Tanaka, & Griffin, 1996). Based on a common
quadratic Lyapunov function (Tanaka & Sugeno, 1992),
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an approach to design a state feedback controller is devel-
oped in Tanaka, Ikeda, and Wang (1998). Finding a
common positive definite matrix, which can satisfy the
conditions of the Lyapunov theorem, results inmore con-
servatism in this method, especially when the number
of fuzzy rules increases. In this regard, other Lyapunov
functions have been proposed like piecewise quadratic
Lyapunov function (Feng, 2003;Wang & Feng, 2004) and
fuzzy Lyapunov function (Guerra & Vermeiren, 2004;
Tanaka, Hori, & Wang, 2003). Based on these two meth-
ods, parallel distributed compensation (PDC) structures
are applied to control discrete-time T-S fuzzy systems
(Guerra&Perruquetti, 2001;Guerra&Vermeiren, 2004).

In all of the methods as mentioned above, the Lya-
punov function monotonically decreases. To relax the
stability conditions, the non-monotonic Lyapunov func-
tion has been introduced (Butz, 1969; Derakhshan
& Fatehi, 2014), which allows the Lyapunov function
to decrease every few steps, but might be increased
in between. This means that if the Lyapunov function
decreases, for instance, every two steps, it does not nec-
essarily decrease in each step; it might increase for one
step provided that it decreases in the next step so that
it is decreasing every two steps. As a result, the fea-
sible space of the stability condition in two-step Lya-
punov function is larger than the one of the one-step
Lyapunov function. In fact, the feasible space of the
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one-step Lyapunov function is a sub-space of the fea-
sible space of the two-step Lyapunov function. In Der-
akhshan and Fatehi (2014) the quadratic non-monotonic
Lyapunov function is studied, while in Kruszewski,
Wang, and Guerra (2008) and Nasiri, Nguang, Swain,
andAlmakhles (2016, 2018) the non-quadratic Lyapunov
function (NQLF) is considered as the k-sample variations
of the Lyapunov function. However, the non-quadratic
approach has a larger feasible space it may be more diffi-
cult to find the larger space practically. Based on the non-
monotonic Lyapunov function, an approach to design
a fuzzy state feedback controller in Derakhshan, Fatehi,
and Sharabiany (2014) and also an observer-based fuzzy
controller design in Derakhshan, Fatehi, and Sharabi-
any (2012) is obtained for discrete-time T-S fuzzy sys-
tems. An observer-based H∞ controller design is intro-
duced by using a fuzzy Lyapunov function for discrete-
time T-S fuzzy systems (El Haiek, Hmamed, El Hajjaji,
& Tissir, 2017) and also for a nonlinear system with
uncertainty which is described as a T-S fuzzy model
(Derakhshan & Fatehi, 2015) drives a robust H2 fuzzy
observer-based controller which is considered as a suf-
ficient condition. The main purpose is to minimise the
upper bound of the cost function based on the non-
monotonic Lyapunov function similar to what proposed
in Derakhshan et al. (2012). The cost function is selected
as a vector of the states and error of the estimation of the
states.

In all methods, the controller design conditions are
expressed in the form of linear matrix inequalities
(LMIs). As an analytical solution, the design of an opti-
mal controller can be described by an algebraic Ric-
cati equation for linear systems. For a general nonlin-
ear system, this problem reduces to the Hamilton–Jacobi
equations which are usually hard to be solved; there-
fore, few approaches have been provided to design an
optimal fuzzy controller as an effective method so far
(Tanaka & Wang, 2004). Based on the stability condi-
tions of the Lyapunov function, Li, Wang, Bushnell, and
Hong proposed a new scheme of optimal control design
for discrete-time T-S fuzzy systems considering PDC
structure (2000). The Lyapunov function is considered a
common quadratic function. In this way, the problem of
controller design is presented as an optimisation problem
subject to satisfy someLMIs. The purpose of this problem
is minimising a cost function upper bound, which pro-
vides the parameters of the controller. It should be noted
that the assumed cost function is in the same structure
with LQR control problems. In Zhao, Xie, andZhu (2007)
an optimal controller for a harmonic drive system is
applied which is modelled as a fuzzy T-S system, and
LMI constraints from the optimisation are solved to
obtain the Lyapunov matrix respect to guarantee the

stability of the closed-loop system. Besides, recently an
NQLF and a non-PDC controller are proposed to for-
mulate a robust quadratic-optimal control problem as
an optimisation problem for uncertain continuous-time
T-S fuzzy systems (Horng, Fang, & Chou, 2017) which
assumed disturbance attenuation. With the same idea,
Chen et al. (2014) applied the k-sample variations of
the Lyapunov function as a non-monotonic approach to
design a fuzzy optimal controller based on an NQLF.
Also, another latest research on fuzzy control systems
tried to improve optimality and robustness. A fuzzy con-
troller design is presented for discrete-time nonlinear
systems by using a quadratic Lyapunov function which
considered a mixed performance criterion which con-
sists of a nonlinear quadratic regulator (NLQR) and a
dissipativity-type performance index by considering the
disturbance reduction (Wang & Yaz, 2016).

The laboratory scale twin-rotor helicopter is an appro-
priate plant for verification of control designs. Several
control strategies have been applied to this laboratory
scale helicopter. Azimian, Fatehi, and Araabi acquired
the linear models of CE 150 in the presence of non-
linear distortions (2012). Also, a high order classical
model has been utilised for modelling of CE 150 labo-
ratory helicopter (John & Mija, 2014; Tao, Taur, Chang,
& Chang, 2010; Wen & Lu, 2008). In Wen and Lu (2008)
a robust deadbeat control scheme is applied for a decou-
pled system into two SISO systems. Furthermore, a fuzzy-
sliding and a fuzzy-integral-sliding controller (FSFISC)
are designed to control the yaw and pitch angles of twin-
rotor helicopter (Tao et al., 2010), and an H∞ control
strategy of robust control for a twin-rotor MIMO system
is introduced in John andMija (2014). In addition, the T-
S fuzzymodel of CE 150 laboratory helicopter platform is
obtained, and a controller based on the non-monotonic
Lyapunov function by considering an attenuation ratio
for stability condition is implemented for the elevation
movement (Nategh, 2017). Finally, in Azarmi, Tavakoli-
Kakhki, Sedigh, and Fatehi (2015), a fractional order
robust PID controller is applied to that.

In this paper, in order to reach relaxed stability con-
ditions and with less conservatism, a new approach is
presented to design a fuzzy optimal control for discrete-
time T-S fuzzy systems based on the non-monotonic
quadratic Lyapunov function. In a word, this study
extends the optimisation problem of Li et al. (2000)
by the assumption of the less conservatism Lyapunov
stability conditions of Derakhshan et al. (2012) and
Derakhshan and Fatehi (2015). Furthermore, a fuzzy
observer is designed simultaneously to estimate the states
of the plant. Finally, the proposed method is com-
pared with the fuzzy optimal controller designed by the
common Lyapunov function. Designed controllers are
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experimentally evaluated on a laboratory scale twin-rotor
helicopter.

The organisation of the rest of the paper is as fol-
lows. In Section 2, the discrete-time T-S fuzzy model
and PDC structure together are introduced together with
some preliminary definitions and lemmas. In Section 3,
themain results of the observer-based fuzzy optimal con-
troller design conditions with concerning for the non-
monotonic Lyapunov function are presented. Section 4
presents the experimental results of the controllers’
implementation on the laboratory scale helicopter. Then,
in Section 5, some concluding remarks are presented.

2. Preliminary

2.1. Discrete-time T-S fuzzy control system

A discrete-time T-S fuzzy system is described by fuzzy
IF-THEN rules which represent a local linear state-space
model of a nonlinear system. The lth rule of these fuzzy
models are of the following form:

Rl : If z1 is Fl1, z2 is Fl2, . . . , zv is F
l
v ,

Then x(t + 1) = Alx(t) + Blu(t),

y(t) = Clx(t) + Dlu(t),

l ∈ S = {1, 2, . . . , r}

(1)

Here, Flj are fuzzy sets, z = [z1, z2, . . . , zv]T is the premise
variable vector that its elements are states or measurable
external variables, x(t) ∈ �n is the state vector, u(t) ∈
�p is the input vector, y(t) ∈ �q is the output vec-
tor, the number of inference rules is shown by r, and
(Al,Bl,Cl,Dl) are the matrices of the lth local model.

By the singleton fuzzifier, the product inference engine
and centre average defuzzification, the final output of (1)
is inferred as

x(t + 1) = A(μ)x(t) + B(μ)u(t)

y(t) = C(μ)x(t) + D(μ)u(t)
(2)

where

A(μ) =
r∑

l=1

μlAl, B(μ) =
r∑

l=1

μlBl

C(μ) =
r∑

l=1

μlCl, D(μ) =
r∑

l=1

μlDl

(3)

μl is the normalised membership function defined as

εl = �r
i=1F

l
i(zi), μl(z) = εl∑r

i=1 εi
(4)

The membership grade of premise variables (zi) is
defined as Fli(zi) in the fuzzy set Fli . Then it is simple

to show that
∑r

l=1 μl = 1. Moreover, the following fuzzy
observer is considered to estimate the states of the fuzzy
system:

x̂(t + 1) = A(μ)x̂(t) + B(μ)u(t) − L(μ)(y(t) − ŷ(t))

ŷ(t) = C(μ)x̂(t) + D(μ)u(t), x̂(0) = 0
(5)

where x̂(t) ∈ �n is the estimated state vector, ŷ(t) ∈ �q

is the estimated output vector and L(μ) = ∑r
i=1 μlLi

where Li is the observer gain matrix of the ith sub-space.
For the stabilisation of the closed-loop discrete-time

fuzzy system, by using fuzzy observer (5), the following
PDC fuzzy controller is used:

u(t) =
r∑

i=1
μiFix̂(t) = F(μ)x̂(t) (6)

The fuzzy system and fuzzy observer error system should
be augmented to obtain the closed-loop observer-based
feedback fuzzy control system, which can be determined
as

x̃cl(t + 1) = Ãcl(μ)x̃cl(t)

y(t) = C̃cl(μ)x̃cl(t)

u(t) = F̃cl(μ)x̃cl(t)

(7)

where

x̃cl(t) =
[
x(t)
es(t)

]
,

Ãcl(μ) =
[
A(μ) + B(μ)F(μ) −B(μ)F(μ)

0 A(μ) + L(μ)C(μ)

]

C̃cl(μ) = [C(μ) 0]

F̃cl(μ) = [F(μ) − F(μ)] (8)

In which es = x(t) − x̂(t) denotes the estimation error.
To design an observer-based feedback fuzzy optimal con-
troller, the following quadratic cost function is consid-
ered:

J =
∞∑
t=0

{yT(t)Wy(t) + uT(t)Ru(t)} (9)

where R = RT > 0,W = WT > 0. The control objective
is to minimise the upper bound of this cost function.

2.2. Optimal fuzzy controller design based on
common quadratic Lyapunov function

The optimal fuzzy controller has been designed for
closed-loop system (8) using the common quadratic Lya-
punov function (Li et al., 2000). This type of optimal
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fuzzy controller is, in essence, a sub-optimal controller,
since instead of J, its upper bound isminimised. The con-
trol design procedure is given in the following theorem.

Theorem 2.1 (Li et al., 2000): The fuzzy T-S model (2)
is stabilisable with PDC control (6) if there exist a Q>0
and Yi, i = 1, 2, . . . , r such that LMI conditions (10)–(12)
are satisfied. Consequently, the performancemeasure J will
be less than γ , and the parameters of the fuzzy optimal
controller are given by Fi = YiQ−1, where the Lyapunov
function is V(x(t)) = x(t)TQ−1x(t).

Minimise γ

subject to
[

1 xT(0)
x(0) Q

]
> 0 (10)

⎡
⎢⎢⎣

Q (AiQ + BiYi)
T

AiQ + BiYi Q
W1/2CiQ 0
R1/2Yi 0

QCT
i W

1/2 YT
i R

1/2

0 0
γ I 0
0 γ I

⎤
⎥⎥⎦ > 0 (11)

⎡
⎢⎢⎢⎢⎢⎢⎣

4Q ST
√
2QCT

i W
1/2

S Q 0√
2W1/2CiQ 0 γ I√
2W1/2CjQ 0 0√
2R1/2Yi 0 0√
2R1/2Yj 0 0

√
2QCT

j W
1/2 √

2YT
i R

1/2 √
2YT

j R
1/2

0 0 0
0 0 0
γ I 0 0
0 γ I 0
0 0 γ I

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0

(12)

where S = AiQ + BiYj + AjQ + BjYi.

To prove this theorem and driving the constraints,
Li et al. (2000) expand the condition of �V(x(k)) <

0 by substituting the definition of the state space and
quadratic form of the Lyapunov function correspond-
ing to V(x(t)) = x(t)TQ−1x(t). Afterward, the sufficient
conditions were provided as the constraints of the con-
troller design problem. More details on the proof are
given in Li et al. (2000). A drawback of this proof is
the dependency of the upper bound of the cost function
on the initial condition x(0). This dependency will be
removed later in Section 3.

2.3. Stability conditions based on non-monotonic
Lyapunov function

To obtain less conservative stability conditions, the non-
monotonic stability conditions for discrete-time systems
is proposed in Aeyels and Peuteman (1998) and Der-
akhshan and Fatehi (2014) according to the following
theorem. Based on this theorem, the Lyapunov function
declines every two steps; however, it can grow for one
step.

Theorem 2.2 (Derakhshan & Fatehi, 2014): Consider
a discrete system described by (1), where x(k) ∈ �n, f :
�n → �n and satisfies f (0) = 0. If there exists a contin-
uous scalar function V(x(k)) satisfying

(1) V(x(k)) is a positive definite function (pdf),
(2) V(x(k)) → ∞ as x(k) → ∞,
(3) V(x(k + 2)) − V(x(k)) < 0 for x(k) �= 0,

then the equilibrium state x(k) = 0 is globally asymp-
totically stable, and V(x(k)) is a Lyapunov function.

Condition (3) guarantees that the Lyapunov function
decreases every two steps. This means it is possible that
V function increases for one step without missing the
stability. This ends to non-monotonic Lyapunov func-
tion. Since the T-S fuzzy system includes some local lin-
ear models and every membership function is bounded
and satisfies the Lipschitz condition, it means that the
T-S fuzzy system satisfies the Lipschitz condition (Der-
akhshan & Fatehi, 2014). Then the stability analysis
and stabilisation conditions can be described based on
Theorem 2.2.

Before presenting the main result, let’s notice the two
following lemmas.

Lemma 2.3 (Mozelli & Palhares, 2011): If P>0, then
GP−1GT ≥ G + GT − P.

Lemma 2.4 (Boyd, El Ghaoui, Feron, & Balakrish-
nan, 1994, Schur Complement): The LMI[

Q S
ST R

]
> 0

where Q = QT , R = RT , is equivalent to R>0, Q −
SR−1ST > 0.

3. Main result

In this section, an optimal observer-based controller
design is presented for fuzzy system (7) which is devel-
oped based on non-monotonic Lyapunov function. Simi-
lar to Theorem 2.1 for themonotonic Lyapunov function,
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it is described as an optimisation problem to minimise a
provided upper bound for cost function (9). On the con-
trary to Theorem 2.1, the proposed method is indepen-
dent of the initial value of the state vector. So afterward,
Theorem2.1 ismodified to remove its dependency on the
initial state vector.

As mentioned in Theorem 2.2, closed-loop fuzzy sys-
tem (7) is globally asymptotically stable if the following
inequality holds:

V(x̃cl(t + 2)) − V(x̃cl(t)) < 0 (13)

It is obvious that if the following inequality holds

V(x̃cl(t + 2)) − V(x̃cl(t)) + yT(t)Wy(t) + uT(t)Ru(t)

+ yT(t + 1)Wy(t + 1) + uT(t + 1)Ru(t + 1) < 0
(14)

then inequality (13) is confirmed. Using (14), the upper
bound of cost function (9) can be obtained as follows:

∞∑
t=2n,n=0

V(x̃cl(t + 2)) − V(x̃cl(t)) + yT(t)Wy(t)

+ uT(t)Ru(t) + yT(t + 1)Wy(t + 1)

+ uT(t + 1)Ru(t + 1) < 0,

V(x̃cl(∞)) − V(x̃cl(0))

+
∞∑
t=0

{uT(t)Ru(t) + yT(t)Wy(t)} < 0.

Provided the stability of the closed-loop system
V(x̃cl(∞)) ⇒ 0 ; therefore,

J < V(x̃cl(0)). (15)

As shown in (15) the provided upper bound for the
cost function depends on the initial condition. In the fol-
lowing main theorem, this dependency will be replaced
with another assumption.

Theorem 3.1: Consider augmented closed-loop fuzzy sys-
tem (7). If there exist the positive definite matrices
P1,Q3,P1ijkl and Q3

ijkl and matrices G1,G2,Ni,Mi,Q2 and
Q2
ijkl for every i, j, k, l ∈ L such that

�kl
ij + �kl

ji > 0

�
ij
kl + �

ij
lk > 0

(16)

where

�kl
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1ijkl ∗ ∗
Q2
ijkl Q3

ijkl ∗
AiG1 + BiNj Ai G1 + GT

1 − P1

0 GT
2Ai + MjCi I − Q2

W1/2CiG1 W1/2Ci 0
R1/2Nj 0 0

∗ GT
1C

T
i W

1/2 NT
j R

1/2

CT
i W

1/2 ∗
∗ ∗

GT
2 + G2 − Q3 ∗ ∗

0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

�
ij
kl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
Q2 Q3 ∗

AkG1 + BkNl Ak G1 + GT
1 − P1ijkl

0 GT
2Ak + MlCk I − Q2

ijkl
W1/2CkG1 W1/2Ck 0
R1/2Nl 0 0

∗ GT
1C

T
kW

1/2 NT
l R

1/2

∗ CT
kW

1/2 ∗
∗ ∗ ∗

G2 + GT
2 − Q3

ijkl ∗ ∗
0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

where W = WT > 0 and R = RT > 0 then fuzzy sys-
tem (7) is globally asymptotically stable and an upper
bound is provided for cost function (9).

Proof: If conditions (16) hold, then matrices G1 and G2
can be found that satisfy G1 + GT

1 − P1 > 0 and GT
2 +

G2 − Q3 > 0whichmeansG1 + GT
1 > 0 andGT

2 + G2 >

0 and ensures that G1 and G2 are non-singular. For these
two non-singular matricesG1 andG2 and a positive sym-
metric matrix P, we can define the candidate Lyapunov
function as

V(x̃(t)) = x̃Tcl(t)G
−TPG−1x̃cl(t) (18)

where

P =
[
P1 ∗
P2 P3

]
, G =

[
G1 G−1

2
0 G−1

2

]
(19)

By substituting (18) and (19) in (14), the following
inequality can be obtained

[
Acl(μ(t + 1))Acl(μ(t))x̃cl(t)

]TG−TPG−1

× [
Acl(μ(t + 1))Acl(μ(t))x̃cl(t)

]
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− x̃Tcl(t)G
−TPG−1x̃cl(t)

+ [
Ccl(μ(t))x̃cl(μ(t))

]TW[
Ccl(μ(t))x̃cl(t)

]
+ [

Fcl(μ(t))x̃cl(t)
]TR[

Fcl(μ(t))x̃cl(t)
]

+ [
Ccl(μ(t + 1))Acl(μ(t))x̃cl(t)

]TW
× [

Ccl(μ(t + 1))Acl(μ(t))x̃cl(t)
]

+ [
Fcl(μ(t + 1))Acl(t)x̃cl(μ(t))

]TR
× [

Fcl(μ(t + 1))Acl(μ(t))x̃cl(t)
]

< 0 (20)

Inequality (20) can be rewritten as follows:

x̃Tcl(t)A
T
cl(μ(t))AT

cl(μ(t + 1))G−TPG−1Acl(μ(t + 1))

× Acl(μ(t))x̃cl(t)

− x̃Tcl(t)G
−TPG−1x̃cl(t)

+ x̃Tcl(t)C
T
cl(μ(t))WCcl(μ(t))x̃cl(t)

+ x̃Tcl(t)F
T
cl(μ(t))RFcl(μ(t))x̃cl(t)

+ x̃Tcl(t)A
T
cl(μ(t))CT

cl(μ(t + 1))WCcl(μ(t + 1))

× Acl(μ(t))x̃cl(t)

+ x̃Tcl(t)A
T
cl(μ(t))FTcl(μ(t + 1))RFcl(μ(t + 1))

× Acl(μ(t))x̃cl(μ(t))

+ x̃Tcl(t)A
T
cl(μ(t))G−TP̂(μ(t, t + 1))

× G−1Acl(μ(t))x̃cl(t)

− x̃Tcl(t)A
T
cl(μ(t))G−TP̂(μ(t, t + 1))

× G−1Acl(μ(t))x̃cl(t) < 0 (21)

where P̂(μ(t, t + 1)) is defined as follows:

P̂(μ(t, t + 1)) =
[
P̂1ijkl(μ(t, t + 1)) ∗
P̂2ijkl(μ(t, t + 1)) P̂3ijkl(μ(t, t + 1))

]

=
∑

μijkl(t, t + 1)

[
P1ijkl ∗
P2ijkl P3ijkl

]
(22)

which i, j, k, l ∈ L. By defining the left-hand side of
inequality (21) as �:

� = x̃Tcl(t)A
T
cl(μ(t))

[
AT
cl(μ(t + 1))G−TPG−1Acl(μ(t + 1))

− G−TP̂(μ(t, t + 1))G−1

+ CT
cl(μ(t + 1))WCcl(μ(t + 1))

+ FTcl(μ(t + 1))RFcl(μ(t + 1))
]
Acl(μ(t))x̃cl(t)

+ x̃Tcl(t)
[
AT
cl(μ(t))G−TP̂(μ(t, t + 1))G−1Acl(μ(t))

− G−TPG−1 + CT
cl(μ(t))WCcl(μ(t))

+ FTcl(μ(t))RFcl(μ(t))
]
x̃cl(t) (23)

It is necessary to show that� < 0 holds in order to show
that the stability condition based on the non-monotonic
Lyapunov function for a closed-loop fuzzy system is satis-
fied and an upper bound for cost function (9) is provided.
Thus, if ∀ x̃cl ∈ R

n, x̃cl �= 0, the following inequalities,
which can be simply extracted from (23), hold then (23)
is satisfied.[

GTAT
cl(μ(t + 1))G−TPG−1Acl(μ(t + 1))G

− P̂(μ(t, t + 1))

+ GTCT
cl(μ(t + 1))WCcl(μ(t + 1))G

+ GTFTcl(μ(t + 1))RFcl(μ(t + 1))G
]

< 0 (24)

[
GTAT

cl(μ(t))G−TP̂(μ(t, t + 1))G−1Acl(μ(t))G

− P + GTCT
cl(μ(t))WCcl(μ(t))G

+ GTFTcl(μ(t))RFcl(μ(t))G
]

< 0 (25)

According to lemma 2.4, (24) and (25) can be written
as follows:⎡
⎢⎢⎣

P̂(μ(t, t + 1)) ∗
Acl(μ(t + 1))G GP−1GT

W1/2Ccl(μ(t + 1))G 0
R1/2Fcl(μ(t + 1))G 0

GTCT
cl(μ(t + 1))W1/2 GTFTcl(μ(t + 1))R1/2

∗ ∗
I ∗
0 I

⎤
⎥⎥⎦ > 0

(26)⎡
⎢⎢⎣

P ∗
Acl(μ(t))G GP̂(μ(t, t + 1))−1GT

W1/2Ccl(μ(t))G 0
R1/2Fcl(μ(t))G 0

GTCT
cl(μ(t))W1/2 GTFTcl(μ(t))R1/2

∗ ∗
I ∗
0 I

⎤
⎥⎥⎦ > 0 (27)
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By substituting (8), (22) and (19) in (26) and (27) and
according to Lemma 2.3, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P̂1ijkl(μ(t, t + 1)) ∗
P̂2ijkl(μ(t, t + 1)) P̂3ijkl(μ(t, t + 1))

A(μ(t + 1))G1 + B(μ(t + 1))F(μ(t + 1))G1 A(μ(t + 1))G−1
2

0 A(μ(t + 1))G−1
2 + L(μ(t + 1))C(μ(t + 1))G−1

2
W1/2C(μ(t + 1))G1 W1/2C(μ(t + 1))G−1

2
R1/2F(μ(t + 1))G1 0

∗ ∗ GT
1C

T(μ(t + 1))W1/2 GT
1F

T(μ(t + 1))R
1
2

∗ ∗ G−T
2 CT(μ(t + 1))W1/2 ∗

G1 + GT
1 − P1 ∗ ∗ ∗

G−T
2 − P2 G−1

2 + G−T
2 − P3 ∗ ∗

0 0 I ∗
0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (28)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
P2 P3 ∗

A(μ(t))G1 + B(μ(t))F(μ(t))G1 A(μ(t))G−1
2 G1 + GT

1 − P̂1ijkl(μ(t, t + 1))
0 A(μ(t))G−1

2 + L(μ(t))C(μ(t))G−1
2 G−T

2 − P̂2ijkl(μ(t, t + 1))
W1/2C(μ(t))G1 W1/2C(μ(t))G−1

2 0
R1/2F(μ(t))G1 0 0

∗ GT
1C

T(μ(t))W1/2 GT
1F

T(μ(t))R1/2

∗ G−T
2 CT(μ(t))W1/2 ∗

∗ ∗ ∗
G−1
2 + G−T

2 − P̂3ijkl(μ(t, t + 1)) ∗ ∗
0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (29)

By defining T1 = diag{I,G2, I,G2, I, I} and Q2 =
GT
2P

2,Q3 = GT
2P

3G2, we pre- and post-multiply (28)
and (29) by TT

1 and T1. Then, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P̂1ijkl(μ(t, t + 1)) ∗ ∗
GT
2 P̂

2
ijkl(μ(t, t + 1)) GT

2 P̂
3
ijkl(μ(t, t + 1))G2 ∗

A(μ(t + 1))G1 + B(μ(t + 1))F(μ(t + 1))G1 A(μ(t + 1)) G1 + GT
1 − P1

0 GT
2A(μ(t + 1)) + GT

2L(μ(t + 1))C(μ(t + 1)) I − Q2

W1/2C(μ(t + 1))G1 W1/2C(μ(t + 1)) 0
R1/2F(μ(t + 1))G1 0 0

∗ GT
1C

T(μ(t + 1))W
1
2 GT

1F
T(μ(t + 1))R1/2

∗ CT(μ(t + 1))W1/2 ∗
∗ ∗ ∗

GT
2 + G2 − Q3 ∗ ∗

0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (30)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
Q2 Q3 ∗

A(μ(t))G1 + B(μ(t))F(μ(t))G1 A(μ(t)) G1 + GT
1 − P̂1ijkl(μ(t, t + 1))

0 GT
2A(μ(t)) + GT

2L(μ(t))C(μ(t)) I − GT
2 P̂

2
ijkl(μ(t, t + 1))

W1/2C(μ(t))G1 W1/2C(μ(t)) 0
R1/2F(μ(t))G1 0 0

∗ GT
1C

T(μ(t))W
1
2 GT

1F
T(μ(t))R1/2

∗ CT(μ(t))W1/2 ∗
∗ ∗ ∗

G2 + GT
2 − GT

2 P̂
3
ijkl(μ(t, t + 1))G2 ∗ ∗
0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (31)

By defining the following matrices

Ni = FiG1, Mi = GT
2Li,

Q2
ijkl = GT

2P
2
ijkl, Q3

ijkl = GT
2P

3
ijklG2 (32)

and by substituting (22) and (3) in (30) and (31), �kl
ij

and�
ij
kl can be defined as (17). Considering the following

properties

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

μi(t + 1)μj(t + 1)μk(t)μl(t)�kl
ij

= 1
2

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

μijkl(�
kl
ij + �kl

ji ) > 0 (33)

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

μi(t + 1)μj(t + 1)μk(t)μl(t)�
ij
kl

= 1
2

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

μijkl(�
ij
kl + �

ij
lk) > 0 (34)

it is sufficient that the following inequalities hold in order
to satisfy (33) and (34) :

�kl
ij + �kl

ji > 0 (35)

�
ij
kl + �

ij
lk > 0 (36)

It is clear from (15) that the upper bound of cost func-
tion (9) is depended on the initial condition; in order to
remove this dependency, we define matrix � such that
the following inequality holds:[

� ∗
I G + GT − P

]
> 0 (37)

where � = �1 ∗
�2 �3 . By substituting (19) in (37)

⎡
⎢⎢⎣

�1 ∗ ∗ ∗
�2 �3 ∗ ∗
I 0 G1 + GT

1 − P1 ∗
0 I G−T − P2 G−1

2 + G−T
2 − P3

⎤
⎥⎥⎦ > 0

(38)

By defining T2 = diag{I I I G2}, then multiplying before
and after (38) by TT

2 and T2 results in⎡
⎢⎢⎣

�1 ∗ ∗ ∗
�2 �3 ∗ ∗
I 0 G1 + GT

1 − P1 ∗
0 GT

2 I − Q2 G2 + GT
2 − Q3

⎤
⎥⎥⎦ > 0

(39)

By using Lemma 2.3, it can be written as[
� ∗
I GP−1GT

]
>

[
� ∗
I G + GT − P

]
> 0 (40)

By Schur complement based on Lemma 2.4, we have

� − G−TPG−1 > 0 → � > G−TPG−1 (41)

Thus, the upper bound of the cost function can bewritten
as follows:

J < V(x̃cl(0)) = x̃Tcl(0)
(
G−TPG−1)x̃cl(0)

< x̃Tcl(0)�x̃cl(0) (42)

Without loss of generality, assume x(0) as a random
variable that satisfies E[x(0)xT(0)] = I (Derakhshan
& Fatehi, 2015; Ma et al., 2018). Hence the upper bound
is achieved as follows:

→ J̄ < E[J] < E
[
x̃Tcl(0)�x̃cl(0)

]
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< trace
[
�E

[
x̃cl(0)x̃Tcl(0)

]]

= trace
{ [

�1 ∗
�2 �3

]

×
[
E{x(0)xT(0)} ∗
E{x(0)xT(0)} E{x(0)xT(0)}

] }
= trace{�1 + 2�2 + �3} (43)

Thus, an upper bound for the expected value of the cost
function is provided. The purpose of the optimisation
problem is to minimise this upper bound, and the proof
is completed. �

Remark 3.1: The above controller has a state observer-
based structure. Up to authors knowledge, this has
not been considered in available monotonic Lyapunov
function. In order to make the same formulation of
both approaches based on common Lyapunov and non-
monotonic Lyapunov functions, the following lemma is
presented.

Lemma 3.2: Consider augmented closed-loop fuzzy sys-
tem (7). If there exists the positive definite matrices P1 and
Q3 and matrices G1,G2,Ni,Mi and Q2 for every i, j ∈ L
such that

	ij + 	ji > 0 (44)

Figure 1. CE 150 laboratory helicopter.

where

	ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
Q2 Q3 ∗

AiG1 + BiNj Ai G1 + GT
1 − P1

0 GT
2Ai + MjCi I − Q2

W1/2CiG1 W1/2Ci 0
R1/2Nj 0 0

∗ GT
1C

T
i W

1/2 NT
j R

1/2

∗ CT
i W

1/2 ∗
∗ ∗ ∗

GT
2 + G2 − Q3 ∗ ∗

0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

(45)

then fuzzy system (7) is globally asymtotically stable and
upper bound (43) can be minimised for cost function (9).

The proof is presented in Appendix.

Table 1. T-S fuzzy model of CE 150 helicopter in three operating
regions.

Performance
region State space model

60◦ A1 =
⎡
⎣0 0 0.9527
1 0 −2.9055
0 1 2.9529

⎤
⎦ , B2 =

⎡
⎣ 1.1754 × 10−4

−6.4319 × 10−5

2.9606 × 10−16

⎤
⎦ ,

C1 = [
0 0 1

]
90◦ A2 =

⎡
⎣0 0 0.9491
1 0 −2.8982
0 1 2.9491

⎤
⎦ , B2 =

⎡
⎣ 1.1754 × 10−4

−6.4319 × 10−5

2.9606 × 10−16

⎤
⎦ ,

C2 = [
0 0 1

]
120◦ A3 =

⎡
⎣0 0 0.9539
1 0 −2.9081
0 1 2.9543

⎤
⎦ , B3 =

⎡
⎣ 9.4478 × 10−5

−4.4461 × 10−5

−4.4409 × 10−16

⎤
⎦ ,

C3 = [
0 0 1

]

Figure 2. Membership functions of each region.
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4. Experimental results

The Humusoft CE150 twin-rotor helicopter, shown in
Figure 1, is a laboratory scale helicopter which is selected
to experimentally apply the controllers. The apparatus
consists of two DC motors that drive the propellers.
The main motor provides an ability for elevation angle

movement in the vertical plane, and the side motor pro-
vides an ability for azimuth angle movement in the hor-
izontal plane. Thus, the voltages to these two motors are
the plant inputs, and the measured azimuth and eleva-
tion angles are the outputs of this multivariable dynamic
plant. The plant is essentially nonlinear and unstable,
and all inputs and outputs are coupled. In this paper, the

Figure 3. Closed-loop response of T-S fuzzy system.

Figure 4. Tracking error of the closed-loop response of a T-S fuzzy system.
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Figure 5. Closed-loop response of T-S fuzzy system.

azimuth channel is mechanically locked, that means the
model is reduced to a 1-DOF plant and the aim is con-
trol of the elevation angle in the vertical plane. The T-S
fuzzy model used in this paper is provided based on the
identification of the system in three performance regions
of elevation channel that are 60◦, 90◦ and 120◦ (Nategh,
2017). Table 1 shows state-space models for each region.

The associated membership functions for each region
are shown in Figure 2. In order to design and implement
the fuzzy controllers and observers, we assume the servo
mechanism, which, because of its integrator, removes
the steady-state error. This structure adds a new state

to state-space equations of the system, and it demands
augmented equations for the system. The state feedback
matrix and state observermatrix can be obtained by solv-
ing (16) and (44) in YALMIP toolbox (Lofberg, 2004),
which is a useful toolbox for solving LMIs. The controller
and observer gain matrices based on common Lyapunov
function (44) are as follows:

F1 = [8107.4 8600.7 9112.5 − 0.5594]

F2 = [8134.7 8626.8 9134.9 − 0.5635]

F3 = [8336.0 8842.4 9368.3 − 0.5732]

(46)
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Table 2. Transient response specification.

Moment Criteria
Based on common
Lyapunov function

Based on
non-monotonic

Lyapunov function

Over/Undershoot (per cent) 4.8 2.7
100◦ at sec 25 Settling Time (s) 9 3.8

Over/Undershoot (per cent) 4.98 0.6
90◦ at sec 55 Settling Time (s) 4 3.2

Over/Undershoot (per cent) 0 0
60◦ at sec 65 Settling Time (s) 5.9 2.6

Over/Undershoot (per cent) 5.4 5.5
110◦ at sec 75 Settling Time (s) 5.5 3.6

Over/Undershoot (per cent) 0.4 3.3
130◦ at sec 105 Settling Time (s) 4.6 3.6

Performance Index 417.47 327.85

L1 = [0.3811 − 0.8209 0.4434]T

L2 = [0.3847 − 0.8282 0.4472]T

L3 = [0.3799 − 0.8183 0.4420]T
(47)

Similarly, the controller and observer gainmatrices based
on non-monotonic Lyapunov function (16) are as follows

F1 = [7070.3 7594.5 8140.9 − 0.9493]

F2 = [6964.9 7480.2 8015.1 − 0.9367]

F3 = [7226.4 7761.4 8319.4 − 0.9686]

(48)

L1 = [0.2115 − 0.4978 0.2928]T

L2 = [0.2178 − 0.5130 0.3020]T

L3 = [0.2119 − 0.4986 0.2932]T
(49)

MatricesR andW are assumed to be equal to I in all com-
putations. The above controllers are applied to the twin-
rotor helicopter. The closed-loop responses are shown
in Figure 3. To observe the responses with more details,
some periods are enlarged in Figure 5. Figure 3 shows
that set-point tracking of the controller based on non-
monotonic Lyapunov function is better than the con-
troller based on the common Lyapunov function. Also,
Figure 4 indicates the errors of the response of each con-
troller to the set-point. The large amplitude sharp errors
have happened in those moments of time when set-point
changes. In order to further compare these two con-
trollers, the transient response of them are numerically
compared in Table 2. The results in Table 2 demonstrate
the effectiveness of the proposed fuzzy optimal controller
based on the non-monotonic Lyapunov function towards
achieving better settling time and performance index
compared with the common Lyapunov function-based
fuzzy controller. Generally, overshoot/undershoot per-
centage of the non-monotonic Lyapunov function-based
fuzzy controller for most of the steps is less than the
common Lyapunov function-based fuzzy controller. The

Figure 6. Control signal of closed-loop response.

Table 3. Control signals properties.

Based on common
Lyapunov function

Based on
non-monotonic

Lyapunov function

Maximum control
signal amplitude 0.9022 1.2316
Minimum control
signal amplitude 0.3036 −0.0222
Standard deviation 0.6240 0.6387

control signal is obtained as shown in Figure 6. Table 3
presents the maximum and minimum amplitude of the
control signal. Standard deviation (SD) of the control sig-
nal is also given in Table 3. As shown in Figure 6 and
from Table 3, the control signal caused by the implemen-
tation of the non-monotonic Lyapunov function-based
fuzzy controller has wider amplitude, yet its SD is only
2% larger than that of the common Lyapunov based
controller. This result means that the non-monotonic
Lyapunov function-based fuzzy controller has smoother
tracking performance at the expense of slightly more
energy to control the helicopter.
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Figure 7. Disturbance effect on fuzzy controllers performance. (a) The set-point used for disturbance effect. (b) Disturbance effect on
fuzzy controller performance to set-point tracking.

Figure 8. The control signals in the presence of disturbance.

4.1. Disturbance rejection

In order to study the effect of disturbance on the perfor-
mance of both controllers, another experiment was run
with input disturbances at three different moments as
shown in Figure 7(a). To explain more, this kind of dis-
turbance simulates an external force added to the input
control signal causing a sudden change in the elevation
angle. Consequently, because of increasing the errors,
the controllers should adjust the new control signals to

Table 5. The control signal properties in the presence of distur-
bance.

Based on common Based on non-monotonic
Lyapunov function Lyapunov function

Maximum control
signal amplitude 1.2631 1.2814
Minimum control
signal amplitude 0.2573 0.1864
Standard deviation 0.6690 0.6803

compensate for the errors. The result is shown in Fig-
ures 7(b) and 8. The black arrows point to the moments
the disturbance applied.

The overshoot/undershoot and settling time of the
helicopter vertical angle are presented in Tables 4 and 5
as the transient response specifications in addition to the
control signal properties. The results show that the non-
monotonic Lyapunov function-based fuzzy controller
has more successful performance compared with the
other controller while the control signals are nearly the
same. While the controllers are designed to improve the
quadratic performance measure of (9), Table 6 presents
the SAE ,1, MAE2 and MSE3 as some other criteria for
error in the presence of input disturbance. It shows that
the performance errors related to the common Lyapunov
function-based fuzzy controller are significantly larger.

Table 4. The transient response specifications in the presence of disturbance.

Based on Based on
common non-monotonic

Position Criteria Lyapunov function Lyapunov function

70◦ at sec 20 Over/Undershoot (per cent) 17.3 10.16
Settling Time (s) 2.2 1.8

90◦ at sec 40 Over/Undershoot (per cent) 31.7 17.36
Settling Time (s) 3.25 1.8

110◦ at sec 60 Over/Undershoot (per cent) 20.7 15.09
Settling Time (s) 4.6 2

Performance Index 335.56 205.69
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Table 6. Error criteria in the presence of disturbance.

Based on common Based on non-monotonic
Error criteria Lyapunov function Lyapunov function

MSE 43.824 16.5695
SAE 4.9960 × 103 1.9461 × 103

MAE 3.5609 2.1551

5. Conclusion

The Takagi–Sugeno fuzzy model is introduced as an
appropriate structure to describe nonlinear systems.
Although various methods have been introduced in the
literature for stability analysis of T-S systems, reducing
the conservatism of them is an open problem. In this
paper, less conservative stability condition is provided to
minimise the upper bound of the optimal cost function
using the non-monotonic Lyapunov function. Further-
more, the independence of the controller design to the
initial value of the states has been removed using an opti-
misation problem on the expected value of its effect. CE
150 laboratory helicopter is selected in order to evaluate
both observer-based control systems’ performance. The
results show that the non-monotonic Lyapunov function-
based control system is more successful to track the
set-point and disturbance rejection rather than the com-
mon Lyapunov function; however, the control signal of it
is slightly larger. While both controllers tried to reduce
the upper bound of the quadratic performance measure,
the non-monotonic Lyapunov function-based controller
results much better actual performance index.

The proposedwork can be enhanced even further. The
same conditions can be obtained considering a multiple-
step non-monotonic Lyapunov function required to be
only decreasing every three or more steps. Although, it
is theoretically expected that the conservatism decreases
even further using multiple-step NMLF, increasing the
number of steps results inmore complexity in the analysis
and synthesis formulations. This will limit the expected
improvement of the feasible space. Obtaining the optimal
steps requires more study. Also, the effect of the weighted
matrices R andW on the performance and conservatism
of the controller is important from both theoretical and
practical point of view.

Notes

1. Sum absolute error.
2. Mean absolute error
3. Mean square error.
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Appendix

Proof: Based on Lyapunov stability condition theory, the
closed-loop fuzzy system is globally asymptotically stable if for
each x(t) �= 0, V(x̃cl(t + 1)) − V(x̃cl(t)) < 0 is satisfied; thus
the following equation assures the stability:

V(x̃cl(t + 1)) − V(x̃cl(t)) + yT(t)Wy(t) + uT(t)Ru(t) < 0
(A1)

By summation of both sides of inequality from step zero to
infinity the upper bound for cost function with respect to (9)
can be obtained as follows:

∞∑
t=0

V(x̃cl(t + 1)) − V(x̃cl(t)) + yT(t)Wy(t) + uT(t)Ru(t)

= −V(x̃cl(0)) + J < 0

J < V(x̃cl(0)). (A2)

By substituting (18) with respect to (7) in (A1)[
Acl(μ(t))x̃cl(t)

]TG−TPG−1[Acl(μ(t))x̃cl(t)
]

− x̃Tcl(μ(t))G−TPG−1x̃cl(μ(t))

+ [
Ccl(t)x̃cl(μ(t))

]TW[
Ccl(t)x̃cl(μ(t))

]
+ [

Fcl(μ(t))x̃cl(μ(t))
]TR[

Fcl(μ(t))x̃cl(t)
]

< 0 (A3)

And by rewriting (A3)

�∗ = x̃Tcl(t)G
−T

[
GTAT

cl(μ(t))G−TPG−1Acl(μ(t))G

− P + GTCT
cl(μ(t))WCcl(μ(t))G

+ GTFTcl(μ(t))RFcl(μ(t))G
]
G−1x̃cl(t) < 0 (A4)

In other words for all x ∈ Rn, x(t) �= 0, �∗ < 0 should
hold, which means

GTAT
cl(μ(t))G−TPG−1Acl(μ(t))G

− P + GTCT
cl(μ(t))WCcl(μ(t))G

+ GTFTcl(μ(t))RFcl(μ(t))G < 0 (A5)

(A5) can be converted to (A6) by Schur complement⎡
⎢⎢⎣

P ∗
Acl(μ(t))G GP−1GT

W1/2Ccl(μ(t))G 0
R1/2Fcl(μ(t))G 0

GTCT
cl(μ(t))W1/2 GTFcl(μ(t))R1/2

∗ ∗
I ∗
0 I

⎤
⎥⎥⎦ > 0 (A6)
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Substitution of (19) and (8) in (A6) results in

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
P2 P3 ∗

A(μ(t))G1 + B(μ(t))F(μ(t))G1 A(μ(t))G−1
2 G1 + GT

1 − P1

0 A(μ(t))G−1
2 + L(μ(t))C(μ(t))G−1

2 G−T
2 − P2

W1/2C(μ(t))G1 W1/2C(μ(t))G−1
2 0

R1/2F(μ(t))G1 0 0

∗ GT
1C

T(μ(t))W1/2 GT
1F

T(μ(t))R1/2

∗ G−T
2 CT(μ(t))W1/2 ∗

∗ ∗ ∗
G−1
2 + G−T

2 − P3 ∗ ∗
0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0 (A7)

By defining T1 = diag{I,G2, I,G2, I, I} and Q2 = GT
2P

2,Q3

= GT
2P

3G2, multiplying before and after (A7) by TT
1 and T1.

Then we have

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
Q2 Q3 ∗

A(μ(t))G1 + B(μ(t))F(μ(t))G1 A(μ(t)) G1 + GT
1 − P1

0 GT
2A(μ(t)) + GT

2L(μ(t))C(μ(t)) I − Q2

W1/2C(μ(t))G1 W1/2C(μ(t)) 0
R1/2F(μ(t))G1 0 0

∗ GT
1C

T(μ(t))W1/2 GT
1F

T(μ(t))R1/2

∗ CT(μ(t))W1/2 ∗
∗ ∗ ∗

GT
2 + G2 − Q3 ∗ ∗

0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0 (A8)

We define Ni = FiG1 and Mi = GT
2Li then substitute

in (A8) with respect to (4)

	ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 ∗ ∗
Q2 Q3 ∗

AiG1 + BiNj Ai G1 + GT
1 − P1

0 GT
2Ai + MjCi I − Q2

W1/2CiG1 W1/2Ci 0
R1/2Nj 0 0

∗ GT
1CiW1/2 NjR1/2

∗ CiW1/2 ∗
∗ ∗ ∗

GT
2 + G2 − Q3 ∗ ∗

0 I ∗
0 0 I

⎤
⎥⎥⎥⎥⎥⎦ (A9)

Finally we can rewrite (A9) as follows:
r∑

i=1

r∑
j=1

μi(t)μj(t)	ij = 1
2

r∑
i=1

r∑
j=1

μi(t)μj(t)(	ij + 	ji) > 0

(A10)
So Lyapunov stability condition V(x̃cl(t + 1)) − V(x̃cl(t))

< 0 holds if the following inequality holds

	ij + 	ji > 0 (A11)

The upper bound of the cost function can be obtained same
as the proof of the section main result for the non-monotonic
Lyapunov function-based controller design which is given in
the form of (43). �
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