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Abstract—This paper contributes to the literature on
Bayesian filtering in the case where the processes driving the
states and observations are uniformly distributed on finite
intervals. We introduce the class of uniform distributions
on parallelotopic supports (UPS). We derive optimal local
distributional projections (i.e. approximations) within this UPS
class—in the sense of minimum Kullback-Leibler divergence—
of the outputs of the data and time updates of filtering.
We demonstrate that the UPS class provides a tighter ap-
proximation (and therefore more precise inferences) than a
previously reported approximation on orthotopic supports.
It does this, while still achieving bounded complexity in the
resulting recursive filtering algorithm. The comparative per-
formance of the UPS-closed filtering algorithm is explored—
via both Bayesian and frequentist performance measures—as
a function of signal-to-noise ratio and state dimension in a
position-velocity system.

Index Terms—Bayesian filtering, uniform distribution on a
parallelotopic support (UPS), local approximation, Kullback-
Leibler divergence

I. INTRODUCTION

Stochastic filtering [1], [2]—i.e. the sequential estima-
tion of hidden (system) states via noisy observations and
known inputs/controls [1]—has many applications in con-
texts where either the states, or the observations, or both,
are constrained to particular sets. There is significant current
interest in these constrained filtering applications, partic-
ularly in problems of fault detection [3], [4] and robust
model-predictive control [3], [5], and in applications in-
volving constrained dynamics in physical processes [6]–[8]
and distributed estimation in resource-constrained wireless
sensor networks [9], for instance.

Deterministic approaches for processing the sequen-
tial knowledge constraints propose so-called unknown-but-
bounded approaches [5], [9], [10], and investigate classes of
constrained sets within which set membership of the states
can be guaranteed [3], [11]–[14], notably convex polytopes
and their specializations (to zonotopes and orthotopes), and
ellipsoids (and their specialization to hyperspheres).

This research has been supported by GAČR grant 18-15970S.

These geometric considerations are essential in Bayesian
filtering involving constrained (typically uniformly dis-
tributed) stochastic state (i.e. process) and observation
drivers (i.e. noise processes) [4], [7], [15]. The key ad-
vantages of Bayesian filtering are (i) the opportunity to
take account of the distribution (often non-uniform, e.g. the
truncated Gaussian pdf [8]) of the states within their con-
strained support sets, (ii) the quantification of uncertainty
in the states [2], and (iii) formal procedures for optimal (in
the minimum-Bayes’-risk sense) sequential estimation and
decision-making, including control design [16].

In the authors’ recent work, the relaxation of the Kalman
filtering assumptions of linearity in the state and observation
transition kernels, and known parameterization have been
adopted, but, now, specifically in the case of uniformly
distributed and white noise processes, yielding sequen-
tial state inferences optimally approximated—in the sense
of minimum Kullback-Leibler divergence (KLD) [17]—
within the class of uniform distributions on orthotopic
supports [18]. The framework has been extended to yield
the consistent observation predictor [19] and this has been
used as the basis for probabilistic knowledge transfer be-
tween constrained and uniformly approximated Bayesian
nodes [20]. The key advantage of distributional closure
within the class of uniform distributions on orthotopic
supports is that the number of degrees of freedom in this
distribution—and, so, the number of statistics which must
be sequentially computed—is quadratic in the dimension of
the state variables, ensuring a tractable and computationally
efficient recursive algorithm. Nevertheless, the adoption of
orthotopic supports is very restrictive, leading to significant
accumulation of distributional error, particularly when ap-
proximations are performed locally at each step of filtering.

In this paper, we relax the class into which we sequen-
tially project the state inferences by proposing the uniform
distribution on a parallelotopic support (UPS), arguing that
the degrees-of-freedom remain polynomial in the number
of state dimensions. This preserves the tractability of the
resulting sequential Bayesian filtering algorithm, while at-
taining much tighter approximation to the true distributions.

In Section II, we introduce the UPS class of distributions,
978-1-7281-5341-4/19/$31.00 ©2019 IEEE



based on the geometry of the parallelotope, emphasizing
issues of degrees-of-freedom and measure that are important
in the design and properties of the subsequent Bayesian
filtering algorithm. We also derive the optimal projections
(i.e. approximations, in the minimum-KLD sense) of more
complicated distributions on constrained supports. The latter
emerge from the data and time steps of Bayesian filter-
ing, as shown in Section III, and so we deploy these
optimal UPS projections there, summarizing the resulting
recursive filtering algorithm. In Section IV, we present
experiments on uniformly-driven position-velocity systems
of increasing dimension, demonstrating the improved track-
ing accuracy attained by the UPS algorithm in comparison
to the cruder orthotopically constrained variant previously
reported in [19].

The following notation is used. Matrices are in capital let-
ters (e.g. A), vectors and scalars are in lowercase letters (e.g.
b). Aij is the element of a matrix A on i-th row and j-th
column. Ai denotes the i-th row of A. `z denotes the length
of a (column) vector z and Z means a set of z. ‖z‖2 is the
Euclidean norm of z. Also, ‖z‖∞ = max

i
|zi|, i = 1, . . . , `z ,

is the H-∞ norm of z, ≡ means equality by definition. Note
that no notational distinction is made between a random
variable and its realisation. zt is the value of a column
vector z at a discrete time instant t ∈ T ≡ {1, 2, . . . , t},
being typically a random process realisation and zt;i is the i-
th entry of zt; z(t) ≡ {zt, zt−1, . . . , z1}. The symbol f(·|·)
denotes a conditional probability density function of known
but unspecified type (pdf); names of arguments distinguish
respective pdfs.

II. UPS CLASS OF PARAMETRIC MODELS

Conventionally, the multivariate uniform distribution
is considered on a rectangular (orthotopic) support. In
Bayesian filtering, we need to move beyond this restriction
as the orthotopic support is too conservative. Not least, it
implies independence between the coordinates. We therefore
introduce the multivariate uniform distribution on a paral-
lelotopic support (UPS class), which is more flexible and
yet tractable in Bayesian filtering.

In the paper, we aim to develop a sequential Bayesian
filtering algorithm within this UPS class. Unfortunately, we
are not able to propagate the support and functional form
of the involved pdfs within exact Bayesian filtering, i.e. the
UPS class is not closed under the data and time updates of
Bayesian filtering.

Therefore, we propose optimal local projections (approx-
imations) of non-uniform and non-parallelotopic distribu-
tions into the UPS class.

A. Polytopes and their specializations
We consider a finite-dimensional vector random variable

z with realisations in a bounded subset of R`z . We now
define appropriate support sets in a `z-dimensional space.

A polytope is a bounded set defined (bounded) by a finite
number of flat facets. In this paper, we specialise this to the
following types of convex polytope (Fig. 1).

Fig. 1. A two-dimensional strip (S) and two-dimensional convex poly-
topes: zonotope (Z), parallelotope (P) and orthotope (O).

TABLE I
THE DEGREES OF FREEDOM (DOF) AND LEBESQUE MEASURE, I.E.

VOLUME, V OF VARIOUS CONVEX POLYTOPE SPECIALISATIONS.

dof volume V

orthotope 2`z
`z∏
i=1

(zi − zi)

parallelotope `z(`z + 2) | detV |−1
`z∏
i=1

(bi − ai), see [18]

zonotope k(k + 2), the sum of the Vs of its
k > `z generating parallelotopes, see [21]

A zonotope ZZ is a convex polytope formed by the
intersection of k strips, k ≥ `z . It can be expressed as

ZZ = {z : a ≤ V z ≤ b}, (1)

where a and b are vectors of length k, of lower and upper
bounds, respectively, which are meant entry-wise; V is
a matrix of size k × `z with rank `z . The i-th strip is
therefore given by the inequality

ZSi = {z : ai ≤ Viz ≤ bi}. (2)

A parallelotope ZP is a special case of a zonotope (1)
with k = `z , so that V is a square invertible matrix.

An orthotope ZO is a special case of the parallelotope
with adjacent facets orthogonal. It then holds that V = I
in (1), where I denotes an identity matrix. Furthermore,
a = z and b = z, being the lower and upper bounds of z,
respectively. Then, the orthotope is specified by

ZO = {z : z ≤ z ≤ z}, (3)

Table I compares the above defined support sets from the
point of view of their volumes — i.e. the Lebesque measure
— and degrees-of-freedom (dof). The dof corresponds to
the minimal number of geometric parameters that unam-
biguously defines the mentioned set.

Besides the standard form (1), we introduce another two
equivalent descriptions of parallelotope ZP that will be
used further. The [−1,1]-form of parallelotope equivalent
to standard form (1) is defined

ZP = {z : −1(`z) ≤Wz − c ≤ 1(`z)}, (4)

where 1(`z) is a unit vector of length `z and

Wij =
2Vij
bi − ai

, ci =
bi + ai
bi − ai

, (5)



i, j = 1, . . . , `z . We can transform it back to the standard
form (1) using a = c− 1(`z), b = c+ 1(`z), V = W.

An expression for the parallelotope (1) in terms of its
centroid ẑ is [24]

ZP = {z : z = ẑ + Tξ}, (6)

where T = W−1, ẑ = Tc, ∀ξ s.t. ‖ξ‖∞ ≤ 1.

B. UPS class
We define a uniform distribution of z on a parallelotopic

support (1), i.e. the UPS distribution, as

Uz(a, b, V ) ≡ V−1χz (a ≤ V z ≤ b) (7)

where V is given in the second row of Table I, and χz(Z) is
the set indicator, which equals 1 if z ∈ Z and 0 otherwise.

In the case of orthotopic support (3), i.e. for V = I , we
simplify the notation to

Uz(a, b) ≡ Uz(a, b, I). (8)

The first moment (mean value) of the UPS distribution
(7) is

E[z|a, b, V ] ≡ ẑ = V −1
b+ a

2
. (9)

The second central moment (covariance) of the UPS is

cov[z|a, b, V ] =
1

3
V −1GG′

(
V −1

)′
, (10)

where Gii = bi−ai
2 and Gij = 0, i 6= j, i, j = 1, . . . , `z .

For details on moments see [22].

C. Projection into the UPS class
1) Bayes-optimal projection/approximation: We aim to

approximate an original pdf g by a simpler pdf f . The pdf
f is to be a projection of g on a properly selected set F of
feasible pdfs. According to [23], minimisation of Kullback-
Leibler divergence (KLD) [17] gives, in a Bayesian sense,
the optimal approximation of a pdf, E means an expecta-
tion,

fO ∈Arg min
f∈F

D(g||f)=Arg min
f∈F

Eg ln

(
g

f

)
. (11)

Below, we propose (i) a functional approximation of a non-
uniform pdf on a bounded support by the uniform pdf and
(ii) approximation of the zonotopic support of a uniform
pdf by a parallelotopic support.

2) Non-uniform to uniform distribution: Given pdf on
a bounded support, g(z) = k(z)χz(Zg), 0 < k(z) <
+∞ ∀z ∈ Zg , we search for the optimal approxima-
tion of g(z) by a uniform pdf, f(z) = V−1χz(Zf ),
V = vol(Zf ), using (11). Then, function arguments
omitted, D(g||f) =

∫
k ln

Vkχg

χf
dz =

∫
Zg
k ln k dz +∫

Zg
k ln

χg

χf
dz+lnV

∫
Zg
k dz. The first term is independent

of f , the second term is finite (zero) if Zg ⊂ Zf . The
third term depends on f through V: the larger support of
f , the higher V . Hence, to minimise KLD, we minimise
the measure of Zf choosing Zf = Zg , i.e. f̂f is to be the
uniform pdf on the support of g.

3) Transformation of a parallelotope: Let us express
a parallelotope in the direct form (6) as Z = {z : z =
ẑ + Tzξ}, ‖ξ‖∞ ≤ 1. Consider a linear transformation
w = Mz+m where M is an invertible matrix, m is a vector.
Then, the parallelotope set W corresponding to w is

W = {w : w = ŵ + Twξ}, ‖ξ‖∞ ≤ 1 (12)

where ŵ = Mẑ +m, Tw = MTz .
4) Expansion of the parallelotope: Consider a random

variable z defined on a parallelotopic set Z = {z : a ≤
V z ≤ b} (1) and random variable w, w = z + e, where e
is defined on an orthotopic set E = {e : −σ ≤ e ≤ σ}.

Then, w is defined on a zonotope given by the Minkowski
sum ⊕ of the parallelotope and the orthotope [3]

W = {z : a ≤ V z ≤ b} ⊕ {−σ ≤ e ≤ σ} (13)

5) Approximation of the zonotope by a parallelotope:
We consider a polytope that corresponds to the intersection
of `z + k strips (2), ai ≤ Viz ≤ bi, i = 1, . . . , `z + k,
`z corresponds to the dimension of z, k ∈ N. We aim
to obtain the smallest parallelotope that contains the above
mentioned polytope. For this purpose, we use the adapted
algorithm from [24] as follows: (i) Consider a parallelotope
given by `z defined strips. (ii) Add another one strip to the
parallelotope and tighten all these `x + 1 strips to remove
redundancy, i.e. all strips are narrowed and/or shifted so
that their intersection is unchanged. (iii) Discard one strip
of these `x+1 strips so that the intersection of the remaining
`x strips has minimal volume. (iv) Repeat the procedure for
all remaining k − 1 strips. For details, see [18].

III. LSU FILTERING WITHIN THE UPS CLASS

In this section, Bayesian filtering is summarised and the
state space model with uniformly distributed noise terms
(LSU) model is introduced. Then, state filtering within the
UPS class is proposed.

A. Bayesian filtering and the LSU model

In the considered Bayesian set up [16], the system is
described by the following pdfs:

prior pdf: f (x1) (14)
observation model: f (yt|xt)

time evolution model: f (xt+1|xt, ut)

where yt is a scalar observable output, ut is a known system
input (optional, for generality), and xt is an `x-dimensional
unobservable system state, t ∈ T.

We assume that (i) the hidden process xt satisfies the
Markov property, (ii) no direct relationship between input
and output exists in the observation model, and (iii) the
inputs consist of a known sequence u1, . . . , ut.

Bayesian filtering, i.e, state estimation, consists of the
evolution of the posterior pdf f(xt|d(t)) where d(t) is
a sequence of observed data records dt = (yt, ut), t ∈ T.
The evolution of f(xt|d(t)) is described by a two-steps



recursion that starts from the prior pdf f(x1)) and ends
with the data update at the final time t = t:
• Data update (Bayes rule)

f(xt|d(t)) =
f(yt|xt)f(xt|d(t− 1))∫

x∗
t

f(yt|xt)f(xt|d(t− 1))dxt
, (15)

• Time update

f(xt+1|d(t)) =

∫
x∗
t

f(xt+1|ut, xt)f(xt|d(t)) dxt. (16)

A linear state space model with a uniform noise (LSU
model) is defined as

f(yt|xt) = Uy(ỹt − r, ỹt + r) (17)
f(xt+1|xt, ut) = Ux(x̃t+1 − ρ, x̃t+1 + ρ)

where ỹt = Cxt, x̃t+1 = Axt +But, A, B, C are the
known model matrices/vectors of appropriate dimensions,
νt ∈ (−ρ, ρ) is the uniform state noise with known
parameter ρ, nt ∈ (−r, r) is the uniform observation noise
with known parameter r.

State estimation for the LSU model (17), according to
(15) and (16), leads to a very complex form of posterior pdf.
In [18], [19], an approximate Bayesian state estimation of
this model is proposed. That algorithm is based on minimis-
ing the KLD (11) of two pdfs and provides the evolution
of the approximate posterior pdf f(xt|d(t)) by the time
and data update steps. The pdf f(xt|d(t)) is uniformly dis-
tributed on a parallelotopic support. Nevertheless, to close
the recursion, the parallelotopic support is circumscribed by
an orthotope before the next time update step. In this paper,
we extend our previous results on approximated Bayesian
filtering with uniform noise and closure on an orthotopic
support to the case uniform distribution with closure on
a parallelotopic support, i.e. we propose a UPS-closed
recursion without the above mentioned circumscription.

B. Approximate Bayesian filtering within UPS class

We consider the system (14) with observation model
and state evolution model (17) and with prior pdf f(x1).
Performing (15) and (16) expels the posterior pdf from the
UPS class. We use the results of Section II to re-admit it.

Approximate data update: The data update (15) pro-
cesses f(xt|d(t − 1)) together with the f(yt|xt) (17)
according to the Bayes rule. It starts in t = 1 with
f(x1) = Ux(a+1 , b

+
1 ,M

+
1 ). The exact pdf is uniformly

distributed on a zonotopic support that results from the
intersection of a parallelotope (7) obtained during previous
time update—or f(x1) in the first step—and strips (8) given
by new data

f(xt|d(t)) ∝ Ux(a+t , b
+
t ,M

+
t )Uyt(Cxt − r, Cxt + r) ∝

∝ χ
([

a+t
yt − r

]
≤
[
Mt

C

]
xt ≤

[
b+t

yt + r

])
. (18)

We approximate (18) by a pdf uniformly distributed on
a parallelotopic support, see Sec. II-C5. Then, the approxi-
mate pdf takes the form

f(xt|d(t)) ≈ Ux(at, bt,Mt). (19)

Approximate time update: The time update (16) pro-
cesses f(xt|d(t)) (19) together with f(xt+1|xt, ut) (17).
The exact pdf f(xt+1|d(t)) is non-uniformly distributed on
a zonotopic support. It has a linear piecewise shape with
shaping parameters ρ, at and bt. We approximate it by the
uniform pdf, see Sec. II-C2. The support of f(xt+1|d(t)) is
computed in two steps. Firstly, the support Xt of f(xt|d(t))
(19) is transformed according to the deterministic part,
i.e. x̃t+1, of (17). For this, the parallelotope Xt of form
(1) is converted into the form (6) and then the linear
transformation x̃t+1 = Axt +But is performed according
to Sec. II-C3. The resulting support, X̃+

t+1, is then trans-
formed back to the form (1). Secondly, the parallelotope
X̃+
t+1 is expanded by the set [−ρ, ρ] which corresponds to

the stochastic part of (17). The resulting support, X+
t+1,

corresponds to the Minkowski sum of X̃+
t+1 and the set

[−ρ, ρ], see II-C4 which is a zonotope (1).
We project the above mentioned uniform pdf with support

X+
t+1 into UPS class, see Sec. II-C5. Then, a+t+1, b+t+1

and M+
t+1 are derived and the approximate pdf has the form

f(xt+1|d(t)) ≈ Ux(a+t+1, b
+
t+1,M

+
t+1). (20)

IV. EXPERIMENTS

In this section, we design simulations around a position-
velocity system [2] of increasing dimension n and report
some key Bayesian and frequentist performance measures
to compare the performance of the proposed LSU filtering
under UPS and orthotopically supported local approxima-
tions [18]. The system matrix A of size 2n×2n is

Aii = 1, i = 1, . . . , 2n,
Ai,i+n = ∆t, i = 1, . . . , n,

(21)

otherwise 0. The sampling period ∆t = 1 in our case. The
matrix B = 0 (i.e. a system without input ut) and C of
size n×2n is Cii = 1, i = 1, . . . , n, otherwise 0. The
dimensions `y = n and `x = 2n.

As a key operating parameter, the ratio ρ/r (17) was
chosen as a proxy for signal-to-noise ratio. We use two
relative performance measures (subscripts o and p mean
orthotope and parallelotope, respectively):
• volume ratio Vo/Vp, where the volumes are specified

in Table I (Bayesian measure),
• total norm-squared error (TNSE) ratio, TNSEo/TNSEp

(frequentist measure), where

TNSE =

t∑
t=1

‖x̂t − xt‖22.

As performance mesures, we also use these probabilities:
• the nesting probability, pn, whether the parallelotopic

support of f(xt|d(t)) is a proper subset of the ortho-
topic support,
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Fig. 2. Probability that the parallelotopic support (UPS class) is nested
within the orthotopic support, i.e. whether the parallelotope is a proper
subset of the orthotope.

• the probability, pc, that the support of the UPS-closed
filtering distribution, f(xt|d(t)), contains the true state.

For every operating condition, we took 100 Monte Carlo
runs for the UPS and orthotopic algorithms, and reported
the average per operating condition for each algorithm.

A. Performance comparison
Firstly, we wanted to check whether—at a fixed ρ/r—

the results depend on r itself. It was observed that the
dependence is insignificant for a wide range of r and n,
and therefore ρ/r can be used as the operating parameter.

In the following figures, we display the performance
measures defined above. In all cases, the higher the per-
formance measure, the better the relative performance of
our new UPS-closed algorithm versus the formerly reported
orthotopically closed variant [20].

After each filtering step, t, we computed the nesting prob-
ability, pn. The situation is shown in Fig. 2. The pn decreases
with decreasing ρ/r and with increasing dimension n.

Fig. 3 shows the probability pc. We show that this
probability depends on n in a manner similar to Fig. 2.
However, its dependence on ρ/r is in opposition to the
findings in Fig. 2. Fig. 4 shows the ratio of the support
volumes (Table I), and Fig. 5 shows the ratio TNSEs. The
volume ratio increases with ρ/r. Note also that it increases
exponentially with n (note the log scale). In Fig. 5, the
ratio TNSEo/TNSEp is almost invariant with dimension, n.
While the strongly monotonically improving relative perfor-
mance of of the UPS-closed filtering algorithm—compared
to the orthotopically-closed variant—is again observed as
a function of increasing ρ/r, we notice two anomalies:
(i) the UPS-closed TNSE is the greater one for ρ/r = 10−3;
and (ii) the monotonicity is lost around ρ/r = 10−1.

B. Discussion
The greatly reduced volume ratios for the UPS-closed

algorithm versus the orthotopically closed variant point to
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Fig. 3. Probability of containing the true state vector within the support of
the posterior UPS (dotted lines). The solid line shows these probabilities for
the orthotopically approximated filtering distribution, which are invariant
with dimension n.
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Fig. 4. Volume ratio, Vo/Vp, of the orthopic to parallelotopic supports.

far greater precision in the UPS state inferences (Fig. 4).
This comes at the cost of slowly decreasing containment
probability, particularly in high dimensions (Fig. 3). This
dimension sensitivity is corroborated by the decreasing nest-
ing probability with increasing dimension (Fig. 2). This may
be caused by the mechanism of approximating zonotopes by
parallelotopes, i.e. discarding strips with respect to minimal
volume. This procedure can shift the resulting parallelotope.

Variable nesting probability can be caused by a similar
effect. More research is required to understand these be-
haviours more formally, and, indeed, the fact that the effect
of increasing ρ/r is contrary for pn versus pc.

Nevertheless, the frequentist performance of the posterior
mean estimate is greatly enhanced in our novel UPS-closed
filtering algorithm compared to the earlier variant, as seen
in Fig. 5. It is interesting to note that this performance
enhancement seems to be relatively robust to increasing
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state dimension. Again, more work is needed to understand
the detailed performance comparison in stressful regime.

V. CONCLUDING REMARKS

Recall that the projection of the zonotopic into the paral-
lelotopic support in Section II-C was proposed in a strictly
geometric sense; i.e. the optimality of the approximation in
terms of distribution (11) has not been demonstrated. This
may explain the effects notes in Section IV-B. In future
work, we hope to explore these considerations.

Our algorithm enforces closure of both substeps of
Bayesian filtering within the UPS class. This sequential
application of local approximation brings with it the risk
of unbounded propagation of distributional error with t. We
can apply a forgetting operation in each step of approximate
Bayesian filtering [25]. Another approach is to combine the
two UPS projections into a single one at each step.

In all events, this paper clearly points to the benefits
for LSU filtering of adopting UPS as the distributional
invariant. As well as the Bayesian and frequentist perfor-
mance enhancements reported here, UPS captures correla-
tion between state variables, something that is lost in the
orthotopically supported variant.

Our future work will focus on the derivation of the
data predictor consistent with this UPS-closed filtering
algorithm, for application in knowledge transfer between
LSU filters. This will advance the preliminary solution—
based on orthotopically supported distributions—reported
in [20].
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