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Abstract. Modern prescriptive decision theories try to support the dy-
namic decision making (DM) in incompletely-known, stochastic, and
complex environments. Distributed solutions single out as the only univer-
sal and scalable way to cope with DM complexity and with limited DM
resources. They require a solid cooperation scheme, which harmonises
disparate aims and abilities of involved agents (human decision makers,
DM realising devices and their mixed groups). The paper outlines a dis-
tributed fully probabilistic DM. Its flat structuring enables a fully-scalable
cooperative DM of adaptive and wise selfish agents. The paper elaborates
the cooperation based on sharing and processing agents’ aims in the way,
which negligibly increases agents’ deliberation effort, while preserving
advantages of distributed DM. Simulation results indicate the strength
of the approach and confirm the possibility of using an agent-specific
feedback for controlling its cooperation.

Keywords: Decision Making · Cooperation · Fully Probabilistic Design · Bayesian
Learning.

1 Introduction

A decision making theory supports agents to select actions, which aim to influence
the closed decision loop, which couples the agent with its environment. DM is a
complex process requiring a selection of relevant variables, adequate technical
and theoretical tools, knowledge, aim elicitation, etc. Repeatedly-applicable DM
procedures rely on a computer support, which needs a quantification of DM
elements and, primarily, algorithmic solutions of all DM steps. Any of permanently-
evolving DM theories designs a strategy (policy [25], decision function [38]), which
maps the agent’s knowledge and aims on actions. The optimal design selects the
strategy, which meets agent’s aims in the best way under the faced circumstances.
An excessive DM complexity is tackled here.

Evolution singled out distributed DM as the only universal and fully scalable
way of coping with DM complexity and limited resources of individual agents
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[4]. Cooperation of involved agents decides on the success or failure in reaching
individual or collective aims [1,22,27,34,35,40]. It must not recur the problems,
which make distributed DM inevitable. This limits applicability of theory of
Bayesian games [10] and excludes presence of a cooperation-controlling mediator,
who has to deal with a quite aggregated knowledge and a small number of actions.
Thus, a personalised machine support of selfish (aim oriented) agents, dynamically
acting in the changing environment containing other agents, is needed. To our
best knowledge, no general support of this type exists. This paper contributes to
its creation by inspecting cooperation within the discussed scenario. It relies on
theory of fully probabilistic design of decision strategies (FPD, [9,15,36]). FPD
is a proper extension [19] of prevailing Bayesian DM [7,29,39]. The paper deals
with the cooperation, which assumes that the involved agents use FPD and are
wise enough to cooperate to the degree required for achieving their selfish aims.

1.1 Paper Layout

The outline of the considered flat multi-agents system in Sec. 2 provides backbone
of the subsequent text. Sec. 3 recalls a single adaptive agent that uses Bayesian
learning and the feasible certainty-equivalent version of FPD. Sec. 4 describes
the employed cooperation concept while commenting on its position with respect
to its direct predecessors. The experimental part, Sec. 5, indicates soundness of
the adopted concept. Remarks in Sec. 6 primarily outline the further anticipated
research.

1.2 Notions and Notation

A simple DM task is considered in order to focus on the central cooperation
problem. It is close to Markov decision processes [25] dealing with finite numbers
of actions and of fully observable states. Throughout:

• The set of ys with |y| <∞ values yj is denote y = {yj}|y|j=1.

• The same symbol marks a random variable, its realisation, and its possible
value. San serif fonts mark mappings. Mnemonic symbols are preferred.

• Probability mass functions (pmf) are implicitly conditioned on the known
initial state x0 ∈ x.

• The observable state xt of the modelled stochastic environment evolves in
discrete time t ∈ t. The evolution is influenced by optional actions a ∈ a. A
value at ∈ a of the action a is selected by the agent at time t ∈ t.
• The closed decision loop, formed by the agent and its environment, operates

on the behaviour b = (xt, at)t∈t ∈ b, i.e. on the collection of states and actions
up to the decision horizon |t| <∞.

• The random behaviour b ∈ b is described by a joint pmf

cs(b) ≡ cs(b|x0) = cs(x|t|, a|t|, x|t|−1, a|t|−1, . . . , x1, a1|x0).
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It is the complete closed-loop model. Chain rule for pmfs [28] factorises it

cs(b) =
∏
t∈t

cs(xt|at, xt−1, at−1, . . . , a1, x0)cs(at|xt−1, at−1, . . . , x1, a1, x0)

=
∏
t∈t

m(xt|at, xt−1)rt(at|xt−1), b = (xt, at)t∈t. (1)

The mnemonically renamed factors after the second equality in (1): (a)
exemplify the adopted assumption that the Markov environment and agent
are considered; (b) focus us on time-invariant environments; (c) recognize that
the first generic factor is the environment model, describing the probability of
transiting to the state xt from the state xt−1 when the action at is applied;
(d) interpret the second generic factor as the decision rule, which assigns the
probability of selecting the action at, when knowing the state xt−1.

• The optional, generally randomised, decision strategy is the collection of
decision rules s = (rt)t∈t. The optimising DM selects the optimal strategy so.
The optimality is defined with respect to agent’s decision preferences, which
are here quantified by the ideal closed-loop model

ci(b) =
∏
t∈t

mi(xt|at, xt−1)ri(at|xt−1), b = (xt, at)t∈t. (2)

It is the product of ideal environment models mi and ideal decision rules ri.
Both are time invariant for simplicity. The ideal closed-loop model assigns
high values to preferred behaviours and low values to unwanted ones. The
use of this ideal pmf is in Sec. 3.

2 Flat Multi-Agents Systems

This section outlines the adopted concept of agents’ interactions. The wish to
support selfish imperfect agents motivates it. The adjective selfish implies that
the agent follows its “personal” aims while the adjective “imperfect” labels the
agent’s limited knowledge, limited observation, evaluation, and acting abilities.
Such an agent acts within the environment containing other imperfect selfish
agents, which directly or indirectly influence the agent’s degree of success or
failure in reaching its personal aim. The considered wise but still imperfect agent
takes it into account and makes public a part of information it deals with. This
allows other agents to modify their strategy so that mutual inevitable clash is
diminished and consequently, the considered interacting imperfect agents get
chance to reach their individual unchanged aims in a better way.

The assumed common universal strategy-design methodology (FPD) and
the common language (probabilistic descriptions of both environment and aims)
allows to process the shared information without a special mediating or even
facilitating agent, which would become bottleneck as it is always imperfect in
the discussed sense.
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The imperfection of each agent implies that it can reach only information
provided by a small number of other agents, its recognisable neighbours. This
makes the intended processing of the shared information feasible and the whole
considered multi-agent interaction fully scalable.

It is worthy to add the following comments to the above outline.

– Aims of individual agents can be close and even identical. Thus, the explicit
cooperation is well possible in this scheme.

– Individual agents can be created by a group of cooperating agents with
its mediator, facilitator or leader up to the point where the joint resources
suffice. Thus, the inspected multi-agent scenario may support all traditional
multi-agent systems.

– The considered scheme imitates how complex societies act.
– Naturally, individual agents may publish misleading information and locally

exploiting it may deteriorate quality of the strategy, which respects them.
The agent that uses such an information can recognise this effect in a longer
run and assign small weight (trust) to such an adversary agent.

The subsequent text considers such a flat scheme and describes firstly the
considered type of agent and then the exploitation of the limited shared informa-
tion, namely, shared description of neighbours’ aims. Fixed trust to a neighbour
is assumed at this research stage.

3 Single Agent Using FPD

This section focuses on single agent. It provides the FPD-optimal strategy along
with its certainty-equivalent, receding-horizon approximation [23].

3.1 Formulation and Solution of Fully Probabilistic Design

An agent influences the closed-loop behaviour b ∈ b by selecting its randomised
strategy s. Its choice shapes the closed-loop model (1). Ex post, Bayesian DM
[29] evaluates the behaviour desirability (as seen by the agent) via a real-valued
loss function L(b), b ∈ b. A priori, the quality of the strategy is evaluated via
the expected loss, which is the generalised moment of the closed-loop model

Es[L] =
∑
b∈b

cs(b)L(b). (3)

The Bayesian optimal strategy minimises the expected loss (3). FPD generalises
this set up and uses the ideal closed-loop model ci (2) instead of the loss function
L. FPD selects the optimal strategy, which makes the closed-loop model closest
to the given ideal closed-loop model. FPD axiomatisation [19] implies that
Kullback-Leibler divergence (KLD, [21])

D(cs||ci) = Es

[
ln

(
cs
ci

)]
=
∑
b∈b

cs(b) ln

(
cs(b)

ci(b)

)
(4)
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is the adequate proximity measure1.
The universal loss (4) depends on the optimised strategy, unlike L (3). Thus,

FPD defines FPD-optimal strategy so as

so ∈ Arg min
s∈s

D(cs||ci). (5)

Algorithm 1 explicitly provides the FPD-optimal strategy so (5). It consists of
the optimal decision rules (ro;t)t∈t and exploits the environment model (1) and
the factorised ideal closed-loop model (2). The proof of its optimality is, e.g., in
[37]. Its presented form prepares the receding-horizon approximation of FPD.

Algorithm 1 Design of FPD-Optimal Decision Strategy

Inputs: Dimensions |a|, |x|; initial τ and terminal τ̄ time moments of the design
Environment model m % belief description
Factorised ideal closed model ci = miri % preference description

Evaluations:
Initialise g(x) = 1, ∀x ∈ x,
for τ = τ̄ to τ do

for x ∈ x do
for a ∈ a do

d(a, x) =
∑
x̃∈xm(x̃|a, x) ln

(
m(x̃|a,x)

mi(x̃|a,x)g(x̃)

)
end for
g(x) =

∑
ã∈a ri(ã|x) exp(−d(ã, x)) % − ln(g(x)) is the value function

for a ∈ a do
ro;τ (a|x) = ri(a|x) exp(−d(a,x))

g(x)

end for
end for

end for
Outputs: FPD-optimal strategy so = (ro;τ )

|τ |
τ=τ , % so is optimal iff τ = 1, τ̄ = |t|

3.2 Certainty-Equivalent Receding-Horizon FPD

The cooperation concept, inspected in Secs. 4, 5, assumes that the environment
model is obtained by learning it. The model candidates are parameterised by
time-invariant pmf values m(x̃|a, x, θ) = θ(x̃|a, x). The finite-dimensional pa-
rameter θ = (θ(x̃|a, x))x̃,x∈x,a∈a is unknown to the applied strategy. Thus, the
strategy meets natural conditions of control [28] and the Bayesian learning can
be used in the closed decision loop. The considered parametric environment
model belongs to exponential family [3]. As such, it possesses self-reproducing
Dirichlet’s prior. Its finite-dimensional sufficient statistic is the occurrence array

1 The axiomatisation [19] also shows that any Bayesian DM formulation can be
approximated by an FPD formulation to an arbitrary precision.
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v = (v(x̃|a, x))x̃,x∈x,a∈a, v > 0, [14]. The environment model corresponding to
the knowledge accessible by the agent is the predictor

m(x̃|a, x, v) =
v(x̃|a, x)∑
x̃∈x v(x̃|a, x)

= θ̂v(x̃|a, x), x̃, x ∈ x, a ∈ a.

The pair X = (x, v) becomes the observable hyper-state so that Algorithm 1
is optimal with X replacing x. Practically, it is mostly infeasible as the time-
varying value functions in Algorithm 1 depend on the hyper-state X of a huge
dimension. At time t ∈ t, feasibility is recovered by the standard certainty-
equivalent approximation with receding horizon h ≤ |t| − t, see e.g. [23,24], and
extensive references there. It replaces the unknown parameter θ in m(x̃|a, x, θ) by

the current point estimate θ̂vt−1 . m(x̃|a, x, θ̂vt−1) serves as the environment model
during the strategy design, which runs backward for τ = τ̄ = t+ h− 1, . . . , τ = t
till t+ h− 1, h ≤ |t| − t+ 1. After applying the action at and observing the state
xt, the occurrence array vt−1 is updated, vt(xt|at, xt−1) = vt−1(xt|at, xt−1) + 1,
and the procedure repeats, see Algorithm 2.

Algorithm 2 On-Line Certainty-Equivalent Receding-Horizon FPD

Inputs: Dimensions |a|, |x|, receding horizon h
Initial state x0, occurrence array v0 > 0 % prior belief description
Factorised ideal closed model ci = miri % preference description

Evaluations:
for real time t = 1 to |t| do

Get environment-model estimate m(x̃|a, x) =
vt−1(x̃|a,x)∑

x̃∈x vt−1(x̃|a,x)
, ∀x̃, x ∈ x, a ∈ a

Get (ro;τ )t+h−1
τ=t =Algorithm 1(|a|, |x|, τ = t, τ̄ = min(t+ h− 1, |t|),m,mi, ri)

Sample action at ∼ ro;t(a|xt−1)
Closed-loop outputs: Applied action at, state xt observed on the environment

Learn by updating the occurrence array v(xt|at, xt−1) = v(xt|at, xt−1) + 1
end for

Remarks

• Both algorithms have versions for continuous state and action spaces [15].
They are feasible for linear Gaussian models and their finite mixtures, [14,28].
• Algorithm 2 is presented in its rudimentary version. For instance, its computa-

tional complexity can be significantly decreased by iterations-spread-in-time
strategy [14]. Its design omits the reset of g in Algorithm 1 and allows the
use of the receding horizon close to one.

• The (approximately) optimal randomised FPD strategy is explorative. It is
adaptive when employing forgetting [20], ideally, data-dependent as in [12].

• Undiscussed automated knowledge [6] and preference [5] elicitation would
make Algorithm 2 (relatively) universal for single-agent DM. For a range of
DM tasks, it is implementable into cheap portable devices. This makes the
cooperation discussed in Sec. 4 realistically applicable.



FPD-based Cooperation 7

4 Multiple Agents Sharing Ideal Closed-Loop Models

An agent mostly acts in the environment populated by other active agents. The
agent should model them and respect their influence [10]. Such Bayesian games
soon reach scalability limits as the learning and the strategy design become
infeasible due to the quickly growing complexity of the handled DM elements.

The agent may ignore other agents and take them as non-modelled part of its
environment. This feasible way may often lead to unfavourable results and calls
for feasible countermeasures. Conceptually, the agent is to share an information
with its neighbours. These are agents with whom its behaviour overlaps. Such
sharing enables automated cooperation, negotiation [40] and conditions a conflict
resolution. Quest for scalability admits only the information-sharing schemes
working without a mediating center, i.e. a flat cooperation structure.

Agents exploiting FPD use the joint probabilistic ontology, which describes
both their beliefs about environment and their DM preferences. This both enables
generic flat cooperation schemes [16] and decreases the information sharing to a
combination of probabilistic distributions, a classical pooling problem [8]. Among
various possibilities, supra-Bayesian pooling fits the FPD framework. Its lack of a
complete algorithmic solution is counteracted in [2,30,31,32]. These solutions are
impartial with respect to the involved agents. They have led to a tuning-knob-free
solution [13], which may serve as a “universal” impartial pooling solver.

Tests of impartial solutions were relatively successful. However, except the
specialised case [18], they focused on static DM tasks. Also, the universality is
not for free. The proposed solutions do not differentiate importance, strength and
other specific properties of interacting agents. The decoupling of the processing of
the shared information from the ultimate DM aim is the price paid for universality.

This criticism motivates the research whose basic steps are presented here.

4.1 Cooperation Circumstances

Opening the way towards filling the differentiation-gap left by predecessors
[30,31,32] is the main paper aim. To focus on it, a simple, but well-generalisable,
flat cooperation is treated. It concerns FPD-using agents in a common environ-
ment. Superscript k, k ∈ k, marks DM elements of the kth agent : the behaviour
bk ∈ bk, the environment model mk, the ideal closed-loop model cki and its factors,
i.e. the ideal environment model mk

i , and the ideal decision rule rki .
Inspected agents are neighbours of an agent. It means that its behaviour

overlaps with behaviours of neighbours and the agent is aware of existence of
common variables in them. In the considered case, the environment state x ∈ x
is the commonly accessible behaviour part. The kth agent generates its optimised
actions ak ∈ ak. Others may at most observe it. This enhances the DM quality but
it is unconsidered as it makes no conceptual difference. We focus on yet-untested
sharing of information about ideal models, i.e. about neighbours’ preferences.

The inspected cooperation concerns wise agents who are willing to broadcast
parts of pmfs (here ideal pfms) they use. Each agent utilises the information
broadcasted by neighbours for the modification of its closed-loop ideal model
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employed in the strategy design. The agents remain selfish, and do not change their
ideal closed-loop models according which they evaluate improvements achieved
due to the information sharing.

4.2 Question Related to Pooling for FPD

The main questions encountered in pooling pmfs for FPD are:

1. How to pool the shared pmfs?
2. How to cope with the fact that behaviour sets of neighbours differ?
3. How to present the results to agents and how they should use them?
4. How to tune optional pooling parameters in order to support individual

agents in approaching their disparate DM aims?

Questions 1, 2, 3 are mostly answered by predecessors, see below. Sec. 5 reflects
the search for an insight indispensable for answering the open question 4.

Answer to question 1 follows [30,31,32]. The pooled ideal closed-loop model
offered to kth agent c̃ki is to be a convex combination of the processed pmfs

c̃ki =
∑
j∈k

λkj c
j
i , λkj ≥ 0,

∑
j∈k

λkj = 1, ∀k ∈ k. (6)

This excludes, for instance, the popular geometric pooling [8]. The referred
papers select the weights (λkj )j∈k uniquely using the involved prior pmf and the
impartiality requirement. When relaxing the latter, the weights become optional
and allow the reflection of the ultimate pooling aim: the support of agent’s DM.

Answer to question 2: The combination (6) is meaningful iff all agents operate
on the same behaviour b = bk, k ∈ k, i.e. iff the involved agents know and model
all variables entering the neighbours’ behaviours. This is definitely unrealistic. In
the inspected case, this would imply to know and model the behaviour on the
super-set b of behaviours treated by all neighbours

b =
(
xt, (a

j
t )j∈k

)
t∈t. (7)

Thus, the pooling (6) can be applied iff the shared pmfs are extended on b.
The original neighbours’ pmfs could be interpreted as marginal pmfs of the

constructed extensions. The extensions are, however, not unique as proved in
connection with the copula theory [26]. Even more importantly, the combined
pmfs are generically incompatible. Then no extension having them as marginal
pmfs exists. It is well seen on the considered pooling of the ideal closed-loop
models. In this case, the cooperation is to counteract the fact that selfish agents
have different preferences with respect to the common environment state. This
reflects that an agent wants to reach its specific closed-loop behaviour by assigning
the highest probability to it by the personally-chosen ideal closed-loop model.

It implies that the extension is to be approached as a search for a compromise.
The search is a supporting decision task with the extended pmfs being the
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optional actions, cf. [17,13]. In the considered case, the solution reduces to
application of the maximum entropy principle [33] to time-invariant factors of
the ideal closed-loop models. When requiring the preservation of the kth closed-
loop model and individual agents’ strategies, the gained extension eki , k ∈ k,
ignores unknown influence of neighbours’ actions on the kth state as well as their
unknown dependence. The resulting kth extension reads

eki (x̃, (aj)j∈k|x) = mk
i (x̃|ak, x)

∏
j∈k

rji (aj |x), k ∈ k. (8)

Answer to question 3: The use of (6) to extensions (8) gives the pooled closed-loop
ideal model on the super-set b (7) of the behaviour sets bk. The kth agent is
uninterested and even unaware of actions aj , j ∈ k \ {k}, complementing bk to b.
Thus, it makes sense to present this agent only the relevant marginal pmf c̃ki of
the pooled closed-loop ideal model. The result offered to kth agent is

c̃ki (x̃, ak|x) =
[
λkkm

k
i (x̃|ak, x) +

∑
j∈k\{k}

λkj f
j
i (x̃|x)

]
rki (ak|x), where

fji (x̃|x) =
∑

aj∈aj

mj
i (x̃|a

j , x)rji (aj |x), x̃, x ∈ x, ak ∈ ak. (9)

The wise agent k should use the ideal pmf c̃ki (9) for designing its strategy.

Towards answering question 4 The algorithmic choice of the weight λkj , which
kth agent assigns to jth neighbour, is yet unsolved. The solution direction is,
however, obvious. As said, the kth agent uses the pooled ideal closed-loop model
when designing its approximation of the FPD-optimal strategy. It has at disposal
its original ideal. Thus, it can evaluate the action quality, after using the designed
action and after observing the realised environment state. This enables to relate
the weights (λkj )j∈k to the reached DM quality and to design an additional
feedback generating better weights for the subsequent design round.

A systematic design of the mentioned feedback is an important auxiliary DM
task. Its solution needs a model relating the optional weights (λkj )j∈k to the
observable DM quality, which is quantified by the reached value of the original
closed-loop ideal model cki . The extensive experiments, whose samples are in
Sec. 5, primarily serve to the accumulation of experience needed for a feasible
modelling of the relation of the weights to the truly reached DM quality.

Remarks

• The limited resources of an agent are helpful and make the solution scalable
as the real agent has a small number |k| of recognised neighbours.

• The weights λkj , j ∈ k, are private for and specifically selected by kth agent.

• Pmf fji (9) is an action-independent, ideal forecaster offered by jth agent.
• Adaptive learning is inevitable as the agent uses, almost by definition, a

simplified model of its environment containing other active agents, [11].
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• The pooled ideal closed-loop model should be modified at each real time
moment. This allows an adaptation to the varying set of neighbours, their
changing ideal forecasters, as well as (foreseen) data-dependent changes of
the λ-weights, driven by the selfish preferences and built in personal cji .

• Agents’ selfishness implies that equilibrium, if reachable, will be of Nash’s
type. An analysis will be possible after operationally resolving question 4.

• The cooperation via sharing environment models is algorithmically identical
and desirable [18]. It should be used jointly with the discussed one.

• Omissions of the mentioned ways to improve “cheaply” agent’s performance
is driven by the wish to preserve the presentation simplicity.

4.3 Algorithmic Summary

This part summarises the proposed fully-scalable cooperation of wise, selfish,
FPD-using agents. It shows that the computational costs paid by an agent for this
cooperation are small. Broadcasting the information about shared closed-loop
ideals is the probably most demanding operation. It only needs to broadcast the
ideal forecasters (fj)j∈k (9), possibly less often than the agents act.

Each agent k ∈ k acts according to Algorithm 3, which modifies its ideal
closed-loop model cki to the pooled ideal c̃ki (9). Otherwise, it coincides with

Algorithm 2. The boxed text in Algorithm 3 stresses the made changes.

Algorithm 3 FPD by Wise Selfish Cooperating Agent

Inputs: Agent’s identifier k∈ k, dimensions |ak|, |x|, receding horizon hk

Initial state x0, occurrence array vk0 > 0 % prior belief description
Factorised ideal closed model cki = mk

i r
k
i % preference description

The neighbours’ ideal forecasters (fji )j∈k\{k} % of the state evolution

The cooperation weights (λkj )j∈k %
∑
j∈k λ

k
j = 1, λkj ≥ 0

Evaluations:

Get the pooled ideal c̃ki = λkkm
k
i r
k
i +

∑
j∈k\{k} λ

k
j f
j
i % cooperation

Outputs: (aktk , xtk )tk∈tk =Algorithm 2(|ak|, |x|, hk, x0, vk0 ,c̃ki )

Remarks

• The agent identifier k delimits, which non-marginalised closed-loop ideal is
used. Importantly, it stresses that all DM elements are fully under the agent’s
control, except of the environment state and external forecasters.

• The agent may work in a fully asynchronous mode and use a “personal” real
time tk ∈ tk. This makes the advocated cooperation way quite flexible.

5 Experimental Part

The adopted concept is demonstrated on a simple well-understandable example.
It exhibits all features of the general case and illustrates all notions used.
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5.1 Simulation Set Up

The considered pair of agents, k ∈ k = {1, 2} is interpreted as independent
heaters influencing the common room temperature x. The quantised temperature
is the observable state x ∈ x = {1, . . . , 20}. Agents’ actions are ak ∈ ak = a =
{1, 2} ≡ {off,on}. The closed-loop behaviours are bk = (xt, a

k
t )t∈t up to |t| = 500.

The room is the common simulated environment modeled by the transition
probabilities π(xt|a1t , a2t , xt−1)), xt, xt−1 ∈ x, a1t , a

2
t ∈ a, t ∈ t. They are obtained

via quantisation of the linear Gaussian model with the conditional moments

xt-mean = 0.65(a1t +a2t−2)+0.96xt−1−0.02, xt-variance = 0.25, x0 = 10. (10)

The constants in (10) are chosen to: (a) imitate a slow response of the heated room;
(b) make the influence of both actions the same; (c) make the highest temperature
x = 20 reachable when one agent is heating only; d) let the temperature fall to
the lowest temperature x = 1 if both heaters are permanently off; and (e) let
random effect be visible but not excessive.

A cooperation is vital as the agents differ in ideal (desired) room temperatures

x1i = 12, x2i = 15.

The agents model their wishes by the ideal environment model, for ak = “on”,

mk
i (x̃|ak = 2, x) =


0.9 if x̃ = xki
0.05 if x̃ = xki − 1
0.025 if x̃ = xki + 1
uniform otherwise

k ∈ k = {1, 2}.

For the actions ak = “off” probabilities of x̃ = xki ± 1 are swapped.
The ideal decision rules try to spare energy and prefer the action “off”

rki (ak = 1 = “off”|xk) =

{
0.9 if xk ≥ xki
0.1 if xk < xki

, k ∈ k = {1, 2}.

The agents recursively learn Markov models starting from the occurrence arrays

vk0 = (the model (10) with the gain of the other action set to zero)× νk.

The optional degrees of freedom νk > 0 determine precision of the prior Dirichlet’s
distribution. The presented results correspond to the choice νk = 1, k ∈ k.

For |k| = 2, each agent selects single cooperation weight λk = λkk. The weights
λkj 6=k = 1 − λk. Simulations run for all pairs (λ1, λ2) on the grid λk ∈ λ =

{0, 0.1, . . . , 0.9, 1.0}. The option λk = 1 means no cooperation. The kth agent
accepts the ideal pmf of its neighbour as its own if λk = 0,

Each agent applies FPD, Algorithm 3, with the receding horizon h = 5 and the
pooled ideal closed-loop model (6), x̃, x ∈ x, ak ∈ ak, for λk ∈ λ, k ∈ k = {1, 2},

c̃1i (x̃, a1|x) =
[
λ1m1

i (x̃|a1, x) + (1− λ1)
∑

a2∈a2

m2
i (x̃|a2, x)r2i (a2|x)

]
r1i (a1|x)
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c̃2i (x̃, a2|x) =
[
λ2m2

i (x̃|a2, x) + (1− λ2)
∑

a1∈a1

m1
i (x̃|a1, x)r1i (a1|x)

]
r2i (a2|x).

The reached quality is judged via logarithm of the agent’s ideal closed-loop model
evaluated in the realised behaviour bk. To make the result comparable with the
value of the neighbour, this value is shifted by the absolute maximum

qk = ln(cki (bk))− max
bk∈bk

ln(cki (bk)), k ∈ k. (11)

5.2 Commented Results

The results are influenced by the inherent asymmetry of the problem: the agent
may contribute to the temperature increase but the decrease depends only on
the environment dynamics and on the realisation of random influences.

Figures 1, 2, and 3 present time courses of the room temperature. Fig. 1
corresponds to the cooperation coefficients (λ1, λ2) = (0.1, 0.1) for which q1

reaches its highest value. Fig. 2 corresponds to the cooperation coefficients
(λ1, λ2) = (0.8, 0.2) for which q2 reaches its highest value. Fig. 3 corresponds to
the combination of cooperation coefficients (λ1, λ2) = (0.2, 0.3) for which the
impartially judged joint quality q1 + q2 reaches its maximum.

0 50 100 150 200 250 300 350 400 450 500

Time Step

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

T
em

p
er

a
tu

re

Fig. 1. The best temperature trajectory, maximising q1 (11), for the agent k=1 wishing
the temperature x1i = 12. It is reached for the weights (λ1, λ2) = (0.1, 0.1).

The results primarily show that the value of the unchanged ideal closed-loop
model in the measured data (11) is indeed a good indicator of the closed-loop
quality from the agent’s view point. This confirms the chance for a successful data-
dependent choice of λk. Also, the example: (a) illustrates the theory; (b) confirms
that the information sharing influences the achieved closed-loop behaviour; (c)
shows asymmetry of the chosen environment; (d) indicates that possible Nash’s
equilibria could be searched around the maximum of

∑
k∈k q

k.
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Fig. 2. The best temperature trajectory, maximising q2 (11), for the agent k=2 wishing
the temperature x2i = 15. It is reached for the weights (λ1, λ2) = (0.8, 0.2).
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Fig. 3. The temperature trajectory, which is expected to be the best reachable compro-
mise, maximising q1 + q2 (11), between wishes x1i = 12 d x2i = 15. It is reached for the
weights (λ1, λ2) = (0.2, 0.3).

6 Concluding Remarks

This paper inspects a cooperation methodology for a flatly-interacting multiple
agents. It is based on sharing of ideal closed-loop models for FPD. It confirms the
chance to adapt the cooperation-controlling weights in closed loop according to
selfish aims of respective agents. At the same time, the accumulated experience
demonstrates that sharing solely some DM elements does not guarantee a high
decision quality. Other DM elements, as the learnt environment model, have to
be shared. FPD makes it an identical task. Also, other unused possibilities as
prior knowledge elicitation, forgetting, exploitation/exploration balance have to
be exploited to get a robust practical tool. These measures will be addressed in
near future. Good news is that this way is promising and feasible. All induced
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tasks are solvable at single-agent level with a negligible deliberation overhead
caused by acting in multi-participant environment. The paper exemplifies this.
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