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Abstract: The paper proposes the preference-elicitation support within the framework of fully proba-
bilistic design (FPD) of decision strategies. Agent employing FPD uses probability densities to model the
closed-loop behaviour, i.e. a collection of all observed, opted and considered random variables. Opted
actions are generated by a randomised strategy. The optimal decision strategy minimises Kullback-
Leibler divergence of the closed-loop model to its ideal counterpart describing the agent’s preferences.
Thus, selecting the ideal closed-loop model comprises preference elicitation.
The paper provides a general choice of the best ideal closed-loop model reflecting agent’s preferences.
The foreseen application potential of such a preference elicitation is high as FPD is a non-trivial dense
extension of Bayesian decision making that dominates prescriptive decision theories.
The general solution is illustrated on the regulation task with a linear Gaussian model describing the
agent’s environment.
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1. INTRODUCTION

Decision making here means any targeted choice among actions
at disposal. Quantification of agent’s beliefs and preferences
is inevitable prerequisite for an optimising decision making
under uncertainty and incomplete knowledge Savage (1954);
Wallenius et al. (2008).

Knowledge elicitation (beliefs’ quantification) is a relatively
well-developed area, e.g. Daee et al. (2017); Genest and Zidek
(1986); Kadane et al. (1980); O’Hagan et al. (2006); Quinn
et al. (2016).

Preference elicitation is less developed in spite of a significant
progress. Generally, it is a harder problem Chen and Pearl
(2004) than the knowledge-elicitation process Cooke (1994). It
has to cope with multivariate (often high dimensional) attributes
determining preferences, with their incomplete and informal
specifications, with an inherent uncertainty, with the need to
elicit group preferences from individual preferences, etc.

The lack of an unambiguous way of combining multiple criteria
(attributes) Keeny and Raiffa (1978) is the most significant
obstacle faced. Even advanced solutions deal with domain spe-
cific problems Gajos and Weld (2005), static decision making
Boutilier et al. (1997); Dupplaw et al. (2004) and they use
quite restrictive assumptions Benabbou et al. (2016). In addi-
tion to the multi-attribute problem, the works often care about
costs connected with querying about preferences Branke et al.
(2017); Drummond and Boutilier (2014). The orientation on
repetitive interactions with active human agents limits their use.

? MŠMT ČR LTC18075 and EU-COST Action CA16228 support this re-
search.

Notably, work Chajewska et al. (2000) fosters the preference
elicitation based on a probabilistic modelling of utilities (cri-
teria). This way allows to deal systematically with multiple
attributes and to adapt a population preference model to an
individual. The outlined methodology still deals with static
problems and uses the belief model only for stopping of the
elicitation process, for the querying end.

Fully probabilistic design (FPD) of decision strategies Guan
et al. (2014); Kárný and Guy (2006); Kárný and Kroupa (2012);
Todorov (2006) directly describes preferences probabilistically.
This conceptually solves the multi-attribute problem and con-
nects probabilistic descriptions of beliefs and preferences. Pa-
per Kárný (2013) exploits FPD for eliciting multiple-attribute-
driven preferences in dynamic decision making. It still contains
too many arbitrary steps. The current paper solves the elicita-
tion problem more systematically and provides its unambiguous
optimal solution. It has to be approximated in order to get
feasible solution.

Section 2 recalls FPD and introduces the adopted notation
and notions. Section 3 provides conceptual solution of the
preference-elicitation problem. Section 4 elaborates this in a
widely applicable set up. The specialisation to the regulation
task with a linear Gaussian model of the environment in Section
5 indicates the solution plausibility. Section 6 adds concluding
remarks.

2. FULLY PROBABILISTIC DESIGN

Dynamic decision making concerns an agent 1 that interacts
with incompletely known and randomly responding environ-

1 The agent can be a human, a device or their mixed group.



ment. Behaviour b ∈ b of the closed loop, formed by the pair
agent-environment, has the structure 2

b= (gt, at, kt−1) ∈ b. (1)

There, a real time moment at which action at ∈ a is applied
is labelled by t ∈ t = {1, . . . , h} with h < ∞ being the
decision horizon. At time t, gt ∈ g denotes the considered
part of the behaviour unavailable for selecting the action at.
It consists of future fully observable states (xt, . . . , xh) and
actions (at+1, . . . , ah). Knowledge kt−1 ∈ k is a part of the
behaviour available for selecting the action at and consists of
a prior knowledge 3 k0, past states x1, . . . , xt−1 and actions
a1, . . . , at−1. Underlining marks the realisation of a random
variable, whenever this distinction is important.

The agent has to construct an (optimal) randomised decision
strategy (policy) s ∈ s consisting of a sequence of information-
ally causal decision rules rt, i.e.

rt : k→ a, s = (rt)t∈t. (2)

The resulting closed-loop model cs(b) describes closed-loop
behaviours b ∈ b and it is influenced by the used decision strat-
egy s. Behaviour b is a multivariate random variable, Savage
(1954), completely described by its joint probability density
(pd) cs(b), b ∈ b. It can be factorised via the chain rule for
pds Peterka (1981). For presentation simplicity, Markovian en-
vironment models are considered and consequently Markovian
decision rules assumed Mine and Osaki (1970). This gives

cs(b) =
∏
t∈t

environment model︷ ︸︸ ︷
m(xt|at, xt−1) ×

decision rule︷ ︸︸ ︷
r(at|xt−1). (3)

Within the adopted FPD framework, the optimal decision strat-
egy so ∈ s minimises Kullback-Leibler divergence (KLD, Kull-
back and Leibler (1951)) of the closed-loop model cs to its ideal
counterpart describing the agent’s preferences , i.e.

so ∈ Arg min
s∈s

D(cs||ci) (4)

D(cs||ci) =

∫
b

cs(b) ln

(
cs(b)

ci(b)

)
db.

The ideal pd ci(b), b ∈ b, models the desired closed-loop
behaviour and can be factorised similarly to (3)

ci(b) =
∏
t∈t

ideal environment model︷ ︸︸ ︷
mi(xt|at, xt−1) ×

ideal decision rule︷ ︸︸ ︷
ri(at|xt−1). (5)

The next proposition provides the FPD-optimal strategy. The
evaluations are close to dynamic programming but give the
optimal decision rules (rot )t∈t in an explicit form.
Proposition 1. (FPD, proof in Kárný et al. (2006)). Optimal de-
cision strategy so(b) = (ro(at|xt−1))t∈t is given by the follow-
ing optimal decision rules (∝ denotes proportionality)

2 Throughout, x denotes a set of xs. Its nature is described only when needed.
3 The prior knowledge is fixed, includes x0, and it is present implicitly.

µ(at, xt−1)=

∫
x

m(xt|at, xt−1) ln
( m(xt|at, xt−1)

γ(xt)mi(xt|at, xt−1)

)
dxt

ro(at|xt−1)=
ri(at|xt−1) exp[−µ(at, xt−1)]∫

a

ri(at|xt−1) exp[−µ(at, xt−1)]dat︸ ︷︷ ︸
γ(xt−1)

(6)

∝ ri(at|xt−1) exp[−µ(at, xt−1)].

The backward evaluations start with

γ(xh) = 1 ≥ γ(xt) ≥ γ i(xt), see (9) ∀t ∈ t. (7)

The reached minimum is

min
s∈s

D(cs||ci) =− ln(γ(x0)). (8)

Value function − ln(γ(xt)) is bounded from above by its
greedy analogy − ln(γ i(xt)) with

γ i(xt−1) =

∫
a

ri(at|xt−1) (9)

× exp
[
−
∫
x

m(xt|at, xt−1) ln

(
m(xt|at, xt−1)

mi(xt|at, xt−1)

)
dxt︸ ︷︷ ︸

µi(at,xt−1)

]
dat.

3. CONCEPT OF OPTIMAL PREFERENCE ELICITATION

The need for preference elicitation arises whenever the agent’s
preferences do not specify uniquely the ideal pd (5), i.e. when
the set ci of prospective ideal pds

ci =
{
ci(b) : pds on b reflecting the agent’s preferences

}
(10)

contains at least two different ideal pds. Then, the agent faces
an additional decision problem: How to select the most suitable
and informative ideal pd from set ci?

Choosing an ideal pd from a proper subsets of the specified set
ci (10) enforces additional preferences that were not part of the
original agent’s preferences. In this case a minimum reached,
see (4) of form (8), may only increase. Respecting this simple
observation, we propose to select the most suitable ideal from
set ci (10) as a minimiser of the reached minima in (4) over ci.

coi ∈ Arg min
ci∈ci

min
s∈s

D(cs||ci). (11)

The resulting pd coi is called optimal ideal closed-loop model
coi onward. Similarly to (5), (11) can be factorised

coi(b) =
∏
t∈t

moi(xt|at, xt−1)roi(at|xt−1).

The factors moi(xt|at, xt−1), roi(at|xt−1), t ∈ t, are referred
as the optimal ideal environment model and the optimal ideal
decision rule.

The optimisation (11) is generically infeasible as the optimised
ideal environment model and the ideal decision rules enter
− ln(γ(x0)) = mins∈s D(cs||ci) in a very complex way, see
Proposition 1. This makes us to search for an approximate but
feasible solution.

Set ci may be empty if the agent’s preferences are internally
inconsistent. This possibility is here untreated.



4. PREFERENCE ELICITATION

This section elaborates the concept presented in Section 3 for
a relatively wide class of decision tasks. The solution focuses
on one-stage-ahead FPD in order to get a feasible solution. This
simplification corresponds with the minimisation of the upper
bound on mins∈s D(cs||ci), cf. (7), (9). The gained optimal ideal
closed-loop model is then used in the multi-step FPD described
by Proposition 1. Thus, the greedy (one-stage-ahead, myopic)
choice of coi does not cause the decision-quality loss that is
connected with it, see e.g. Mayne (2014).

For a fixed t ∈ t, the minimisation over a set of ideal closed-
loop models ci is a static task. Thus, time index t and fixed
condition xt−1 can be dropped in notation. The considered
minimisation is then equivalent to the maximisation of γ i in
(9) over the set (10). For ci(x, a) = mi(x|a)ri(a) (5) and µi(a)
in (9)

coi = moiroi (12)

∈ Arg max
{(mi,ri)∈(mi,ri)}

∫
a

ri(a) exp
(
−µi(a)

)
da.

Optimisation in (12) is performed with respect to the ideal
decision rule ri first, then with respect to the ideal environment
model mi.

Optimal ideal decision rule roi (12) must select an action in the
given action set a. The form of optimal decision rule (6) implies
that this requirement is fulfilled iff

supp[ri] = {a : ri(a) > 0} ⊂ a, (13)
where supp[ri] is a support of ri.

All actions in a are admissible and thus no action in a should
be a priori excluded. This specifies the following general re-
quirement

supp[ri] = a. (14)
This requirement represents an active constraint. It becomes
obvious when writing the explicit form of the optimisation (12)
over the unconstrained set ri of ideal decision rules

max
ri∈ri

γ i = max
ri∈ri

∫
a

ri(a)ρi(a)da, ρi(a) = exp
(
−µi(a)

)
≥ 0.

(15)
The optimised ideal decision rule ri enters (15) linearly. Conse-
quently, the unconstrained optimal ideal decision rule is deter-
ministic: it concentrates on an action maximising ρi. Thus, the
unconstrained optimal ideal decision rule violates requirement
(14).

The next proposition characterises deterministic decision rules
in the way, which allows us to exclude them, i.e. to guarantee
that the requirement (14) is met.
Proposition 2. (Deterministic Decision Rules). Let us consider
r = { set of all pds on a, which is a subset of a finite-
dimensional real space}. Let us define the constant κ̄ according
to the cardinality of action set a

κ̄=

{
1 if the cardinality of a <∞
∞ if the cardinality of a =∞ .

Then, for a fixed rule r ∈ r, it holds

κ̄=

∫
a

r2(a)da ⇔ r(a) is deterministic. (16)

Proof

The case with a finite cardinality of a
To prove the implication⇐ in (16), let r(a) = 1 for some a ∈
a. Then, r(a) = 0 for a ∈ a \ {a} ⇒

∑
a∈a r2(a) = 1 = κ̄.

The implication ⇒ in (16) is proved by contradiction. Let∑
a∈a r2(a) = 1 = κ̄. Let ā be the non-empty subset of

the action set a on which r(a) ∈ (0, 1) and r(a) = 0 on
a \ ā. Then, the contradicting inequality arises

1 =
∑
a∈a

r(a) =
∑
a∈ā

r(a) >
∑
a∈ā

r2(a) =
∑
a∈a

r2(a) = 1.

The case with an infinite cardinality of a is outlined for a
being the whole finite-dimensional real space and κ̄ =∞.

The implication⇐ in (16) is proved directly. A deterministic
decision rule giving a ∈ a is the limit of Gaussian pds
Ga(a, ε) with a common mean a and diagonal covariances
with non-zero entries ε→ 0+. It holds∫

a

r2(a)da=

∫
a

lim
ε→0+

G2
a(a, ε)da

= lim
ε→0+

∫
a

G2
a(a, ε)da =∞ = κ̄,

where the last equality can be analytically verified.
Implication ⇒ in (16) is proved by contradiction. Let r be
a non-deterministic decision rule with essential supremum
α = essup(r) ∈ (0,∞). Then, the contradiction arises

1 =

∫
a

r(a)da = α

∫
a

r(a)

α
da

r(a)
α ≤1︷︸︸︷
≥ α−1

∫
a

r2(a)da = α−1κ̄ =∞.

�

The next proposition provides the optimal ideal decision rule
maximising γ i (15) so that the requirement (14) is fulfilled. It
uses the set indicator defined as

χa(a) =

{
1 if a ∈ a
0 if a /∈ a

. (17)

Proposition 3. (Optimal Ideal Decision Rule). Let an ideal en-
vironment model mi be chosen and let almost everywhere (a.e.)
on a, see (9),

µi(a) =

∫
x

m(x|a) ln

(
m(x|a)

mi(x|a)

)
dx <∞, (18)

which is equivalent to the implication

mi(x|a) = 0⇒m(x|a) = 0, a.e. on x. (19)

Then, the related optimal ideal decision rule roi maximising

γ i =

∫
a

ri(a)ρi(a)da, ρi(a) = exp(−µi(a)) (20)

over the set

ri =

{
ri(a) : supp[ri] ⊂ a ∧

∫
a

(
ri
)2

(a)da ≤ κ < κ̄

}
(21)

has the form, cf. (17),

roi(a)∝ χa(a)ρi(a), ρi = exp
[
−µi(a)

]
. (22)

Its support, supp[ri] = a, i.e. this rule meets requirement (14).



Proof The equivalence µi(a) < ∞ with (19) is the basic
property of KLD. Under (19), the decision rule (22) meets the
requirement (14). Thus, it remains to show that this decision
rule maximises γ i in (20).

The unconstrained maximiser of γ i (20) reaches bound κ̄ (16),
Proposition 2. Thus, the constraint in (21) is active and the
bound κ is attained,

∫
a

(
ri
)2

(a)da = κ ∈ (0,∞). Moreover,

β =
∫
a

(
χa(a)ρi(a)

)2
da ∈ (0,∞), due to (19) and the

definition ρi(a) = exp(−µi(a)). Thus, the normalised version
of γ i ∫

a
ri(a)χa(a)ρi(a)da

√
κβ

(23)

can be maximised. Functions ri and ρi are square-integrable
(summable) and the maximised functional (23) is their scalar
product normalised by product of their norms. Thus, it is co-
sine (23) of the angle between the pair of square integrable
(summable) functions, which is maximised when they are
collinear, Rao (1987). This proves (22).

�

While the requirement (21) on the ideal decision rule is quite
general the other preferences are much more variable. A lot of
them, however, can be expressed as a constraint on generalised
moments. The constraint (24) is given by an agent-specified `q-
dimensional vector function q(x, a), x ∈ x, a ∈ a,

0 =

∫
x

∫
a

q(x, a)m(x|a)ri(a)dxda. (24)

Importantly, the constraint (24) concerns the closed-loop model
with the given — unchangeable — environment model and the
optional ideal decision rule.

A typical choice of q (used in regulation task, Section 5) is

q(x, a) = x− xi (25)

with xi being the value of x desired by the agent.

Insertion of the optimal ideal decision rule (22) into the con-
straint (24) provides the following explicit constraint on admis-
sible ideal environment models

0 =

∫
x

∫
a

q(x, a)m(x|a) (26)

× exp

[
−
∫
x

m(x̃|a) ln

(
m(x̃|a)

mi(x̃|a)

)
dx̃

]
dxda.

Proposition 4. (Optimal Ideal Environment Model). Let the set
of ideal closed-loop models ci determined by (21), (24) be
non-empty 4 . The optimal ideal environment model moi(x|a),
maximising γ i in (21) over pairs (mi, ri) in the set ci, reads (′ is
transposition) reads

moi(x|a) =
m(x|a) exp(λ′q(x, a))∫

x
m(x|a) exp(λ′q(x, a))dx

=
L(x, a)∫

x
L(x, a)dx

,

(27)
where real `q-dimensional vector λ is chosen so that (26) is met.

Proof Consider the following auxiliary optimisation task for a
fixed ri ∈ ri such that (mi, ri) is in the non-empty set ci

4 Existence of mi meeting (19) and (26) suffices.

min
mi∈mi

∫
a

ri(a)

×
{∫

x

m(x|a)

[
ln

(
m(x|a)

mi(x|a)

)
+ λ′q(x, a)

]
dx

}
da.

λ is chosen so that the minimising mi meets the constraint
(26). It exists as ci 6= ∅. The solution has form (27) and
point-wise guarantees that µoi(a) ≤ µi(a), see (9), for any
other mi(x|a) among the considered ideals. Thus, it maximises
ρi(a) = exp(−µi(a)) over mi ∈ mi and ∀a ∈ a

ρoi(a) = exp(−µoi(a)) ≥ ρi(a) = exp(−µi(a)). (28)
Consequently,

γoi =

∫
a

roi(a)ρoi(a)da≥
∫
a

ri(a)ρi(a)da=γ i

as it follows from∫
a

roi(a)ρoi(a)da ≥︸︷︷︸
Proposition 3

∫
a

ri(a)ρoi(a)da ≥︸︷︷︸
(28)

∫
a

ri(a)ρi(a)da.

�

A direct combination of Propositions 3, 4 gives the desired
optimal closed-loop ideal.
Proposition 5. (Optimal Ideal Closed Loop Model). The opti-
mal ideal closed-loop model, maximising γ i (21), over the set
of closed-loop ideals defined by (21) and (24), reads

ci(x, a) = moi(x|a)roi(a) (29)

∝ m(x|a) exp[λ′q(x, a)]∫
x
m(x|a) exp[λ′q(x, a)]dx

× χa(a)
exp

(∫
x
λ′q(x, a)m(x|a)dx

)∫
x
m(x|a) exp[λ′q(x, a)]dx

where `q-dimensional equation

0 =

∫
x

∫
a

q(x, a)m(x|a)roi(a)dxda

determines the real `q-dimensional vector λ in (29).

5. APPLICATION TO LINEAR GAUSSIAN CASE

As an example, let us consider the wide-spread regulation
task Meditch (1969) with the linear Gaussian environment
model given by known compatible matrices A, B, R > 0. The
regulation task is specified by the wish to keep the observed,
real finite-dimensional state x at a given fixed, typically zero,
value. For this, real finite-dimensional actions a are at disposal.

The regulation aim is expressed by the requirement
q(x, a) = x and the desired xi = 0 in (25). (30)

It uses Gaussian environment model (recall, at the considered
time t, x = xt−1, which is the already observed state)

m(x|a) = Gx(Ax+ Ba,R) (31)

=
exp[−0.5(x− z)′R−1(x− z)]√

|2πR|
,

where z = Ax+ Ba.
The application of Proposition 5 gives the optimal ideal envi-
ronment model, given by (27),



L(x, a) = m(x|a) exp[λ′q(x, a)]

=
exp

{
−0.5

[
(x− z)′R−1(x− z)− 2λ′x

]}√
|2πR|

=
exp

{
− (x−z−Rλ)′R−1(x−z−Rλ)−λ′Rλ−2λ′z

2

}
√
|2πR|

.

This implies the form of the optimal ideal environment model

moi(x|a)

q=x︷︸︸︷
= Gx(0,R) = Gx(z + Rλ,R). (32)

This is equivalent to the choice

λ=−R−1z = −R−1(Ax+ Ba) giving

L(x, a) = exp
{
−0.5[x′R−1x+ z′R−1z]

}
.

This finally gives
roi(a) ∝ exp[−0.5(Ax+ Ba)′R−1(Ax+ Ba)],

i.e. the optimal ideal decision rule reads
roi(a) = Ga

(
(B′R−1B)−1B′R−1Ax, (B′R−1B)−1

)
. (33)

The results (32), (33) have the following interpretation:

• the desired value xi = 0 of the state x, cf. (25), is the mean
of the optimal ideal environment model (32) and the non-
reducible covariance R of the environment model (31) is
its covariance;

• the optimal ideal decision rule (33) is proportional to the
environment model at xi = 0, thus, it prefers the actions
that make this desired state the most probable;

• the corresponding FPD-optimal strategy, Proposition 1,
preserves its important multi-step character in spite of
the greedy construction of the optimal ideal closed-loop
model.

6. CONCLUDING REMARKS

The paper solves the preference elicitation problem using the
fully probabilistic design of decision strategies that quantifies
preferences via the ideal closed-loop pd. The optimal ideal
closed-loop pd is derived from:

• the set of admissible actions;
• the (learnable) environment model;
• the agent’s incompletely specified preferences expressed

via generalised moments.

Methodologically, the proposed preference elicitation comple-
ments the minimum KLD principle serving for the knowledge
elicitation. Its concept specifies the optimality criterion that re-
spects both knowledge and preferences. Consequently, gradual
learning of the environment model directly induces learning of
preferences Belda (2009). This is one of yet unfulfilled aim
of control theory as well as artificial intelligence Pigozzi et al.
(2016).

The proposed methodology quantifies preferences while re-
specting the used environment model. Thus, it never rec-
ommends Gaussian ideal pd (an extension of quadratic loss
function) for the preference quantification when dealing with
Cauchy states. Importantly, it avoids even less obvious discrep-
ancies in description of beliefs and preferences.

A lot remains to be done, for instance, the requirement (24) and
Proposition 5 should be tailored to discrete-valued states and

actions in order to support the wide-spread Markov decision
processes. For them, the characterisation of non-empty sets of
prospective ideals (10) is vital.

Generally, other forms of constraints on possible ideal environ-
ment models are worth inspecting. Sets specified by inequalities
on generalised moments or having the form of unions of KLD
balls used in generalisations of minimum KLD principle offer
themselves as the first options to be tried.

The presented preference elicitation for regulation task with
linear Gaussian environment model indicates that a further
development is worth of research effort. Indeed, the considered
regulation task is in the root of “classical” modern control
theory Meditch (1969) that can be directly extended to tracking
problems or applied to economic problems requiring rational
inattention Sims (2006).
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Pigozzi, G., , Tsoukiàs, A., , and Viappiani, P. (2016). Prefer-
ences in artificial intelligence. Annals of Mathematics and
Artificial Intelligence, 77(3), 361–401. doi:10.1007/s10472-
015-9475-5.
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