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ABSTRACT

Transfer learning is a framework that includes—among other
topics—the design of knowledge transfer mechanisms be-
tween Bayesian filters. Transfer learning strategies in this
context typically rely on a complete stochastic dependence
structure being specified between the participating learning
procedures (filters). This paper proposes a method that does
not require such a restrictive assumption. The solution in this
incomplete modelling case is based on the fully probabilistic
design of an unknown probability distribution which condi-
tions on knowledge in the form of an externally supplied dis-
tribution. We are specifically interested in the situation where
the external distribution accumulates knowledge dynamically
via Kalman filtering. Simulations illustrate that the proposed
algorithm outperforms alternative methods for transferring
this dynamic knowledge from the external Kalman filter.

Index Terms— Bayesian transfer learning, fully proba-
bilistic design, incomplete modelling, Kalman filtering

1. INTRODUCTION

Transfer learning [1] has become a key research direction in
statistical machine learning [2]. The basic principle of trans-
fer learning is to utilize the experience of an external learn-
ing agent (source task) to improve the learning of a primary
agent (target task). Transfer learning has recently witnessed
substantial attention in a multitude of theoretically and prac-
tically oriented scientific fields, such as reinforcement learn-
ing [3], deep learning [4], autonomous driving [5], computer
vision [6], sensor networks [7], etc. This paper focuses on
a specific transfer learning context referred to as Bayesian
transfer learning and its deployment in statistical signal pro-
cessing. We are specifically interested in developing a proce-
dure for probabilistic knowledge transfer in sensor networks
where each knowledge-bearing node constitutes a Bayesian
filter acting on its associated state-space model.

The research has been supported by GAČR grant 18-15970S.
Supplementary material for this paper can be downloaded from
www.researchgate.net/profile/milan papez

The conventional approach to Bayesian transfer learning
involves replacing the prior distribution of standard Bayesian
learning with a distribution conditioned on the transferred
knowledge [8]. The methods based on this principle differ in
the way the knowledge-conditioned prior is elicited [9]. An
alternative principle is to define the joint posterior distribution
of both source and target quantities of interest given source
and target data, and then to compute the posterior distribution
of the target quantity by marginalization [10]. Hierarchical
Bayesian learning provides another formalization of Bayesian
transfer learning [11], where the knowledge is transferred by
means of a hyper-prior. However, it seems that a widely
accepted consensus on Bayesian transfer learning is missing.
This paper seeks to fill this gap.

The common aspect of the above approaches is that they
assume existence of an explicit model of all unknown quanti-
ties of interest, enabling Bayes’ rule to accommodate transfer
learning, which we call here the complete modelling case. In
the present paper, we are concerned with a scenario where
there is not enough knowledge to construct such a model ex-
plicitly. We refer to this particular situation as the incom-
plete modelling case. The previous work in this respect [12]
involved a static Bayesian knowledge transfer for a pair of
Kalman filters, where the external knowledge is transferred in
the form of a marginal distribution defined at a single time-
step. The present paper extends this work by designing a
mechanism for transferring distributions defined over multi-
ple time-steps, thus achieving dynamic and on-line Bayesian
knowledge transfer.

2. KNOWLEDGE TRANSFER BETWEEN A PAIR OF
BAYESIAN FILTERS

2.1. Problem formulation

Let us consider a state-space model given by

xi ∼ f(xi|xi−1), (1a)
zi ∼ f(zi|xi), (1b)

where xi ∈ X ⊆ Rnx and zi ∈ Z ⊆ Rnz are respectively the
state and observation variables defined at the discrete-time in-
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Fig. 1. A pair of Bayesian filters acting on their state-space models.
The external filter provides the density fe summarizing knowledge
of the quantities (states or observations) gathered over the whole run
of the filter. The primary filter makes use of this external knowledge
to improve state inference over the corresponding time interval.

stants i = 1, . . . , n. The state-space model (1) is fully deter-
mined by the state transition (1a) and observation (1b) proba-
bility densities, with all their parameters being known. At the
initial time step (i = 1), the state variable is distributed ac-
cording to x1 ∼ f(x1). The time-evolution of the state-space
model (1) is characterized by the joint augmented model

f(xn, zn)=f(zn|xn)f(xn)≡
n∏

i=1

f(zi|xi)f(xi|xi−1), (2)

where f(zn|xn) and f(xn) define the joint observation model
and joint state pre-prior model, respectively. In (2), we re-
spect the convention x0 ≡ ∅ and use the boldface notation
vn ≡ (v1, . . . , vn) to denote a sequence of variables vi ∈ V,
for i = 1, . . . , n. Moreover, we use the symbols m and f
to denote unspecified (variational form) and specified (fixed
form) densities, respectively.

We are concerned with the problem of optimally trans-
ferring knowledge from an external Bayesian filter (source
task) to a primary one (target task). The filters operate on
their respective models, processing their local observations,
and estimating their local states (Fig. 1). The conditional
independence structure between the variables in each model
is as specified in (2). However, an explicit conditioning
mechanism describing dependence between (xn, zn) and
(xn,e, zn,e) is assumed missing. Note that there is no edge
between these node sets in the graphical model in Fig. 1.
The common modelling approach based on a joint density
of the external and primary variables is therefore unavail-
able. This incomplete modelling scenario is addressed here
as a problem of optimal design of an unknown probability
density, processing the external (distributional) knowledge
as a constraint. Specifically, we design a dynamic Bayesian
knowledge transfer method, where knowledge is transferred
in the form of a joint probability density, fe, describing a
sequence of external quantities, either xn,e or zn,e.

2.2. Fully probabilistic design

A central concern of probabilistic inference is to design (i.e.
infer) a stochastic model representing our beliefs about an un-
known quantity of interest, v ∈ V. The construction of such a

model is naturally performed by processing our knowledge, k
(from physical laws, empirical facts etc.), about the modelled
quantity in some way. However, such knowledge is usually
insufficient to determine the model completely. Thus, an ex-
plicit density, m(k|v), quantifying our beliefs about k given
v is unavailable, and we therefore cannot computem(v|k) di-
rectly by application of Bayes’ rule. The model is then sought
within a user-specified set of possible models, m(v|k) ∈M,
that are compatible with k. To complete the decision-making
set-up, we specify our preferences about the unknown model,
m(v|k), by defining its ideal prescription, mI(v). Fully prob-
abilistic design (FPD, [13]) is a principled and axiomatically
justified [14] approach for optimally choosing m ∈M while
taking into account our knowledge and preferences. The op-
timal model (i.e. design) provides a compromise between the
knowledge, k, and the ideal prescription, mI. It is found as
the density that is closest to mI(v) in the minimum Kullback-
Leibler divergence (KLD, [15]) sense, while respecting the
set-based knowledge constraint, m ∈M:

mo(v|k) ≡ argmin
m∈M

D(m||mI),

where D(m||mI) is the KLD from m to mI, given as

D(m||mI) = Em

[
ln

(
m

mI

)]
,

with Em denoting the expected value with respect to m. The
densitymo(v|k) ∈M is also consistent with k and is referred
to as the FPD-optimal design. Typically, mI /∈ M. The case
where mI ∈M implies that the knowledge constraint is inac-
tive, leading to mo = mI.

In common with the minimum cross-entropy (MXE) prin-
ciple [16], the FPD framework is a deterministic approach for
designing an unknown density. A recent extension of FPD
leading to a stochastic design of the unknown density has
been provided in [17], conferring measures of uncertainty on
the designed density. The key feature that distinguishes FPD
from the MXE principle is that FPD allows preferences about
the unknown model to be processed. The MXE principle fol-
lows the same setting as presented above, but the ideal model,
mI, is replaced by a prior model, mP.

3. DYNAMIC BAYESIAN KNOWLEDGE TRANSFER

This section formalizes dynamic Bayesian knowledge trans-
fer as an FPD-based optimal design of an unknown density
and shows its application in Bayesian filtering. A principal
purpose of Bayesian filtering is to compute the marginal (fil-
tering) density, f(xi|zi), of the joint state posterior density,
f(xi|zi). Under the conditional independence assumptions
adopted in (2), this density becomes

f(xi|zi) =
f(zi|xi)f(xi|zi−1)

f(zi|zi−1)
, (3a)



with

f(xi|zi−1) =

∫
f(xi|xi−1)f(xi−1|zi−1)dxi−1, (3b)

f(zi|zi−1) =

∫
f(zi|xi)f(xi|zi−1)dxi. (3c)

(3b) and (3c) are the one-step-ahead state and observation pre-
dictors, respectively.

To solve the transfer learning problem (Fig. 1), we use
FPD to choose optimally the unknown joint augmented model
of the states and observations, (xn, zn), conditioned on the
external density, fe. This factorizes as follows:

m(xn, zn|fe) = m(zn|xn, fe)m(xn|fe). (4)

We express our joint preferences about the quantities (xn, zn)
by defining the ideal joint augmented model as (2), that is,

mI(xn, zn) ≡ f(xn, zn). (5)

The FPD-optimal choice, mo, conditioned on the external
knowledge, fe, is found as the unique minimizer of the KLD
from the unknown model (4) to the ideal model (5):

mo(xn, zn|fe) ∈ argmin
m∈M

D(m||mI). (6)

The external knowledge—encoded as fe—is transferred by
constraining the set M in a specific way, as we now show.

3.1. Transferring an external joint observation predictor

We choose to transfer the external joint observation predictor,
fe(zn,e). To do so, we must specify exactly how the fe con-
dition constrains the functional form of m in (4). First, we
consider the fe-conditioned joint observation model, which
factorizes as

m(zn|xn, fe) =
n∏

i=1

m(zi|xi, zi−1, fe),

and we impose the following conditional independence as-
sumption:

m(zi|xi, zi−1, fe) ≡ fe(zi,e|zi−1,e) |zi,e=zi . (7)

Here, we have constrained the fe-conditioned model for
the primary observations to be the externally supplied one-
step-ahead observation predictor. Next, we consider the
fe-conditioned joint state prior model in (4), which factorizes
as

m(xn|fe) =

n∏
i=1

m(xi|xi−1, fe),

and we impose the conventional Markov property:

m(xi|xi−1, fe) ≡ m(xi|xi−1, fe).

Under these specified knowledge constraints, the unknown
fe-conditioned joint augmented model (4) becomes

m(xn, zn|fe) ≡ fe(zn)m(xn|fe). (8)

With fe(zn) fixed via the external filter, the fe-conditioned
joint state prior factor,m(xn|fe), is the only variational quan-
tity which we can now choose via FPD for the purpose of op-
timal knowledge transfer. In summary, the fe-constrained set
of candidate models is

M ≡
{

models (8) with fe(zn) fixed

and m(xn|fe) variational
}
. (9)

The following proposition establishes the fact that fe(zn,e) is
sequentially processed into the FPD-optimal joint state prior
of the primary filter. This will be key in securing a recur-
sive, causal, dynamic Bayesian transfer learning algorithm
between a pair of Kalman filters, as we will see in Section 3.2.

Proposition 1. The unknown joint augmented model satisfies
the knowledge constraint, m ∈M(9), imposed by transfer of
the external joint observation predictor, fe(zn,e). The ideal
model is defined in (5), andD(m||mI) <∞,∀m ∈M. Then,
an FPD-optimal design of m—i.e. a solution of (6)—is

mo(xn, zn|fe) = fe(zn)mo(xn|fe), (10)

with

mo(xn|fe) =

n∏
i=1

mo(xi|xi−1, fe) (11a)

∝ f(xn)

n∏
i=1

exp{−D(fe||f)}γ(xi). (11b)

Here,

mo(xi|xi−1, fe)≡
f(xi|xi−1) exp{−D(fe||f)}γ(xi)

γ(xi−1)
, (12)

D(fe||f)≡
∫
fe(zi|zi−1,e) ln

fe(zi|zi−1,e)
f(zi|xi)

dzi, (13)

γ(xi−1)≡
∫
f(xi|xi−1)

× exp{−D(fe||f)}γ(xi)dxi. (14)

The normalization functions, γ(xi), need to be computed
via a backward sweep through the recursions (14), for
i = n, . . . , 1, initialized with γ(xn) ≡ 1.

Proof. See the supplementary material.

Proposition 1 shows that FPD-optimal Bayesian transfer
learning is achieved by updating the pre-prior, f(xn), to the
prior, mo(xn|fe). This is achieved via modulation with a
product term (11b) containing the external knowledge over



the full time horizon. Correspondingly, at each time instant,
i, the update of the state transition model to the FPD-optimal
state transition model is achieved via the modulation (12).
This optimal joint prior, mo(xn|fe), can therefore be sequen-
tially processed by the primary filter, via (3), since it enjoys
the recursive factorization form in (11b,12). In particular, (12)
replaces (1a) in the standard Bayesian filtering setting (3), op-
timally transferring the external joint observation predictor,
fe(zn,e), in a sequential manner.

3.2. Transfer of an external Kalman filter observation
predictor

Here, we describe a specific application of Proposition 1
to the case of transferring the external Kalman filter joint
observation predictor. The Kalman filter is one of the very
restricted instances which ensure that the Bayesian filtering
equations (3) are tractable. Specifically, (1) is specialized to
the linear-Gaussian case:

f(xi|xi−1) ≡ Nxi
(Axi−1, Q), (15a)

f(zi|xi) ≡ Nzi(Cxi, R), (15b)

and the marginal state pre-prior density has to be chosen as the
Gaussian density f(x1) ≡ Nx1

(µ1|0,Σ1|0). Here, Nv(µ,Σ)
denotes the Gaussian density of a (vector) random variable,
v, with the mean, µ, and covariance matrix, Σ; and A and C
are matrices of appropriate dimensions. Under these assump-
tions, the densities (3) preserve the Gaussian form across all
iterations, i = 1, . . . , n,

f(xi|zi) = Nxi
(µi|i,Σi|i), (16a)

f(xi|zi−1) = Nxi
(µi|i−1,Σi|i−1), (16b)

f(zi|zi−1) = Nzi(zi|i−1, Ri|i−1), (16c)

with the shaping parameters being computed explicitly and
recursively as follows:

µi|i = µi|i−1 +K(zi − zi|i−1), (17a)

Σi|i = Σi|i−1 −KRi|i−1K
>, (17b)

µi|i−1 = Aµi−1|i−1, (18a)

Σi|i−1 = AΣi−1|i−1A
> +Q, (18b)

zi|i−1 = Cµi|i−1, (19a)

Ri|i−1 = CΣi|i−1C
> +R. (19b)

Here, K ≡ Σi|i−1C
>R−1i|i−1 and > denotes matrix transposi-

tion. These formulae follow directly from application of the
conditioning and marginalization rules for Gaussian densities
containing affine transformations [18].

To support our next proposition, we present the following
lemma, which specifies the computation of the normalization
function (14) in this Kalman context.

Lemma 1. Let the state-space model be defined by (15), and
the external one-step-ahead observation predictor by (16c),
i.e. fe(zi,e|zi−1,e) ≡ Nzi,e(zi|i−1,e, Ri|i−1,e), i = n, . . . , 2.
Then, (14) preserves the form

γ(xi−1) ∝ exp
[
− 1

2 (x>i−1Si−1|ixi−1−2x>i−1ri−1|i)
]
, (20)

and its explicit computation reduces to the recursion

ri−1|i = A>(Inx − L)ri|i, (21a)

Si−1|i = A>(Inx − L)Si|iA, (21b)

where, for i = n− 1, . . . , 2,

ri|i = ri|i+1 + C>R−1zi|i−1,e, (22a)

Si|i = Si|i+1 + C>R−1C, (22b)

and, for i = n,

rn|n = C>R−1zn|n−1,e, (23a)

Sn|n = C>R−1C. (23b)

Here, L ≡ Si|iQ
1
2 (Q

>
2 Si|iQ

1
2 + Inx

)−1Q
>
2 , Inx

is the nx×
nx identity matrix, and Q

1
2 is the Cholesky factor of Q.

Proof. See the supplementary material.

Lemma 1 demonstrates the connection between the com-
putation of (14) and the backward information filter [19]
which takes the mean value of the external predictor zi|i−1,e
as the observation input. Based on this result, the next propo-
sition furnishes the explicit recursive computation of the
FPD-optimal state transition model (12).

Proposition 2. Under the conditions of Lemma 1, the FPD-
optimal state transition model (12) is given by

mo(xi|xi−1, fe) = Nxi
(µo

i ,Σ
o
i ), (24)

with the shaping parameters calculated according to

µo
i = (Inx − Σo

iSi|i)Axi−1 + Σo
i ri|i, (25)

Σo
i = Q

1
2 (Q

>
2 Si|iQ

1
2 + Inx

)−1Q
>
2 . (26)

Here, ri|i and Si|i are given by (22a) and (22b), respectively.

Proof. See the supplementary material.

Proposition 2 specifies the optimal adaptation of the pri-
mary (i.e. target) Kalman filter flow, in order to process trans-
ferred knowledge in the form of the external joint observa-
tion predictor. If we apply (24) in (3b), then the one-step-
ahead state predictor preserves the Gaussian form of (16b).
However, the difference is that, now, the shaping parameters
(18a,18b) are replaced with

µi|i−1 = (Inx
−Σo

iSi|i)Aµi−1|i−1+Σo
i ri|i, (27a)

Σi|i−1 = (Inx
−Σo

iSi|i)AΣi−1|i−1A
>(Inx

−Σo
iSi|i)

>+Σo
i ,

(27b)

respectively. The resulting filter with FPD-optimal dynamic
transfer is summarized in Algorithm 1.



Algorithm 1 FPD-optimal processing for dynamic transfer
between Kalman filters
A. Backward sweep:

1. For i = n,
∗ use zn|n−1,e in (23) to compute (rn|n, Sn|n).
∗ use (rn|n, Sn|n) in (21) to compute (rn−1|n, Sn−1|n).

2. For i = n− 1, . . . , 2;
∗ use zi|i−1,e and (ri|i+1, Si|i+1) in (22) to compute (ri|i, Si|i).
∗ use (ri|i, Si|i) in (21) to compute (ri−1|i, Si−1|i).

B. Forward sweep:
1. For i = 1, set µ1|0,Σ1|0 and use it in (17) to compute (µ1|1,Σ1|1).
2. For i = 2, . . . , n;

∗ use (µi−1|i−1,Σi−1|i−1) in (27) to compute (µi|i−1,Σi|i−1).
∗ use (µi|i−1,Σi|i−1) in (17) to compute (µi|i,Σi|i).

4. EXPERIMENTS

The purpose of this section is to compare the proposed
method against alternative approaches. We evaluate the per-
formance of the primary filter when keeping its observation
variance R fixed but changing the observation variance of the
external filter Re, which quantifies the confidence of the ex-
ternal knowledge. To assess the resulting state estimates, we
use the mean norm squared-error, MNSE = 1

n

∑n
i=1 ||xi−

µi|i||2, with || · || denoting the Euclidean norm. We are con-
cerned with a simple position-velocity state-space model [20]
specified by

A =

[
1 1
0 1

]
, C =

[
1 0

]
, Q = 10−5I2, R = 10−3.

The number of time steps is n = 50. The results of the com-
pared algorithms are illustrated in Fig. 2.

The MNSE of the NT filter defines a reference level
against which the remaining filters are compared. This level
is obviously constant as the external observation variance
does not enter the standard Kalman filter via (19b). The error
in the remaining filters varies according to the ratio of the pri-
mary and external observation variances. We can observe that
the proposed DT filter achieves positive knowledge transfer
for Re < 3 × 10−3, which is evidenced by the fact that the
error of the DT filter is lower than that of the NT filter in this
range. Moreover, the DT filter outperforms the MVF filter
in the same interval, and it also outperforms the ST filter for
Re < 2 × 10−2. The important observation is that the ST
and MVF filters meet the performance of the NT filter close
to the intersection where Re = R, but the proposed DT filter
passes this point with a markedly lower error and meets the
NT filter later (i.e. for higher external observation variance).
This increased robustness of the DT filter, which now benefits
even from external observations that are of a lower quality
than the primary ones, is achieved because of its ability to
accumulate the external knowledge over multiple time steps
via the dynamic transfer which is the focus of this paper. The
ST and MVF filters do not have this property, as is evidenced
by the fact that their error is, respectively, worse and very
similar to the NT filter, above Re = R. However, accumulat-
ing external knowledge of increasingly poor quality does lead

10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

2

4

6
×10−2

Re

M
N

SE

R = 10−3

NT
ST
DT (this paper)
DTi (this paper)
MVF

Fig. 2. The mean norm squared-error (MNSE) of the primary filter
versus the observation variance Re of the external Kalman filter. The
results are averaged over 1000 independent simulation runs, with
the solid line being the median and the shaded area delineating the
interquartile range. The procedures that are compared are (i) the
Kalman filter with No Transfer (NT), (ii) Static Bayesian knowledge
Transfer (ST) [12], (iii) Dynamic Bayesian knowledge Transfer (DT)
given by Algorithm 1 (this paper), (iv) an informally adapted version
of DT (DTi) which we mention in Section 5 (this paper); and (v)
Measurement Vector Fusion (MVF) [21].

to a more quickly decreasing performance of the DT filter for
Re > 2× 10−2.

5. DISCUSSION

In common with the ST filter of [12], the DT filter is also
insensitive to the transfer of the covariance of the external
observation predictor Ri|i−1,e. The loss of this moment in-
formation occurs when evaluating the KLD (13) and can in-
formally be resolved by replacing R with Ri|i−1,e in (22)
and (23). This simple substitution defines the DTi filter in-
troduced in Section 4. The experiments demonstrate that the
DTi filter surpasses all the other filters across the full range
of values of Re. This outcome is remarkable as it proves that
improved estimation accuracy is achieved by implementing
this FPD-optimal Bayesian transfer learning, obviating the
need—usually prohibitive—to specify an explicit stochastic
dependence structure between the external and primary quan-
tities. It is also important to note that the DT filter offers the
same advantage, albeit over a slightly shorter range of values
ofRe. However, it seems that the fragile dependence assump-
tions inherited by the MVF filter undermine its performance.
The fact that we do not require these dependence assumptions
is a markedly simplifying feature of this FPD-based transfer
learning framework, and should ensure its consistency in a
wide range of applications. In the supplementary material, we
provide evidence that the proposed method also offers more
robustness against higher values of the state covariance Q.



6. CONCLUSION

This paper has proposed an FPD-based optimal dynamic
Bayesian transfer learning approach and showed its appli-
cation to probabilistic knowledge transfer between a pair of
Kalman filters. The resulting experiments demonstrate that
FPD offers a potential for building a versatile framework for
Bayesian transfer learning. However, there is still the ques-
tion of dealing with the aforementioned insensitivity to the
second moment transfer, as discussed in Section 5. A possible
answer to this problem may lie in the recently proposed hi-
erarchical FPD-based Bayesian transfer learning [22], which
will be the primary aim of future work. We have focused
thusfar on the basic scenario of one-directional knowledge
transfer between two nodes. The natural extension of the
proposed approach therefore consists of (i) facilitating the
knowledge transfer among a greater number of nodes and
(ii) making the transfer bi-directional. Specifically, the for-
mer point will require us to introduce an optimal weighting
mechanism to assess knowledge in a network of nodes. An-
other possible extension is to replace the Kalman filters with
different forms of Gaussian filters [18], leaving the deriva-
tions presented in Section 3.2 mostly intact. Although the
application of sequential Monte Carlo methods [23] may
be feasible, the recursive computation of (14) may present
problems. Finally, one can change the transferred knowledge
and conditional independence assumptions specified in (8) in
order to propose other FPD-based transfer learning options,
such transfer of the external joint state predictor.

A universal Bayesian transfer learning framework has
been elusive so far. However, the practical evidence of this
paper—along with the axiomatically driven optimality it
provides—supports the assertion that FPD-optimal Bayesian
transfer learning can become such a universal framework.
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