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ABSTRACT

Bayesian transfer learning typically requires complete specifi-
cation of the stochastic dependence between source and target
domains. Fully probabilistic design-based Bayesian transfer
learning—which transfers source knowledge in the form of
a probability distribution—obviates these restrictive assump-
tions. However, this approach has suffered from negative
transfer when the source knowledge is imprecise. We propose
a scale variable relaxation to transfer all source moments suc-
cessfully, achieving robust transfer (i.e. rejection of imprecise
source knowledge). A recursive algorithm is recovered via
local variational Bayes approximation. The solution offers
positive transfer of precise source knowledge, while rejecting
it when imprecise. Experiments show that the technique is
competitive with or equivalent to alternative methods.

Index Terms— Bayesian transfer learning, robust knowl-
edge transfer, scalar relaxation, fully probabilistic design,
Kalman filtering

1. INTRODUCTION

The aim of transfer learning is to utilize knowledge learned in
a source domain in order to improve learning performance in
a related target domain [1]. Transfer learning has mostly been
used to enhance traditional machine learning [2, 3] and rein-
forcement [4] learning algorithms, and has been widely de-
ployed in various statistical signal processing applications, in-
cluding genomics [5], cross-language speech recognition [6],
fault diagnosis [7], video analysis [8], etc. This paper focuses
on Bayesian transfer learning (BTL) and develops a transfer
learning strategy suitable for networks of Bayesian filters.

BTL has until now relied on the traditional Bayesian
paradigm. It undertakes a target learning task by using a prior
distribution that is additionally conditioned on knowledge
provided by a source learning task [9]. The central assump-
tion is that knowledge is expressed via a probabilistic model
conditioned on raw source data, rather than the raw source
data being available themselves. The required conditioning
of the target task on this source knowledge conventionally
requires specification of the stochastic dependence between
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Fig. 1: Source and target Bayesian filters operating on source (zS,i, xS,i) and
target (zi, xi) variables, respectively. The source filter transfers its observa-
tion predictor, FS. The target filter improves its performance by conditioning
on FS in an FPD-optimal sense, yielding Mo.

quantities in the source and target domains. We call this set-
ting complete modelling. This paper assumes the more real-
istic scenario—in which explicit dependence of the target on
the stochastic source knowledge is not available—obviating
conventional Bayesian conditioning as the learning mecha-
nism. We refer to this setting as incomplete modelling. In this
case, fully probabilistic design (FPD) [10, 11]—an extension
of the minimum cross-entropy principle [12]—provides an
axiomatically justified approach to elicit the target model
conditioned on the source distribution [13]. The freedom
to optimize the knowledge conditioned mechanism yields
more flexible and robust framework than that provided by
completely modelled BTL.

It has been found that FPD-optimal static BTL (Fig. 1)
suffers from negative transfer—i.e., the inability to resist
imprecise source knowledge—in the special case where the
Bayesian filters implement the Kalman filter. This prob-
lem was addressed by informal adaptations in [14]. The
dynamic transfer learning approach (i.e., transferring source
knowledge over all time steps) was investigated in an effort
to resolve this problem in [15], but again required infor-
mal adaptations. The current paper provides an important
progression by proposing a scale-variable relaxation which
avoids any such informalities. It achieves this by success-
fully transferring all source moments. The experiments show
that this leads to robust transfer, i.e., successful rejection
of imprecise source knowledge, and, moreover, offers fully
knowledge-driven transfer learning capabilities.
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2. STATIC FPD TRANSFER BETWEEN
BAYESIAN FILTERS

We consider a state-space model in the form

xi ∼ F(xi|xi−1), (1a)
zi ∼ F(zi|xi), (1b)

where xi ∈ x ⊆ Rnx is the latent (hidden) state variable,
zi ∈ z ⊆ Rnz is the observation variable, and i = 1, . . . , n
is the discrete-time index. The model (1) is characterized by
the state transition and observation probabilities densities (1a)
and (1b), respectively. The initial state variable is distributed
according to x1 ∼ F(·).

The basic object for developing state inference algorithms
for the state-space model (1) is the joint predictive model,

F(zi, xi|zi−1) = F(zi|xi)F(xi|zi−1), (2)

where F(xi|zi−1) is the state pre-prior density and zi−1 =
(z1, . . . , zi−1) is the observation record. The importance of
(2) is that it uniquely implies the conditional and marginal
densities required in sequential Bayesian filtering [16].

The goal of this paper is to design an algorithm for trans-
ferring knowledge from a source to a target Bayesian filter.
We assume that there is no explicit dependence assumption
between the variables of the source and target domains. We
also consider that the target filter has access only to the (prob-
abilistic) observation predictor of the source filter, FS, but not
to any realized variable in the source domain, see Fig. 1. The
inference objective is to extend the basic setting (2) of the
target filter to condition additionally on the source density FS,

M(zi, xi|FS, zi−1). (3)

The functional form of (3) is now unknown, and so we have to
find a way to condition (2) on FS. Throughout this paper, we
use F to denote fixed-form (specified) densities, and M and Q
to denote variational (unspecified) densities.

The transfer of the source observation predictor FS is ac-
complished by restricting the functional form of the unknown
joint model (3) via conditional independence:

M(zi, xi|FS, zi−1) ≡ FS(zi|zS,i−1)M(xi|FS, zi−1). (4)

More specifically, we constrain the FS-conditioned model of
the target observations,

M(zi|xi,FS, zi−1) ≡ FS(zS,i|zS,i−1)
∣∣
zS,i=zi

,

to be the observation predictor of the source filter evaluated at
zi ∈ z. Fixing FS(zi|zS,i−1), and admitting M(xi|FS, zi−1)
as the only variational factor in (4), defines the knowledge-
constrained set of admissible models

M ∈M ≡ {models (4) with FS(zi|zS,i−1) fixed
and M(xi|FS, zi−1) variational}. (5)

The (prior) joint model (2) is valid in non-transfer contexts,
and therefore, functions as the reference (ideal) design in the
absence of source knowledge

MI(zi, xi|zi−1) ≡ F(zi, xi|zi−1). (6)

FPD prescribes the optimal mechanism to condition on a
probability density function. FPD achieves this by find-
ing an optimal model, Mo, that incorporates the set-based
knowledge constraints, M ∈ M (5), and preferences about
M expressed by an ideal model MI (6). The FPD-optimal
design, Mo ∈ M, is the density that is closest to MI in the
minimum Kullback-Leibler divergence (KLD) [17] sense,

Mo(zi, xi|FS, zi−1) ≡ argmin
M∈M

D(M||MI), (7)

where the KLD from M to MI is

D(M||MI) = EM

[
log

(
M

MI

)]
,

with EM being the expected value under M.

Proposition 1. The unknown model belongs to the knowledge
constrained set, M ∈ M (5), and the ideal model MI is (6).
Then, the FPD-optimal model—the solution of (7)—is

Mo(zi, xi|FS, zi−1) = FS(zi|zS,i−1)Mo(xi|FS, zi−1), (8)

where

Mo(xi|FS, zi−1) ∝ F(xi|zi−1)

× exp

{∫
log F(zi|xi)FS(zi|zS,i−1)dzi

}
. (9)

Proof. See Appendix 8.1.

Proposition 1 shows that the source observation predictor
is processed via the update from the pre-prior F(xi|zi−1) (2)
to the FPD-optimal prior Mo(xi|FS, zi−1). This prior replaces
the pre-prior in the Bayesian filtering equations, yielding a
sequential Bayesian updating structure from the pre-prior to
the prior and then to the posterior. Therefore, Proposition 1
introduces an additional step between the traditional time and
data steps of the standard Bayesian filtering recursions, which
we refer to as the transfer learning step.

3. STATIC FPD TRANSFER BETWEEN
KALMAN FILTERS

We present the proposed transfer learning framework with (1)
instantiated as the linear Gaussian state-space model:

F(xi|xi−1) ≡ N (xi;Axi−1, Q), (10a)
F(zi|λ, xi) ≡ N (zi;Cxi, λR), (10b)



where N (·;µ,Σ) denotes the Gaussian density with mean
vector µ and covariance matrix Σ. The dynamic and stochas-
tic properties of this model are defined by the state transi-
tion A, observation C, state noise Q, and observation noise
R, matrices. To achieve robust transfer—as seen later in the
paper—we augment (10b) with the scale variable λ, currently
assumed known.

The source filtering task is assumed to be a Kalman filter
(KF), which is the consistent solution of the Bayesian filtering
equations for (10) (λ known), see Lemma 2 in Appendix 8.2.
The target filter then processes the transferred source obser-
vation predictor via Proposition 1, which we now specify for
the KF pair.

Lemma 1. The observation model is specified by (10b), the
state pre-prior is (22), and the source observation predictor
is FS(zi|zS,i−1) ≡ N (zi; zS,i|i−1, RS,i|i−1). Then, the FPD-
optimal prior (9) becomes

Mo(xi|λ,FS, zi−1) ∝ N
(
xi; x̂i|i−1(λ), P̂i|i−1(λ)

)
(11)

exp
{
− 1

2 tr
(
λ−1R−1RS,i|i−1

)}
,

where the λ-conditional shaping parameters are

x̂i|i−1(λ) = xi|i−1 + L(zS,i|i−1 − zi|i−1), (12)

P̂i|i−1(λ) = Pi|i−1 − LRi|i−1(λ)L>.

Here, L ≡ Pi|i−1C
>R−1

i|i−1(λ), and {zi|i−1, Ri|i−1(λ)} is
given in Lemma 2.

Proof. The result follows from basic calculus with Gaussian
densities, see, e.g., [14].

Note that for any known λ, say, λ = 1, Lemma 1 recovers
the transfer learning step of [14]. In this case, the modulat-
ing exponential structure in (11)—which contains the second
moment of the source observation predictor, RS,i|i−1—is ab-
sorbed into the normalizing constant. Consequently, the al-
gorithm successfully transfers only the first moment of the
source observation predictor via (12) but fails to transfer the
second one. This moment loss causes the target filter to per-
form non-robustly, as we will see in Section 5, i.e., the algo-
rithm is then unable to reject imprecise source knowledge.

4. RELAXATION OF THE SCALE VARIABLE λ

To ensure robust knowledge transfer in the Gaussian setting
of Section 3, we assume that the scale variable λ in (10b) is
an unknown, and we assign a prior to it (relaxation). The λ-
augmented FPD-optimal version of (9) is

Mo(xi, λ|FS, zi−1) ≡ Mo(xi|λ,FS, zi−1)F(λ), (13)

where

Mo(xi|λ,FS, zi−1) ∝ F(xi|zi−1)

× exp

{∫
log F(zi|λ, xi)FS(zi|zS,i−1)dzi

}
.

λ is a positive scale variable, and therefore, we adopt the in-
verse Gamma prior density for it,

F(λ) ≡ iG
(
λ; α2 ,

β
2

)
, (14)

where α
2 > 0 and β

2 > 0 are the shape and scale parameters.
The FPD-optimal state predictor after transfer is then the in-
finite mixture,

Mo(xi|FS, zi−1) =

∫
Mo(xi, λ|FS, zi−1)dλ. (15)

4.1. Local variational Bayesian approximation

The marginal density (15) is an infinite scale mixture under
the present setting and does not admit a closed-form recursive
updating formulae. Therefore, we use the coordinate ascent
mean-filed variational inference [18] to find a local approxi-
mation of (13) at each step i. That is, we choose the varia-
tional density from the mean-field family,

Q(xi, λ|FS, zi−1) ≡ Q(xi|FS, zi−1)Q(λ|FS, zi−1).

This allows us to find the KLD-optimal minimizer, which ap-
proximates the target density (13), as

Mo(xi, λ|FS, zi−1) ≈ Q̄(xi, λ|FS, zi−1) (16)
= Q̄(xi|FS, zi−1)Q̄(λ|FS, zi−1),

where

Q̄(xi|FS, zi−1) ∝ exp
{
Eλ[logMo(xi, λ|FS, zi−1)]

}
,

Q̄(λ|FS, zi−1) ∝ exp
{
Ex[logMo(xi, λ|FS, zi−1)]

}
,

with Eλ and Ex denoting the expected values under the KLD-
optimal factors of λ and xi, respectively. The approximate
FPD-optimal state prior, Q̄(xi|FS, zi−1), recovers a tractable
recursive update.

Proposition 2. The λ-augmented FPD-optimal prior (13) is
given by the state pre-prior (22), observation model (10b),
source observation predictor FS(zi|zS,i−1) ≡ N (zi; zS,i|i−1,
RS,i|i−1), and scale variable pre-prior (14). Then, the mean-
field variational factors (16) are

Q̄(λ|FS, zi−1) = iG
(
λ; ᾱ2 ,

β̄
2

)
, (17a)

Q̄(xi|FS, zi−1) = N (xi; x̄i|i−1, P̄i|i−1), (17b)

where the shape and scale hyper-parameters of (17a) are

ᾱ = α+ nz,

β̄ = β + tr
{(
RS,i|i−1 + Ex

[
(zS,i|i−1 − Cxi)

× (zS,i|i−1 − Cxi)>
])
R−1

}
, (18)

and the shaping parameters of (17b) are

x̄i|i−1 = xi|i−1 + L(zS,i|i−1 − zi|i−1),

P̄i|i−1 = (Inx
− LC)Pi|i−1, (19)



with

L = Pi|i−1A
>R−1

i|i−1 (20)

zi|i−1 = Cxi|i−1,

Ri|i−1 = CPi|i−1C
> + Eλ[λ−1]−1R.

Here, tr(·) is the matrix trace operator.

Proof. See Appendix 8.3.

The shaping parameters of the variational factors (17) are
coupled and cannot be updated under a direct closed-form so-
lution. Therefore, we compute them with an iterative scheme
at each step i. Evaluating the expected values in Proposition 2
and applying the FPD-optimal prior (17b) in the Bayesian re-
cursions allows us to summarize the resulting procedure—at
any time step i—in Algorithm 1.

Remark 1. Let us focus on line 9 of Algorithm 1, i.e., on L
which, in this transfer learning context, is analogous to the
gain K of the conventional Kalman filter (Lemma 2). The
relaxation via (14) engenders L, which involves the key quan-
tity β̄

ᾱ . This can be tuned via the hyper-parameters α and β
in (14), which enter ᾱ and β̄ additively (lines 7 and 8, respec-
tively). We consider three principal regimes:

R1: α → 0 and β → ∞, so that β̄
ᾱ → ∞, L → 0. This

recovers the isolated Kalman filter, see lines 10 and 11.

R2: α = β →∞, so that β̄ᾱ → 1. In this case, L has the form
reported in [14] (the static transfer (ST) filter).

R3: α = β → 0, so that β̄
ᾱ , and therefore L, are influenced

only by the transferred knowledge, without any influence
from (14).

5. EXPERIMENTS

This section compares the proposed approach with alternative
strategies. In particular, we illustrate how different settings of
the hyper-parameters in (14) influence the transfer learning
properties of the proposed algorithm. The experiments con-
sider a state-space model with a common state variable

xi = Axi−1 + wi,

zi = Cxi + vi,

zS,i = Cxi + vS,i, (21)

where wi ∼ N (·;0, Q), vi ∼ N (·;0, R), and vS,i ∼ N (·;
0, RS) are independent and identically distributed Gaussian
noise variables associated with the common states, target ob-
servations, and source observations, respectively. We evalu-
ate the state-estimation performance by computing the mean
norm squared-error between the true state and its posterior es-
timate MNSE = 1

n

∑n
i=1 ||xi − xi|i||2, where || · || denotes

the Euclidean norm and n = 400.

Algorithm 1: Static BTL filter with scale relaxation
Input: xi−1|i−1, Pi−1|i−1, zi, zS,i|i−1, RS,i|i−1,
A, C, Q, R, α, β, N

1 Time step:
2 xi|i−1 = Axi−1|i−1

3 Pi|i−1 = APi−1|i−1A
> +Q

4 Transfer learning step:

5 Set x̄(0)
i|i−1

= xi|i−1 and P̄ (0)
i|i−1

= Pi|i−1.

6 for k = 0, . . . , N − 1 do
7 ᾱ = α+ nz

8 β̄ = β + tr
{

[(zS,i|i−1 − Cx̄
(k)
i|i−1

)(zS,i|i−1 − Cx̄
(k)
i|i−1

)>

+CP̄
(k)
i|i−1

C> +RS,i|i−1]R−1
}

9 L = Pi|i−1C
>
(
CPi|i−1C

> + β̄
ᾱ
R
)−1

10 x̄
(k+1)
i|i−1

= xi|i−1 + L(zS,i|i−1 − Cxi|i−1)

11 P̄
(k+1)
i|i−1

= (Inx − LC)Pi|i−1

12 Set x̄i|i−1 = x̄
(N)
i|i−1

and P̄i|i−1 = P̄
(N)
i|i−1

.

13 Data step:

14 K = P̄i|i−1C
>
(
CP̄i|i−1C

> +R
)−1

15 xi|i = x̄i|i−1 +K(zi − Cx̄i|i−1)

16 Pi|i = (Inx −KC)P̄i|i−1

Output: xi|i, Pi|i

We are concerned with a position-velocity model which
specifies the matrices in (21) according to

A =

[
1 ∆
0 1

]
⊗ I2, G =

[
∆2

2
∆

]
⊗ I2, C =

[
I2 O2

]
,

Q = qGG>, R = rI2, RS = rSI2,

assuming that the state vector is xi = (px,i, py,i, vx,i, vy,i)
and that only the position can be observed. Here, we choose
∆ = 0.1, q = 0.01, and r = 1. The compared algorithms
use x1|0 = 0, and P1|0 = 10−5I4. An increase in the number
of iterations above N = 5 does not improve the estimation
precision of the proposed method in the current example.

Fig. 2 demonstrates the influence of the source knowledge
precision—as affected by the rS-coefficient—on the MNSE.
The NT filter does not depend on rS and thus defines a ref-
erence MNSE level for comparing the remaining filters. If
any filter has an MNSE that falls below or rises above this
reference level, we say that the method delivers positive or
negative transfer, respectively. If any filter saturates at this
reference level when the source knowledge is imprecise, we
say that the method achieves robust transfer (Section 1). The
ST filter offers positive transfer for rS < r, but suffers neg-
ative transfer for rS > r. Therefore, as originally reported
in [14], this method is not robust against imprecise source
knowledge. For the purposes of reproducibility, note that we
set the hyper-parameters of (14) at 10−10 and 1010, respec-
tively, to approximate limits at 0 and∞, in Remark 1.

An interesting feature of the RST filter is that it possesses
an extra degree of freedom, allowing the source knowledge
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Fig. 2: The mean norm squared-error (MNSE) of the target filter versus the
source observation variance, rS. The results are averaged over 1000 indepen-
dent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range. The procedures that are compared are (i)
the Kalman filter with No Transfer (NT) [20]; (ii) Static Bayesian Transfer
learning filter (ST) [14]; (iii) Static Bayesian Transfer learning filter with
scale Relaxation (RST) (Algorithm 1, this paper), under the three regimes in
Remark 1; and (iv) Measurement Vector Fusion (MVF) filter [19] as specified
in the present context in [14].

to be accepted or rejected independently of its quality. This
degree of freedom is set by the target filter via α and β (14).
For example, under R1 source knowledge of any quality is
rejected, recovering the isolated NT filter. Correspondingly,
under R2 source knowledge of any quality is always accepted,
recovering the ST filter. Interestingly, under R3, the source
knowledge can be accepted or rejected, with a threshold set
by rS

r . This threshold is at about rS
r = 10 for the current

settings of α and β. Its positive and robust transfer properties
are competitive with the MVF filter [19].

6. DISCUSSION

Recall that the transfer learning step in Lemma 1 does not in-
corporate the second moment of the source observation pre-
dictor, RS,i|i−1, as long as λ is known. This corresponds to
the ST filter—R2 in Remark 1—which fails to deliver robust
transfer (Fig. 2). This was addressed in [14] by informally re-
placingR withRS,i|i−1 in the expression forRi|i−1 (23) used
in Lemma 1. The key contribution of the current paper is to
avoid this informal adjustment. The same idea can be adopted
ins dynamic transfer, obviating the informal adaptation pro-
posed in [15], thereby achieving robust dynamic transfer.

The experiments in Section 5 consider only those extreme
settings of the hyper-parameters considered in Remark 1.
Note, however, that there is a continuum of settings of α and
β (14), allowing migration between these regimes. We will
investigate these in future work.

As stated in Section 5, the transfer learning properties
of the proposed RST filter can be controlled by the target

modeller independently of the ratio r
rS

via their setting of the
hyper-parameters, α and β, in (14). This represents a key ad-
vance over the previously developed ST filter since it allows
the target modeller to switch on and off transfer learning from
the source filter independently of the source knowledge qual-
ity. A question is how the modeller might set these hyper-
parameters as a function—not only of the source and target
knowledge—but also of the prior confidence of the target in
respect of the source. This will be explored in future work.

Note that the λ-variable relaxation was neither applied in
the source filter nor in the data step of the target filter. It
is only needed in this work to ensure transfer of the second-
order moments in the transfer learning step.

7. CONCLUSION

We have proposed the sequential FPD-optimal BTL method
which resolves the difficulties in achieving robust transfer
that were encountered with the previously developed al-
gorithms [14, 15]. The central mechanism to deal with this
issue is the successful transfer of higher-order moments of the
source distribution via the scale variable augmentation of the
FPD-optimal prior density. This optimal design framework
does not require explicit dependence assumptions between
source and target variables to be declared. Nevertheless, its
performance is competitive with approaches that do rely on
such assumptions, which are often hard to justify in practice.
The proposed procedure offers operational adaptation of the
transfer learning properties by tuning the hyper-parameters
of the scale variable pre-prior. Future work will be focused
on knowledge-driven tuning of these hyper-parameters.

8. APPENDIX

8.1. Proof of Proposition 1

Applying (4) and (6) in (7) leads to

D(M||MI) =

∫
FS(zi|zS,i−1)M(xi|FS, zi−1)

× log

(
FS(zi|zS,i−1)M(xi|FS, zi−1)

F(zi|xi)F(xi|zi−1)

)
dzidxi

=

∫
M(xi|FS, zi−1)

× log

(
M(xi|FS, zi−1)

Mo(xi|FS, zi−1)

)
dxi −HFS

− log cMo ,

where the differential entropy of FS is

HFS
= −

∫
FS(zi|zS,i−1) log FS(zi|zS,i−1)dzi,



and the normalizing constant is

cMo =

∫
F(xi|zi−1)

× exp

{∫
log F(zi|xi)FS(zi|zS,i−1)dzi

}
dxi.

8.2. The Kalman filter

Lemma 2. The state space model is specified by (10) and
the state pre-prior is F(x1) ≡ N (x1;x1|0, P1|0). Then, the
joint model (2) yields the conditional and marginal densities
of standard Bayesian filtering in the form

F(xi|zi−1) = N (xi;xi|i−1, Pi|i−1), (22)
F(zi|zi−1) = N (zi; zi|i−1, Ri|i−1),

F(xi|zi) = N (xi;xi|i, Pi|i),

which are exactly computed under the following recursions:

xi|i−1 = Axi−1|i−1,

Pi|i−1 = APi−1|i−1A
> +Q,

zi|i−1 = Cxi|i−1,

Ri|i−1 = CPi|i−1C
> + λR, (23)

xi|i = xi|i−1 +K(zi − zi|i−1),

Pi|i = Pi|i−1 −KRi|i−1K
>,

and K ≡ Pi|i−1C
>R−1

i|i−1, where > is the matrix transpose.

Proof. See, e.g., [16].

8.3. Proof of Proposition 2

To find the variational factors (16), we first need to express
the logarithm of the joint density (13),

logMo(xi, λ|FS, zi−1) =

− nz

2 log λ− 1
2 (zS,i|i−1 − Cxi)>λ−1R−1(zS,i|i−1 − Cxi)

− 1
2λ tr(RS,i|i−1R

−1)− α+2
2 log λ− β

2λ

− 1
2 (xi − xi|i−1)>P−1

i|i−1(xi − xi|i−1) + c, (24)

where c is a constant.

Taking the expected value of (24) under Q̄(xi|FS, zi−1) yields

log Q̄(λ|FS, zi−1) =

− ᾱ+2
2 log λ− β̄

2λ + cλ = log iG
(
λ; ᾱ2 ,

β̄
2

)
+ cλ,

where the shaping parameters are given by (18) and cλ is a
λ-independent constant.

Evaluating the expected value of (24) under Q̄(λ|FS, zi−1)
leads to

log Q̄(xi|FS, zi−1) = logN (zS,i|i−1;Cxi,E[λ−1]−1R)

+ logN (xi;xi|i−1, Pi|i−1) + ax

= logN (xi; x̄i|i−1, P̄i|i−1) + bx, (25)

with the shaping parameters given in (19) and ax and bx being
xi-independent constants.
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