
Bayesian transfer learning between Gaussian process regression tasks

Milan Papež a and Anthony Quinn a,b

a Institute of Information Theory and Automation, Czech Academy of Sciences, Czech Republic
b Department of Electronic and Electrical Engineering, Trinity College Dublin, the University of Dublin, Ireland

Abstract—Bayesian knowledge transfer in supervised learning
scenarios often relies on a complete specification and optimization
of the stochastic dependence between source and target tasks.
This is a critical requirement of completely modelled settings,
which can often be difficult to justify. We propose a strategy
to overcome this. The methodology relies on fully probabilistic
design to develop a target algorithm which accepts source knowl-
edge in the form of a probability distribution. We present this
incompletely modelled setting in the supervised learning context
where the source and target tasks are to perform Gaussian
process regression. Experimental evaluation demonstrates that
the transfer of the source distribution substantially improves
prediction performance of the target learner when recovering
a distorted nonparametric function realization from noisy data.

Index Terms—Bayesian transfer learning, supervised learning,
fully probabilistic design, incomplete modelling, Gaussian process
regression.

I. INTRODUCTION

Transfer learning [1]—also known as multi-task learning
[2]—has become a fundamental part of machine learning [3]
and artificial intelligence [4]. The root principle behind transfer
learning is to use knowledge provided by one (or more) source
task(s) in order to improve performance and generalization
capabilities of one (or more) related target task(s). In this
paper, we restrict to Bayesian transfer learning [5] and propose
an algorithm for transferring knowledge between supervised
learning tasks. The central aim of supervised learning is to
learn behaviour of a latent function from labelled pairs of
input-output data, and then make predictions about its future
values based on unlabelled input data [6], [7]. We specify our
framework in the case where source and target tasks rely on
a Gaussian process (GP) [8] to model their latent functions.

Bayesian transfer learning with GP priors has been success-
fully applied in diverse areas, including Bayesian optimization
[9], medical time-series analysis [10], terrain modelling [11],
and robot pose estimation [12]. The central question of transfer
learning is how to specify the dependence structure between
the tasks. GP-based approaches define a GP prior for each
of the tasks and then model their correlations based on a
linear dependence structure with fixed coefficients [13]–[15]
or varying, input-dependent, coefficients [16], [17], which can
be generalized under the framework of convolving processes
[18]. To capture a nonlinear dependence structure, and foster a
richer representation of relationships between the tasks, an ad-
ditional GP layer can be applied to model the correlations [19].

The aforementioned techniques are all instances of complete
modelling, where the inference of the target unknown quanti-
ties is improved by conditioning on knowledge given by crude

The research has been supported by GAČR grant 18-15970S.

Source task

yS

fS

xS

y∗
S

f∗S

x∗
S

Target task

y

f

x

y∗

f∗

x∗

FS(y
∗
S|x∗

S,xS,yS)

Mo(f∗|x∗,x,y,FS)

Fig. 1: Supervised source and target tasks process their source (xS,yS,x
∗
S)

and target (x,y,x∗) known values to learn source (fS, f
∗
S ,y
∗
S) and target

(f , f∗,y∗) unknown values. Here, x, y, and f are labelled inputs, outputs,
and function evaluations, respectively, and the superscript ∗ denotes their
unlabelled variants. The source task transfers the posterior predictive distri-
bution of unlabelled outputs, FS. The target task improves its performance
by using an FPD-optimal, FS-conditioned, posterior predictive distribution of
unlabelled function values, Mo.

source data. This requires a dependence structure between the
source and target tasks to be specified. In contrast, this paper
presents an approach where the target unknown quantities are
additionally conditioned on knowledge in the form of a source
probability distribution. Therefore, the challenge is to find
a probabilistic model over a source probability distribution,
which is assumed to be unavailable. This is an instance of
incomplete modelling. The fully probabilistic design (FPD)
[20], [21] is an optimal model-completion strategy rooted
in the minimum cross-entropy principle [22]. Its primary
purpose is to condition unknown quantities on knowledge—a
source probability distribution in this paper—for which there
is no probabilistic model [23]. The conditioning on a source
probability distribution via the FPD approach is the key feature
that releases the requirement of any dependence structure
between source and target tasks to be specified.

The FPD-optimal model completion was originally used to
design the target prior of unknown parameters conditioned
on the source output predictor [24] and was later extended
to various signal processing problems [25]–[28]. The present
paper casts this methodology into the supervised learning
context and designs the target posterior predictor of unlabelled
function evaluations conditioned on the source posterior pre-
dictor of unlabelled outputs. We evaluate the prediction perfor-
mance and the ability to reject imprecise source knowledge of
different methods. The experimental results demonstrate that
the proposed approach provides competitive performance and
lower computational requirements compared to an alternative
strategy relying on explicit dependence assumptions.

II. FPD KNOWLEDGE TRANSFER BETWEEN SUPERVISED
SOURCE AND TARGET TASKS

Let us consider a supervised learning problem specified by
a conditional likelihood function in the following form:

F(y|f ,x), (1)

where y ≡ (yi ∈ R)ni=1 are output data, x ≡ (xi ∈ Rnx)ni=1

are input data, and f ≡ (f(xi))
n
i=1 are evaluations of a latent

function, f : Rnx → R, at the inputs, x. One of the primary
objectives of supervised learning is to predict the unlabelled
function values, f∗, and outputs, y∗, based on the labelled
input-output data, (x,y), and the unlabelled inputs, x∗. That
is, we seek the joint posterior predictor,

F(y∗, f∗|x∗,x,y). (2)

In this paper, we consider source and target tasks as shown
by Fig. 1, where S denotes the source variables. Note that, to
simplify notation, we do not use any decorator to distinguish
the target variables. We assume that the target task does not
have any direct knowledge about the quantities processed by
the source task. The target task only receives the posterior
predictor from the source task, FS(y

∗
S|x∗S,xS,yS). The central

inference aim is to extend the joint posterior model of the
target task, (2), to accommodate additional knowledge in the
form of the source posterior predictor,

M(y∗, f∗|x∗,x,y,FS). (3)

Nevertheless, a probability distribution over this distributional
knowledge, FS, is assumed to be unavailable. Therefore, the
functional form of (3) is unknown, and our goal is to find
a mechanism to condition (2) on FS. In this paper, F and
M denote specified (fixed-form) and unspecified (variational-
form) distributions, respectively.

To transfer the source posterior predictor of unlabelled out-
puts, FS, we constrain the functional form of the unknown
joint model (3) as follows:

M(y∗, f∗|x∗,x,y,FS) ≡
FS(y

∗|x∗S,xS,yS)M(f∗|x∗,x,y,FS), (4)

where we apply the conditional independence, and we restrict
the unknown FS-conditioned target posterior predictor of un-
labelled outputs, y∗, to be the source posterior predictor of
unlabelled outputs computed at y∗S ≡ y∗, that is,

M(y∗|f∗,x∗,x,y,FS) ≡ FS(y
∗
S|x∗S,xS,yS)

∣∣
y∗S≡y∗

. (5)

This specification leaves M(f∗|x∗,x,y,FS) as the only vari-
ational quantity in (4), and enables us to delineate the
knowledge-constrained set of possible models, as follows:

M ∈M ≡ {models (4) with FS(f
∗|x∗S,xS,yS)

fixed and M(f |x∗,x,y,FS) variational}. (6)

The joint posterior model (2) reflects behaviour of a supervised
learning algorithm in the absence of any source knowledge.

Therefore, we use it as the ideal (prescriptive) design

MI(y
∗, f∗|x∗,x,y) ≡ F(y∗, f∗|x∗,x,y)

= F(y∗|f∗,x∗)F(f∗|x∗,x,y). (7)

Here, we rely on the fact that (x,y) does not provide more
information about y∗ when (f∗,x∗) is known.

FPD is an optimal tool to condition a probability distribution
on another probability distribution. FPD makes this possible by
seeking an optimal model, Mo, that belongs to the knowledge-
constrained set, M ∈ M (6), and incorporates preferences
about M defined by an ideal model MI (7). The distribution that
is closest to MI in the minimum Kullback-Leibler divergence
(KLD) [29] sense,

Mo(y∗, f∗|x∗,x,y,FS) ≡ argmin
M∈M

D(M||MI), (8)

is the FPD-optimal design, Mo ∈ M, which we seek. Here,
the KLD from M to MI is

D(M||MI) = EM

[
log

(
M

MI

)]
,

and the expected value under M is EM.

Proposition 1. The unknown model is a member of the knowl-
edge constrained set, M ∈ M (6), and the ideal model MI is
(7). Then, the solution of (8)—the FPD-optimal model—is

Mo(y∗, f∗|x∗,x,y,FS) =

FS(y
∗|x∗S,xS,yS)M

o(f∗|x∗,x,y,FS), (9)

where

Mo(f∗|x∗,x,y,FS) ∝ F(f∗|x∗,x,y)

× exp

{∫
log F(y∗|f∗,x∗)FS(y

∗|x∗S,xS,yS)dy
∗
}
. (10)

Proof. See Appendix A.

Proposition 1 defines the approach to incorporate the source
posterior predictor, FS, into the target learning procedure.
Note that (10) uses FS(y

∗|x∗S,xS,yS) to perform the update
from the posterior F(f∗|x∗,x,y) to the FPD-optimal, FS-
conditioned, posterior Mo(f∗|x∗,x,y,FS). A specific compu-
tational flow for producing F(f∗|x∗,x,y) is known as the data
learning step. From this perspective, (10) can be seen as an
additional step after the data learning step, which we refer to
as the transfer learning step.

III. FPD KNOWLEDGE TRANSFER BETWEEN GAUSSIAN
PROCESS TASKS

This section is concerned with the transfer learning scenario
where the source and target task is to perform the GP regres-
sion. We specify the conditional likelihood function (1) as

F(y|f ,x) ≡ N (y; f , σ2In), (11)

where σ2 is the variance of the noise corrupting the (inde-
pendent and identically distributed) outputs, and In is the n-
dimensional identity matrix. To find the joint posterior model

Algorithm 1: The FPD-optimal GP regression transfer
Input: m(x), k(x, x′), σ2, x, x∗, y, mS,n(x

∗
S)

1 Data learning step:
2 Use m, k, σ2, x, x∗, and y in (15) to compute mn(x∗) and
kn(x∗,x∗).

3 Transfer learning step:
4 Use x∗, mn(x∗), kn(x∗,x∗), and mS,n(x

∗
S) in (18) to compute

mo
n(x
∗) and kon(x

∗,x∗).
Output: mo

n(x
∗), kon(x

∗,x∗)

(2), we need to specify a prior distribution over the latent
function values, F(f |x). We choose the Gaussian process prior
for this purpose.

A stochastic process over a random function, f : Rnx → R,
defines a probability distribution, f ∼ F, such that any finite
collection of evaluation points, x, induces a joint probability
distribution over the function values, f . In the case of Gaus-
sian process, we define f(x) ∼ GP(m(x), k(x, x′)), where
m(x) and k(x, x′) are the mean and covariance functions,
respectively, and the induced joint probability distribution is
the multivariate Gaussian distribution,

F(f |x) ≡ N (f ;m(x), k(x,x)). (12)

Here, m(x) is an n-dimensional vector, and k(x,x) is an
n × n-dimensional matrix. Specific cases of m and k allow
us to express prior beliefs in the behaviour of f , including
smoothness and periodicity assumptions.

The data learning step of the source and target algorithms
is based on the joint posterior model (2). We will require its
marginals, which we now recall.

Lemma 1. The probability distribution of output data is (11),
and the prior distribution of latent function evaluations is
(12). Then, the joint posterior model (2) admits the following
marginal distributions:

F(y∗|x∗,x,y)=N (y∗;mn(x
∗), kn(x

∗,x∗) + σ2In∗), (13)
F(f∗ |x∗,x,y)=N (f∗ ;mn(x

∗), kn(x
∗,x∗)), (14)

where

mn(x) = m(x) + k(x,x)

×
(
k(x,x) + σ2In

)−1(
y −m(x)

)
, (15a)

kn(x, x
′) = k(x, x′)− k(x,x)

×
(
k(x,x) + σ2In

)−1
k(x, x′), (15b)

with k(x,x) denoting an n-dimensional vector.

Proof. The proof follows from standard calculus with Gaus-
sian distributions, see, e.g. [6].

The target algorithm then additionally proceeds through the
transfer learning step given by Proposition 1. We instantiate
this in the present context in Proposition 2.

Proposition 2. The target posterior predictor of unlabelled
function values is (14), and the source posterior predictor of

unlabelled outputs has the same functional form as (13), i.e.,

FS(y
∗|x∗S,xS,yS) ≡ N (y∗;mS,n(x

∗
S), kS,n(x

∗
S,x
∗
S) + σ2

SIn∗).
(16)

Then, the FPD-optimal posterior predictor (10) is

Mo(f∗|x∗,x,y,FS) = N (f∗;mo
n(x
∗), kon(x

∗,x∗)), (17)

where

mo
n(x) = mn(x) + kn(x,x

∗)

×
(
kn(x

∗,x∗) + σ2In∗
)−1(

mS,n(x
∗
S)−mn(x

∗)
)
, (18a)

kon(x, x
′) = kn(x, x

′)− kn(x,x∗)
×
(
kn(x

∗,x∗) + σ2In∗
)−1

kn(x
∗, x′). (18b)

Proof. See Appendix B.

Proposition 2 implies a computational procedure for the
FPD-optimal target task as summarized in Algorithm 1. The
source procedure is based only on the data step, i.e., line 2 of
Algorithm 1, with the associated quantities and the GP shaping
functions decorated by S.

IV. EXPERIMENTS

To illustrate the key features of the proposed FPD-optimal
algorithm, we focus on a simple example where the source
and target tasks are to regress a nonlinear function observed
in Gaussian noise. We compare the following methods: Source
algorithm with No Transfer (SNT); target algorithm with No
Transfer (NT); target algorithm based on the Linear Model of
Coregionalization (LMC) method [14], where the correlation
coefficient, ρ, between the source and target tasks is specified,
see [30] for details; and target algorithm using the FPD-
optimal transfer (FPD) given in Algorithm 1. We consider that
the source and target output data are generated according to

F(yS|fS,xS) ≡
∏nS

i=1N (yS,i; fS(xS,i), σ
2
S),

F(y|f ,x) ≡∏n
i=1N (yi; f(xi), σ

2),

where fS(x) = x
2 sin(x), σ2

S = 0.01, f(x) = x0.95

1.9 sin(x), and
σ2 = 1. The source and target input data are simulated by

x ∼ Un(−10, 10),
xS ∼ UnS

(−10, 10).
Here, Un(a, b) is the uniform distribution on the n-fold open
interval (a, b). This scenario reflects a situation where f is
a moderately distorted version of fS, which is observed in a
higher noise. In such a case, we would like to know if the
source procedure with high-quality data can assist the target
procedure with low-quality data. The prior mean functions, m,
mS, are given by the zero vector, and the covariance functions,
k, kS, are both specified as the squared exponential kernel [8],

k(x, x′) = σ2
f exp

{
− 1

2
||x−x′||2

l2

}
,

where σ2
f is the signal variance, l is the length-scale, and || · ||

denotes the euclidean norm. We set σ2
f = σ2

f = 2 and lS =
l = 0.5 for all algorithms. We are interested in the prediction

-10 0 10

-4

0

4

x∗
S

f
S

SNT

-10 0 10

-4

0

4

x∗

f

NT

-10 0 10

-4

0

4

x∗

f

LMC

-10 0 10

-4

0

4

x∗

f

FPD

-10 0 10

-10

0

10

x∗
S

x
∗ S

SNT

-10 0 10

-10

0

10

x∗

x
∗

NT

-10 0 10

-10

0

10

x∗

x
∗

LMC

-10 0 10

-10

0

10

x∗

x
∗

FPD

0

0.1

Fig. 2: Top: the prediction performance at the unlabelled input data x∗. Here, () is the true function, f(x∗), () are the labelled (noisy) outputs, y,
() is the posterior predictive mean function, mn(x∗), and () is the posterior predictive 2σ-region, ±2

√
kn(x

∗, x∗). Bottom: the covariance function
evaluated at the unlabelled inputs for the SNT algorithm, kS,n(x∗S , x

∗
S), the NT and LMC algorithms, kn(x∗, x∗), and the FPD algorithm, kon(x

∗, x∗).

performance of the various methods for unlabelled input data
x∗ generated on the closed interval [−10, 10] with the step-
size 0.2. We evaluate the error norm (EN) between the true
function values at x∗, f∗ ≡ (f(x∗i))

n∗
i=1, and their posterior

predictive mean estimate, mn(x
∗),

EN ≡ ||f∗ −mn(x
∗)||.

In the first experiment, whose results are depicted in Fig.
2, we illustrate the prediction performance of the compared
methods for n ≡ nS ≡ 32. The top row of Fig. 2 reveals
that—despite processing the imprecise target output data—the
FPD algorithm takes advantage of the source posterior predic-
tive distribution, FS, and—compared to the NT algorithm—
it significantly recovers the shape of the latent function and
reduces the 2σ-region. The LMC algorithm—with its corre-
lation coefficient set to ρ = 1 (extreme value)—performs
moderately better than the FPD algorithm. The bottom row
of Fig. 2 presents the covariance matrices associated with
the results above, providing more details of the uncertainty
representation.

Transfer learning is useful mainly when a source algorithm
processes either more precise data or simply more data of
the same precision, compared to the target algorithm. We
demonstrate this with two experiments depicted in the top
row of Fig. 3, where the EN of various methods changes
as a function of the variance of the source output data, σ2

S

(top-left), and the number of source data, nS (top-right). The
NT algorithm does not depend on these parameters and thus
defines a reference EN level for comparing the remaining
methods. If any algorithm produces an EN below or above
this reference level, we say that it provides positive or negative

transfer, respectively. When any algorithm saturates at the EN
level of the NT algorithm, we say that it achieves robust
transfer. The FPD algorithm switches its behaviour near the
intersection points σ2

S = σ2 and nS = n, yielding positive
transfer for (approximately) σ2

S < σ2 and nS > n, and negative
transfer for σ2

S > σ2 and nS < n. We explain this behaviour
in Section V. The LMC algorithm gives positive transfer for
σ2
S < 102 and all nS, achieving robust transfer for σ2

S > 102.

The next experiment (bottom-left of Fig. 3) evaluates the
computational time of the compared methods by changing the
number of target data according to n = 2i for i = 1, . . . , 9.
We see that the proposed FPD algorithm is computationally
more efficient and offers an improved prediction performance
compared to the LMC algorithm (again, with ρ = 1) when i =
1, . . . , 7. For i = 8 and i = 9, the FPD and LMC algorithms
perform similarly.

The final experiment (bottom-right of Fig. 3) demonstrates
the impact of the correlation coefficient, ρ, on the EN of the
LMC algorithm for source knowledge of varying quality. We
observe that values of ρ other than ρ → 1 cause the EN
of the LMC algorithm to be worse compared to the FPD
algorithm. More importantly, we see that the LMC algorithm
yields negative transfer for ρ < 0 even for high-quality source
knowledge. Note that if ρ = 0 (uncorrelated source and
target tasks), the LMC algorithm recovers the EN of the NT
algorithm. The proposed FPD algorithm does not depend on
any structural (ρ-like) assumptions, and yet it is able to deliver
very competitive performance compared to the LMC algorithm
when the source knowledge is of high quality.

10−4 10−2 100 102 104
5

10

15

20

σ2
S

E
N

σ2 = 1, n = 32, nS = 32

SNT
NT
LMC
FPD

2 8 32 128 512
5

10

15

20

nS

E
N

n = 32, σ2 = 1, σ2
S = 1

SNT
NT
LMC
FPD

10−3 10−2 10−1
5

6

7

8

computational time (s)

E
N

nS = 128, σ2 = 1, σ2
S = 1

NT
LMC
FPD

10−4 10−2 100 102 104
5

10

30

50
70
90

σ2
S

E
N

σ2 = 1, n = 32, nS = 32
NT
LMC ρ=−1.0
LMC ρ=−0.7
LMC ρ=0.0
LMC ρ=0.7
LMC ρ=1.0
FPD

Fig. 3: Top-left: the error norm (EN) versus the source output data variance,
σ2
S . Top-right: the EN versus the number of source data, nS. Bottom-left: the

EN versus the computational time in seconds (influenced by the number of
target data). Bottom-right: the EN versus the source output data variance, σ2

S ,
for various correlation coefficients of the LMC algorithm, ρ. The results are
averaged over 1000 independent simulation epochs, with the solid line and
shaded area being the median and interquartile range, respectively.

V. DISCUSSION

In the first part of this section, we would like to discuss
the following question: if the true function lies in the 2σ-
region for the SNT and NT algorithms—as shown on top
of Fig. 2—why is this behaviour not fully preserved by the
LMC and FPD algorithms? In the case of the LMC algorithm,
surprisingly, this happens close to the points where both the
SNT and NT algorithms process output data, i.e., close to
x∗ = −8 and x∗ = 8. Although, such behaviour occurred only
occasionally during our experiments—and is still consistent
due to the fact that the true function is certainly in the 3σ-
region—this situation demonstrates that the LMC algorithm
can deliver overconfident predictions compared to the SNT
and NT algorithms. We observed that this is often the case
when ρ → 1, which is, however, the value where the LMC
algorithm provides the best EN, see the bottom-right of Fig. 3.
Importantly, this issue of overconfident predictions diminishes
for lower ρ, but the FPD algorithm then outperforms the
LMC algorithm (Fig. 3). In the case of the FPD algorithm,
the true function lies outside the 2σ-interval where neither
the SNT nor NT algorithm processes any output data, i.e.,
close to x∗ = −10 and x∗ = 10. This is more sensible
behaviour than in the LMC case. Moreover, a closer look at
bottom of Fig. 2 reveals that the uncertainty representation
of the FPD algorithm is rather uniform compared to the
LMC algorithm which adjusts its uncertainty according to
the number of data processed. This behaviour of the FPD
algorithm is a result of the loss of the covariance function

of the source posterior predictor, kS,n, during the transfer
learning step. The source covariance function is lost when
computing the exponential structure of (10), see also (19) in
Appendix B. The consequence of this can best be seen in
(18), where only the source mean function, mS,n, is present
but the source covariance function, kS,n, is missing. The same
reasoning explains the fact that the FPD algorithm suffers from
negative transfer for (approximately) σ2

S > σ2 and nS < n, as
illustrated in the top row of Fig. 3. The kernel hyperparameters
were set to fixed values for all the investigated methods in
order to ensure a fair comparison. However, we expect that
optimizing these hyperparameters can address the problems
associated with uncertainty representation of both the LMC
and FPD algorithms. This will form the agenda of future work.

Next, we comment on the choice of the correlation co-
efficient, ρ, of the LMC method, as illustrated in bottom-
right of Fig. 2. We see that this choice is critical, leading
not only to a slightly worse EN compared to the FPD
algorithm, but, crucially, to negative transfer even for high-
quality source knowledge. In practice, ρ can be treated as an
additional hyperparameter which needs to be optimized [14].
There is no such hyperparameter dependence in the proposed
FPD algorithm. Notwithstanding this, the FPD algorithm is
competitive with the LMC algorithm. Recall that the LMC
algorithm requires complete modelling of the source and target
dependence, and directly processes the raw source data. In
contrast, our FPD algorithm (resulting from the Bayesian
transfer in Fig. 1) only transfers the sufficient statistics of
FS. Furthermore, the essence of this approach is to avoid
explicit joint modelling assumptions between the source and
target tasks, which, anyway, are very hard to propose in most
cases. In addition, ρ will increase the computational cost of
marginalizing the hyperparameters in the LMC algorithm via
Markov chain Monte Carlo methods. This added complexity
is avoided in the FPD algorithm.

VI. CONCLUSION

This paper has presented FPD-optimal Bayesian transfer
learning in the context of Gaussian process regression. The
proposed FPD algorithm is a consequence of optimal model
completion in the context where the stochastic dependence
between the source and target tasks is not specified. As
illustrated by the experimental evidence, the FPD algorithm
can offer competitive (and sometimes even better) prediction
performance, lower computational requirements, and fewer
hyperparameters to tune compared to the LMC approach. The
latter relies on explicit—and often brittle—dependence as-
sumptions. However, the FPD algorithm suffers from negative
transfer when the source knowledge is imprecise compared to
the target knowledge. We encountered similar behaviour when
developing transfer learning algorithms in Bayesian filtering
applications [25], [26]. There, we were successful in resolving
this issue by introducing an auxiliary variable augmentation
[27]. Our preliminary investigations suggest that the same
solution can also be successful in the present context. We will
provide more details in a future paper.

APPENDIX

A. Proof of Proposition 1

After substituting (4) and (7) into (8), we obtain:

D(M||MI) =

∫
FS(y

∗|x∗S,xS,yS)M(f∗|x∗,x,y,FS)

× log

(
FS(y

∗|x∗S,xS,yS)M(f∗|x∗,x,y,FS)

F(y∗|f∗,x∗)F(f∗|x∗,x,y)

)
dy∗df∗

=

∫
M(f∗|x∗,x,y,FS)

× log

(
M(f∗|x∗,x,y,FS)

Mo(f∗|x∗,x,y,FS)

)
df∗ −HFS

− log cMo ,

where HFS
is the differential entropy of FS,

HFS
= −

∫
FS(y

∗|x∗S,xS,yS) log FS(y
∗|x∗S,xS,yS)dy

∗,

and cMo is the normalizing constant,

cMo =

∫
F(f∗|x∗,x,y)

× exp

{∫
log F(y∗|f∗,x∗)FS(y

∗|x∗S,xS,yS)dy
∗
}
df∗.

B. Proof of Proposition 2

Substituting (11) and (16) into the exponential term of (10)
leads to

exp {EFS
[log F(y∗|f∗,x∗)]} ∝ N

(
mS,n; f

∗, σ2In∗
)
. (19)

Then, the product of (14) and (19) yields

N
([
mS,n

f∗

]
;

[
mn(x

∗)
mn(x

∗)

]
,

[
kn(x

∗,x∗) + σ2In∗ kn(x
∗,x∗)

kn(x
∗,x∗) kn(x

∗,x∗)

])
,

which admits the conditional distribution (17) with the mo-
ments (18).

REFERENCES

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, pp.
1345–1359, 2010.

[2] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2018.

[3] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, no. 1, pp. 9, 2016.

[4] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer
learning using computational intelligence: A survey,” Knowledge-Based
Systems, vol. 80, pp. 14–23, 2015.

[5] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, pp. 242–264. IGI Global, 2010.

[6] K. P. Murphy, Machine learning: A probabilistic perspective, MIT
Press, 2012.

[7] C. M. Bishop, Pattern recognition and machine learning, Springer,
2006.

[8] C. Rasmussen and C. Williams, Gaussian processes for machine
learning, MIT Press, 2006.

[9] K. Swersky, J. Snoek, and R. P. Adams, “Multi-task Bayesian optimiza-
tion,” in Advances in neural information processing systems, 2013, pp.
2004–2012.

[10] L.-F. Cheng, G. Darnell, B. Dumitrascu, C. Chivers, M. E. Draugelis,
K. Li, and B. E. Engelhardt, “Sparse multi-output Gaussian processes
for medical time series prediction,” arXiv preprint arXiv:1703.09112,
2017.

[11] S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte, “Non-
stationary dependent Gaussian processes for data fusion in large-scale
terrain modeling,” in 2011 IEEE International Conference on Robotics
and Automation. IEEE, 2011, pp. 1875–1882.

[12] K. M. A. Chai, Christopher K. I. Williams, S. Klanke, and S. Vijayaku-
mar, “Multi-task Gaussian process learning of robot inverse dynamics,”
in Advances in neural information processing systems, 2008, pp. 265–
272.

[13] Y. W. Teh, M. Seeger, and M. I. Jordan, “Semiparametric latent
factor models,” in AISTATS 2005-Proceedings of the 10th International
Workshop on Artificial Intelligence and Statistics, 2005.

[14] E. V. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian
process prediction,” in Advances in neural information processing
systems, 2008, pp. 153–160.

[15] T. V. Nguyen and E. V. Bonilla, “Collaborative multi-output Gaussian
processes,” in Proceedings of the Thirtieth Conference on Uncertainty
in Artificial Intelligence. AUAI Press, 2014, pp. 643–652.

[16] A. G. Wilson, D. A. Knowles, and Z. Ghahramani, “Gaussian process
regression networks,” in Proceedings of the 29th International Coference
on International Conference on Machine Learning. Omnipress, 2012, pp.
1139–1146.

[17] T. Nguyen and E. V. Bonilla, “Efficient variational inference for
Gaussian process regression networks,” in Artificial Intelligence and
Statistics, 2013, pp. 472–480.

[18] M. A. Álvarez and N. D. Lawrence, “Computationally efficient
convolved multiple output Gaussian processes,” Journal of Machine
Learning Research, vol. 12, no. May, pp. 1459–1500, 2011.

[19] A. Boustati and R. S. Savage, “Multi-task learning in deep Gaussian
processes with multi-kernel layers,” 2019.

[20] M. Kárný, “Towards fully probabilistic control design,” Automatica,
vol. 32, no. 12, pp. 1719–1722, 1996.

[21] M. Kárný and T. Kroupa, “Axiomatisation of fully probabilistic design,”
Information Sciences, vol. 186, no. 1, pp. 105–113, 2012.

[22] J. Shore and R. Johnson, “Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy,” IEEE
Transactions on Information Theory, vol. 26, no. 1, pp. 26–37, 1980.

[23] A. Quinn, M. Kárný, and T. V. Guy, “Fully probabilistic design of
hierarchical Bayesian models,” Information Sciences, vol. 369, pp. 532–
547, 2016.

[24] A. Quinn, M. Kárný, and T. V. Guy, “Optimal design of priors con-
strained by external predictors,” International Journal of Approximate
Reasoning, vol. 84, pp. 150–158, 2017.

[25] C. Foley and A. Quinn, “Fully probabilistic design for knowledge
transfer in a pair of Kalman filters,” IEEE Signal Processing Letters,
vol. 25, no. 4, pp. 487–490, 2018.

[26] M. Papež and A. Quinn, “Dynamic Bayesian knowledge transfer
between a pair of Kalman filters,” in 2018 IEEE 28th International
Workshop on Machine Learning for Signal Processing (MLSP). IEEE,
2018.

[27] M. Papež and A. Quinn, “Robust Bayesian transfer learning between
Kalman filters,” in 2019 IEEE 29th International Workshop on Machine
Learning for Signal Processing (MLSP). IEEE, 2019.

[28] L. Jirsa, L. Pavelkova, and A. Quinn, “Knowledge transfer in a pair of
uniformly modelled Bayesian filters,” in 2019 16th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO).
IEEE, 2019.

[29] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[30] K. M. Chai, “Generalization errors and learning curves for regression
with multi-task Gaussian processes,” in Advances in neural information
processing systems, 2009, pp. 279–287.

