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Abstract. This paper proposes a one-step-ahead Bayesian output pre-
dictor for the linear stochastic state space model with uniformly dis-
tributed state and output noises. A model with discrete-time inputs,
outputs and states is considered. The model matrices and noise param-
eters are supposed to be known. Unknown states are estimated using
Bayesian approach. A complex polytopic support of posterior probabil-
ity density function (pdf) is approximated by a parallelotopic set. The
state estimation consists of two stages, namely the time and data update
including the mentioned approximation. The output prediction is per-
formed as an inter-step between the time update and the data update.
The behaviour of the proposed algorithm is illustrated by simulations
and compared with Kalman filter.
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1 Introduction

A range of decision-making tasks, such as online prediction, fault detection and
feedback control, need an adequate model of the considered system that provides
a prediction of the system behaviour. A linear stochastic state space model is
often used for this purpose. The states of this model are often unmeasurable.
Then, to obtain the required prediction, an estimation of states of this model
has to be solved first.

Bayesian filters form an effective tool for solving the state estimation. If the
random disturbances entering the model are assumed to be Gaussian, then, fast
and efficient estimation algorithms are based on Kalman filter (KF) [1].

However, the involved noise is often bounded in practice. To cope with this
problem, the state estimates are projected onto the constraint surface [2] or the
Gaussian distribution is truncated [3]. Nevertheless, these techniques in con-
junction with the system model having unbounded support respect constraints
within the estimation but not within the modelling.
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Sequential Monte-Carlo sampling methods cope with constraints in stochastic
models very well. The constraints are respected within the accept/reject steps
of the algorithm, see e.g. [4]. These methods require, however, a huge amount of
samples to obtain results with an acceptable precision.

Giving up the probabilistic approach, the techniques dealing with “unknown-
but-bounded error” can be used for the state estimation. A set containing the
estimates is of a very high complexity and has to be approximated, see e.g. [5], [6].
However, without the probabilistic interpretation, solution of related decision-
making tasks is unnecessarily difficult because a rich set of statistical tools is
not at disposal.

A beneficial interconnection of the probabilistic approach and the “unknown-
but-bounded errors” estimation approach is presented e.g. in [8, 9]. In [8], an
explicit bridge between the set-membership and the stochastic paradigms for
Kalman filtering is presented and a zonotopic Kalman filter is proposed. In [9],
an approximate Kalman-like Bayesian filter for the linear state space model with
uniformly distributed noise (LSU model) is proposed which uses a parallelotopic
approximation of the posterior density support.

Having the state estimates, the required prediction can be obtained directly
from these estimates in a deterministic way, see e.g. [10]. An adaptive point out-
put predictor is proposed in [11]. Examples of interval predictors are presented
in [12, 13, 14].

We aim to enrich the class of predictors with a Bayesian predictor for models
with bounded noise. We extend our previous research concerning state estima-
tion of LSU model [9] and introduce a respective one-step-ahead predictor. The
approach is probabilistic, the method explicitly operates on pdfs using the gen-
eral theory. The simple approximate algorithm provides a probabilistic predictor
that is kept in a given class of functions.

The paper is organised as follows. The Section 2 gives a brief introduction
into the used uniform distribution and a geometric interpretation of involved
supports. The Section 3 provides basics of the Bayesian approach and intro-
duces the LSU model and the approximate state estimation of this model. The
Section 4 presents main results, namely approximate output predictor for the
above mentioned LSU model. The algorithmic summary is given in Section 5.
In the Section 6, illustrative experiments are presented that demonstrate the
predictor performance and quality in comparison with a predictor based on KF.
The Section 7 concludes the paper.

Throughout the paper, the following notation will be used: xt is the value
of a column vector x at a discrete-time instant t ∈ t? ≡ {1, 2, . . . , t}; xt;i is
the i-th entry of xt; x and x are lower and upper bounds on x, respectively; ≡
means equality by the definition, ∝ means equality up to a constant factor. The
symbol f(·|·) denotes a conditional probability density function (pdf); names of
arguments distinguish respective pdfs; no formal distinction is made between
a random variable, its realisation and an argument of the pdf.
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2 Multidimensional uniform distribution and geometrical
interpretation of its support

This section introduces the uniform pdf used further in the text together with
theoretical and technical reasons and principles underlying the involved approx-
imations. A brief discussion of the approximation properties concludes the sec-
tion.

2.1 Definition of uniform pdf

Characteristic (or indicator) function χx?(x) on a set x? is defined this way: if
x ∈ x?, then χx?(x) = 1, otherwise 0. Let x ∈ Rn and Mx : Rn → Rm be
a continuous linear mapping. For x? = {x | a≤Mx≤ b}, where a, b ∈ Rm, M
is a (m × n) matrix of rank n, we use the notation χx?(x) ≡ χ(a ≤ Mx ≤ b).
Vector inequality is considered by items.

Uniform pdf Ux(a ≤Mx ≤ b) of a random variable x is a product of the char-
acteristic function χx?(x) and a normalising constant K, which is a reciprocal
value of measure of the set x?, i.e.,

Ux(a ≤Mx ≤ b) = Kχx(a ≤Mx ≤ b), (1)

The set x? is called support of Ux. Because Ux is a positive constant within
its support, and zero outside, the support plays a dominant role in definition
of the uniform pdf. Alternatively, the normalising constant can be omitted, i.e.
Ux(a ≤Mx ≤ b) ∝ χx(a ≤Mx ≤ b).

If M is the identity matrix, then a simplifying notation can be used,

Ux(a ≤ x ≤ b) ≡ Ux(a, b). (2)

2.2 Examples of supports

For x ∈ Rn, where n ≥ 2, the support x? of uniform pdf (1) can be a complex
set, depending on the shape of M . Here, M is a matrix (m×n) of rank n, m ≥ n,
so that the measure K−1 of x? is finite. The set x? is convex, bounded by a finite
number (up to 2m) of hyperplanes (faces).

In the paper, the following three types of sets are applied

Convex polytope m > n, computation of a general polytope volume K−1 is
a complex task [15].

Parallelotope m = n,M is a non-diagonal matrix,K−1 =
∣∣det

[
M−1diag(b− a)

]∣∣,
see [9].

Orthotope m = n, M is a diagonal matrix (as a special case, M can be identity

matrix), K−1 =
n∏
i=1

(bi − ai)/|Mii|. The orthotope represents a multidimen-

sional interval (a box).

An illustrative example of two-dimensional sets is given in Fig. 1. Note that
the respective sets are described by the corresponding system of linear inequal-
ities in the characteristic function (1).
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Fig. 1. An example of two-dimensional convex polytope (shaded area), parallelotope
(thick line) and orthotope (thin line).

2.3 Approximation of a complex pdf by a uniform pdf with
a parallelotopic support

Using a uniform pdf within the Bayesian estimation scheme typically induces
non-uniform distribution on a geometrically difficult support. There are two
issues that has to be considered:

– finite sufficient statistic does not exist because the uniform pdf is not a mem-
ber of the exponential family [16]; this property calls for approximation of
the support,

– sum of two independent uniformly distributed random quantities is not uni-
formly distributed (unlike of normally distributed), i.e., the uniform pdf is
not closed under summing [17]; this property calls for approximation of the
function.

Approximation of the support With increasing number of data processed,
the size m of the matrix M in (1) increases, too. The support represented by
the polytope becomes more complex as a consequence.

To avoid problems with storing the data, volume evaluation, analytical and
computational complexity, memory requirements etc., it is practical to approx-
imate the polytope by a tightly circumscribing parallelotope (m=n) with mini-
mum volume [18].

Parallelotope can be tightly circumscribed by an orthotope in order to get
the bounds of the parallelotope. Anyway, the paralellotope describes uncertainty
more exactly than the orthotope as it less differs from the original polytope.

Both these approximations are also used for recursiveness: a support is “spoilt”
by a processing step it enters. The approximation projects it back to the initial
class, i.e. the function is kept, the support is changed.
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Approximation of the function Sum of two random variables corresponds
to convolution of their pdfs. Convolution of two uniform pdfs is a trapezoidal
pdf [17]. Each subsequent convolution increases functional complexity of the
resulting pdf.

To preserve the class of the function and computational complexity, we ap-
proximate trapezoidal pdf by a uniform pdf by minimising Kullback-Leibler di-
vergence of these pdfs [9]. The result is a uniform pdf on the support of the
trapezoid, i.e. the support is kept, the function is changed.

Discussion on the approximations The approximations mentioned above
enable both analytical and computational efficiency. The tasks become tractable
and they can be formulated recursively.

On the other hand, the approximations are local and propagation of their
errors is not under control. Also, both support and function approximations
increase uncertainty of the respective random quantities. However, this property
can be interpreted as a form of implicit forgetting, useful in adaptive estimation.

3 Approximate Bayesian estimation of uniform state
space model

This section introduces basics of the Bayesian filtering, describes the involved
stochastic linear state space model with a uniform noise and presents the ap-
proximate state estimation of this model.

3.1 Bayesian filtering

In the considered Bayesian set up [19], system is described by the following pdfs:

prior pdf: f (x0) (3)

observation model: f (yt|xt)
time evolution model: f (xt|xt−1, ut−1)

where yt is a scalar observable output, ut is a system input, and xt is an `-
dimensional unobservable system state, t ∈ t? ≡ {1, 2, . . . , t}.

We assume that (i) state xt satisfies Markov property, (ii) no direct rela-
tionship between input and output exists in the observation model, and (iii) the
inputs consist of a known sequence u0, u1, . . . , ut−1.

The Bayesian state estimation or filtering [19] consists in the evolution of the
posterior pdf f(xt|d(t)) where d(t) ≡ {d1, d2, . . . , dt} is a sequence of observed
data records dt = (yt, ut), t ∈ t?. The evolution of f(xt|d(t)) is described by the
two-steps recursion that starts from the prior pdf f(x0):

– Time update

f(xt|d(t− 1)) =

∫
x?
t−1

f(xt|ut−1, xt−1)f(xt−1|d(t− 1)) dxt−1, (4)
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– Data update

f(xt|d(t)) =
f(yt|xt)f(xt|d(t− 1))∫

x?
t

f(yt|xt)f(xt|d(t− 1))dxt
=
f(yt|xt)f(xt|d(t− 1))

f(yt|d(t− 1))
. (5)

The denominator in (5) represents the Bayesian output predictor.

3.2 Linear state space model with uniform noise

We introduce a linear state space model with a uniform noise (LSU model) in
the form

xt = Axt−1 +But−1 + νt, νt ∼ Uν(−ρ, ρ)
yt = Cxt + nt, nt ∼ Un(−r, r) (6)

where A, B, C are the known model matrices/vectors of appropriate dimensions,
νt ∈ (−ρ, ρ) is the uniform state noise with known parameter ρ, nt ∈ (−r, r) is
the uniform observation noise with known parameter r. Equivalently, using above
mentioned pdf notation (3)

f(xt|ut−1, xt−1) = Ux(Axt−1 +But−1︸ ︷︷ ︸
x̃t

−ρ,Axt−1 +But−1︸ ︷︷ ︸
x̃t

+ρ)

f(yt|xt) = Uy(Cxt︸︷︷︸
ỹt

−r, Cxt︸︷︷︸
ỹt

+r). (7)

State estimation of LSU model (7) according to (4) and (5) leads to a very
complex form of posterior pdf. In [9], an approximate Bayesian state estima-
tion of this model is proposed. The presented algorithm provides the evolution
of the approximate posterior pdf f(xt|d(t)) that is uniformly distributed on a
parallelotopic support.

3.3 Approximate state estimation of LSU model

Approximate time update The time update according to (4) starts at the
time t = 1 with f(xt−1|d(t− 1)) = f(x0) = Ux0

(x0, x0), i.e., f(x0) is uniformly
distributed on an orthotopic support. In next steps, without approximation,
the pdf f(xt−1|d(t− 1)) would be non-uniform and having a polytopic support.
A below described double approximation as proposed in [9] keeps the uniform
orthotopic form of f(xt−1|d(t − 1)), i.e. f(xt−1|d(t − 1)) = Uxt−1

(xt−1, xt−1),
t ∈ t?. Then, according to (4),

f(xt|d(t− 1)) =
1

|det(A)|
∏̀
i=1

1

2ρi(xt−1;i − xt−1;i)
× (8)

×
∏̀
i=1

([(xt;i −Biut−1 + ρi)χ(xt;i < mt;i − ρi) + (mt;i −Biut−1)χ(xt;i ≥ mt;i − ρi)]−
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−
[
(mt;i −Biut−1)χ(xt; i ≤ mt;i + ρi) +(xt;i −Biut−1 − ρi)χ(xt;i > mt;i + ρi)

])
×

×
∏̀
i=1

χ(mt;i − ρi ≤ xt;i ≤ mt;i + ρi),︸ ︷︷ ︸
Cutting according to the conditions given by state evolution model.

where

mt;i =
∑̀
j=1

min(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1), (9)

mt;i =
∑̀
j=1

max(Aijxt−1;j +Biut−1, Aijxt−1;j +Biut−1),

Aij means the term on the i-th row and the j-th column of A. The resulting
pdf (8) is trapezoidal [17].

In [9], the following approximation (based on a minimising of Kullback-
Leibler divergence of two pdfs) of the original distribution (8) by a uniform
distribution is proposed

f(xt|d(t− 1)) ≈
∏̀
i=1

χ(mt;i − ρi ≤ xt;i ≤ mt;i + ρi)

mt;i −mt;i + 2ρi
=

=
∏̀
i=1

Uxt;i(mt;i − ρi,mt;i + ρi) = Uxt(mt − ρ,mt + ρ), (10)

where mt = [mt;1, . . . , mt;`]
′, mt = [mt;1, . . . , mt;`]

′, the vectors entries are
defined by (9).

Approximate data update Performing the data update of (10) according
to (5), we obtain a posterior pdf with a support in the form of polytope

f(xt|d(t)) =
1

It
Uyt(Cxt − r, Cxt + r)Uxt

(mt − ρ,mt + ρ) (11)

with

It =

∫
x?
t

Uy(Cxt − r, Cxt + r)Uxt
(mt − ρ,mt + ρ)dxt.

It holds

f(xt|d(t)) ∝ χ(mt − ρ ≤ xt ≤ mt + ρ)χ(Cxt − r ≤ yt ≤ Cxt + r) =

= χ

([
mt − ρ
yt − r

]
≤
[
I
C

]
xt ≤

[
mt + ρ
yt + r

])
(12)
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where I is the (` × `) identity matrix. The uniform pdf (12) has a polytopic
support. In [9], an approximation of (12) by a uniform pdf with a parallelotopic
support is proposed. It has the form

f(xt|d(t)) ≈ Ktχ(x
t
≤Mtxt ≤ xt), (13)

where Kt is a normalising constant.
The posterior pdf (13) is the result of state filtering in the time t.
Nevertheless, the time update (8) in the next step assumes pdf with an

orthotopic support, i.e. f(xt|d(t)) = Uxt(xt, xt). The required bounds xt, xt are
obtained by circumscription of the parallelotope x

t
≤ Mtxt ≤ xt in (13) by an

orthotope, see Fig. 1 and computational details in [9]. Then

xt ≤ xt ≤ xt. (14)

In this way, the recursion is closed and the obtained orthotopic bounds (14)
can be used in the next time update step (8) for the computation of the terms
m and m (9).

Point estimates of states State point estimate corresponds to the centre of
circumscribing orthotope [9]

x̂t =
xt + xt

2
. (15)

4 Approximate predictor for scalar output and
`-dimensional state

This paper enriches the above described approximated state estimator in an out-
put prediction. The proposed predictor corresponds to the denominator of (5).
Its exact computation is a complex task. In this section, an approximated uni-
form predictor is proposed.

Assume yt be a scalar. Note that a modelling of a scalar output is sufficient
because the chain rule for pdfs [19] implies that the multivariate case can be
treated using a collection of such models. Generally, state xt ∈ R` is a vector.

4.1 Predictive pdf

The data predictor of a linear state-space model is the denominator of (5), where
f(yt|xt) is given by (7) and f(xt|d(t− 1)) is the result of the approximate time
update (10). Then,

f(yt|d(t−1)) ∝
∫
x?
t

χ(Cxt−r ≤ yt ≤ Cxt+r) χ(mt−ρ ≤ xt ≤ mt+ρ) dxt, (16)

where C is a matrix (1× `), i.e. a row vector.
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As we assume the data yt be unknown yet, the formula (16) must be in-
tegrated within the state bounds from time update step (10), i.e. from mt − ρ
to mt + ρ. These bounds are implicitly guaranteed by the second term in (16),
therefore they are not explicitly specified hereafter.

Considering xt = [xt;1, . . . , xt;`]
′
, the formula (16) is

f(yt|d(t− 1)) ∝
∫
χ

(
yt − r ≤

∑̀
i=1

Cixt;i ≤ yt + r

)
×

×
∏̀
j=1

χ
(
mt;j − ρj ≤ xt;j ≤ mt;j + ρj

)
dxt;1 . . . dxt;`. (17)

Assuming C1 > 0, the first term in (17) can be expressed as

χ

(
yt − r ≤

∑̀
i=1

Cixt;i ≤ yt + r

)
=

= χ


yt −

∑̀
i=2

Cixt;i − r

C1
≤ xt;1 ≤

yt −
∑̀
i=2

Cixt;i + r

C1

 ≡ R1(yt|xt).

Then,

f(yt|d(t− 1)) ∝
∫ [∫

R1(yt|xt)χ
(
mt;1 − ρ1 ≤ xt;1 ≤ mt;1 + ρ1

)
dxt;1

]
︸ ︷︷ ︸

I1(yt)

×

×
∏̀
j=2

χ
(
mt;j − ρj ≤ xt;j ≤ mt;j + ρj

)
dxt;2 . . . dxt;`. (18)

Computing I1, we get
I1(yt) = max (J1(yt); 0) , (19)

where

J1(yt) = min

mt;1 + ρ1;

yt −
∑̀
i=2

Cixt;i + r

C1

−max

mt;1 − ρ1;

yt −
∑̀
i=2

Cixt;i − r

C1

 ,

(20)
which is proportional to a symmetric trapezoidal pdf of yt. We will approximate
it by a uniform pdf on its support. This is achieved by minimisation of Kullback-
Leibler divergence of these pdfs [9]. The purpose is (i) to preserve the class of
uniform pdfs, (ii) to keep the computation recursive and tractable.

I1(yt) ≈ k1χ

(
yt − r⊕(1) ≤

∑̀
i=2

Cixt;i ≤ yt + r	(1)

)
, (21)
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where k1 =
(
r⊕(1) + r	(1)

)−1
. It can be shown that, according to the sign of C1,

r	(1) = r − C1(mt;1 − ρ1), r⊕(1) = r + C1(mt;1 + ρ1), if C1 > 0,

r	(1) = r − C1(mt;1 + ρ1), r⊕(1) = r + C1(mt;1 − ρ1), if C1 < 0
(22)

(i.e. the terms in the parentheses are swapped). The formulae (22) were inferred
for C1 6= 0 but they hold for C1 = 0 as well.

Substituting (21) into (18), we get

f(yt|d(t− 1)) ≈ K1

∫
χ

(
yt − r⊕(1) ≤

∑̀
i=2

Cixt;i ≤ yt + r	(1)

)
×

×
∏̀
j=2

χ
(
mt;j − ρj ≤ xt;j ≤ mt;j + ρj

)
dxt;2 . . . dxt;` (23)

having the same form as (17) with a normalising constant K1.
Applying the procedure (17)–(23) for integration over xt;2, . . . , xt;`, we get

the approximate uniform predictive pdf

f(yt|d(t− 1)) ≈ Kχ
(
−r	(`) ≤ yt ≤ r⊕(`)

)
, (24)

where K =
(
r⊕(`) + r	(`)

)−1
. If we define vectors s	 and s⊕ so that

s	i = mt;i − ρi, s⊕i = mt;i + ρi, if Ci ≥ 0,
s	i = mt;i + ρi, s⊕i = mt;i − ρi, if Ci < 0,

(25)

then

r	(`) = r −
∑̀
i=1

Cis
	
i = r − Cs	 ≡ −y

t
, (26)

r⊕(`) = r +
∑̀
i=1

Cis
⊕
i = r + Cs⊕ ≡ yt

and we get prediction bounds, i.e. χ
(
y
t
≤ yt ≤ yt

)
.

This predictive pdf is conditioned by mt and mt considered as statistics,
provided the parameters A and B be known.

4.2 Point prediction

Mean value of (24) is

ŷt ≡ E [yt|d(t− 1)] =
r⊕(`) − r	(`)

2
= C

(
mt +mt

2

)
︸ ︷︷ ︸
E[xt|d(t−1)]

. (27)
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Remarks: (i) This formula is identical with the point one-step-ahead predictor
for Kalman filter [1] (note that (mt+mt)/2 = Ax̂t−1 +But−1, see (9) and (15)).
However, their results differ because of different time-updated estimates x̂t−1
supplied by each estimator. (ii) The point prediction is unaffected by the aprox-
imation (21), because the approximated trapezoidal pdf is symmetric and its
approximation by the uniform pdf preserves the mean value.

5 Algorithmic summary

Here, the proposed algorithm of observation prediction for model (7) is sum-
marised. It is assumed, that model matrices A, B, C are known as well as the
noise bounds r, ρ.

Initialisation:
– Choose final time t > 0, set initial time t = 0
– Set values x0, x0, u0

On-line
(i) Set t = t+ 1
(ii) Compute mt, mt according to (9)

(iii) Compute predictor according to (24)
(iv) Get the point output prediction according to (27)
(v) Obtain new data ut, yt
(vi) Add successively single data strips according to (12) and approximate

the obtained support by a parallelotope (for details see Appendix A.2 in
[9]) to obtain the resulting form (13)

(vii) Compute xt, xt (14)
(viii) Compute the point estimate x̂t (15)
(ix) If t < t, go to (i)

6 Experiments

In this section, the simulative experiments demonstrate the proposed algorithm
properties. The algorithm is also compared with the Kalman filter (KF).

6.1 Experiment setup

The matrices of the state space model (6) are set as

A =

 0.4 −0.3 0.1
−0.4 0.4 0.0

0.3 0.2 0.1

 , B =

0.1
0.6
0.3

 ,
C =

[
−1.0 0.9 −0.5

]
. (28)

Input is randomly generated as ut ∼ N (0, s), where s = 1. Length of data
sequences t = 100.
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6.2 Results

We compare performance of the LSU predictor (24) with the KF predictor [20].
We examine a modellling mismatch of KF caused by a uniform noise pdf.

Prediction error and predictive interval We evaluated medians of output
prediction errors (ŷt − yt) and half-widths of prediction intervals. For LSU pre-
dictor, half-width is defined as (yt−ŷt) ≡ (yt−yt)/2. For KF predictor, standard
deviation σt of the predictive pdf was used instead, as a measure of variance.
The prediction interval is then ŷt ± half widtht, specific for each predictor.

Half-width of the predictive interval for the LSU predictor (24) is

yt − yt
2

= |C| |A|
xt−1 − xt−1

2
+ |C|ρ+ r, (29)

absolute value of a matrix applies to its elements.
Standard deviation of predictive pdf of the KF predictor [20] is

σt =
√
CA cov(x̂t−1)A′C ′ + CRwC ′ +Rv, (30)

where Rw is a covariance of state noise and Rv is a covariance of output noise.
Both the formulae have a similar structure, however, they combine different
terms in a different way. The covariance matrices in KF (30) were chosen as
Rw = cdiag(ρ2) and Rv = c r2. The value of c plays a role of a “matching”
parameter and will be discussed later. The noise bounds and covariances are
fixed and known.

We examined the influence of noise bounds ρ and r on the predictive statistics
mentioned above, c = 2.7. The results and comparison are in Table 1.

Table 1. Influence of noise parameters ρ and r on medians of prediction errors (ŷt−yt)
and half-widths of prediction intervals (yt − ŷt) for LSU and KF.

prediction error half-width

ρ r LSU KF LSU KF

0.001 0.001 −0.0001 −0.0001 0.0128 0.0031
0.001 0.01 −0.0005 −0.0001 0.0124 0.0168
0.001 0.1 0.0016 0.0038 0.1024 0.1644
0.01 0.001 −0.0009 −0.0008 0.0616 0.0242
0.01 0.01 −0.0015 −0.0013 0.1282 0.0309
0.01 0.1 −0.0046 −0.0008 0.1240 0.1679
0.1 0.001 −0.0088 −0.0037 0.4109 0.2411
0.1 0.01 −0.0090 −0.0078 0.6913 0.2419
0.1 0.1 −0.0147 −0.0128 1.2815 0.3086
2 2 −0.2949 −0.2561 25.3609 6.1710
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Predictive interval and KF covariance matrices Further, we investigated
the influence of the parameter c in Rw and Rv on KF predictive interval. Data
were generated with ρ = 0.1 and r = 0.3 and the prediction by KF was run
with various values of c. Then, the same experiment was done with ρ = r = 2.
The results are in Table 2. The purpose of these experiments was, in context of
mismatch between uniform noise and KF’s assumption of normality, to examine
influence of c on median(σt) and on the number of observed output values out
of the predictive intervals, ŷt±σt (denoted ‘ 6∈’ in Table 2) and ŷt± 2σt (denoted
‘6∈2’). Setting for the matching the second moments, n ∼ Un(−r, r), var(n) =
r2/3.

Table 2. Influence of c on median(σt) and on observed output values out of the pre-
dictive intervals (6∈ and 6∈2) for KF.

ρ = 0.1, r = 0.3 ρ = 2, r = 2

c 6∈ 6∈2 median(σt) 6∈ 6∈2 median(σt)

0.33 40 3 0.2040 29 7 2.1683
0.6 17 0 0.2737 19 0 2.9091
1 6 0 0.3534 10 0 3.7556
1.5 2 0 0.4328 5 0 4.5996
2 0 0 0.4998 1 0 5.3112
2.7 0 0 0.5807 0 0 6.1710

This behaviour is also illustrated in Fig. 2.
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0.005

0.01

0.015

c=2.7

Fig. 2. Simulated (dotted grey) vs. KF-predicted (solid black) output yt with prediction
bounds (thin dashed), ρ = 0.003, r = 0.007. Left figure: c by moment matching (c =
0.33), right figure: empirical value c = 2.7.
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Predictive interval and LSU preditor The LSU predictive interval contains
all the observed output values.

Influence of input Variance s of input generator has no influence on values
in Tables 1 and 2, i.e. the same results have been observed for the system without
input, s = 0. However, presence of input influences the absolute values of output
(excitation), as shown in Fig. 3. Note that the width of the prediction interval
seems changed due to different scales on the vertical axes.
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s=0
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0

0.2
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s=1

Fig. 3. Simulated (dotted grey) vs. LSU-predicted (solid black) output yt with predic-
tion bounds (thin dashed), ρ = 0.003, r = 0.007. Left figure: no input (s = 0), right
figure: input with s = 1.

6.3 Discussion

The LSU predictive performance was examined, using simulated data with uni-
formly distributed noises, and compared to KF as a standard tool, but assuming
normally distributed noises. This modelling difference was involved in the study
as well.

The LSU predictor, in comparison to KF predictor, has moderately higher
prediction errors, see Table 1 (standard deviations of prediction errors are in
a similar relation as medians, not reported).

Setting up the KF noise covariances (30) meets the fact of different para-
metric models of noise. Therefore, a matching parameter c was introduced to
interconnect ρ and r with Rw and Rv. If we matched second moments of nor-
mal and uniform pdfs, then c = 1/3. However, Table 2 shows that predictive
interval ŷt ± σt, constructed with such covariances, does not contain significant
amount of observed outputs and the predictive interval ŷt±2σt does not contain
all observed outputs as well. To include all the data in both predictive inter-
vals, the parameter c was set empirically to 2.7 (see also Fig. 2), its square root
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equals 1.64. It means, that noise parameters for KF are set 1.64-times higher
(in the sense of standard deviation) than the corresponding parameters used for
simulation of the data. Therefore, uncertainty of the KF predictor was artifi-
cially increased to broaden the predictive interval, otherwise some data would
be missed (Table 2, Fig. 2). This observation indicates that KF, with covariances
set by c ≤ 1, cannot process correctly data that are uniformly distributed.

On the other hand, higher values of c improve matching KF to uniformly
distributed data. With c increasing, variance of normal pdf increases, which, on
finite support, resembles a “pseudo-uniform” distribution.

The LSU predictive interval (29) reflects the noise model and therefore natu-
rally expresses bounds of actual knowledge on the system, however conservative
it may appear, particularly for higher value of noises ρ and r (Table 1). Although
the KF predictive interval given by (30) contains all the observed outputs for
various combinations of noises, with c chosen for this purpose, it is narrower.
The question is, whether the narrower predictive pdf given by (mismodelling)
KF does not pretend artificial precision, while the corresponding knowledge is
actually not at disposal.

7 Concluding remarks

We extended the LSU estimator of unknown states of a linear state space model
with uniformly distributed noise [9] by one-step-ahead LSU predictor for scalar
output. The limitation of the output dimension is not essentially critical. Using
the chain rule, scalar random variables can be composed together into a vector
a vice versa.

Because of properties of uniformly distributed pdf, approximation of pdf was
necessary in the process of the predictor construction. However, this approxima-
tion does not bias the point prediction.

The LSU predictor was compared with KF (Kalman) predictor, together
with predictive intervals computed pro each predictor using the corresponding
formulae. It was shown that covariances of KF must be adjusted carefully to
give meaningful predictive intervals. This effect pointed out a mismatch between
uniform data and assumption of normal distribution at KF.

Predictive intervals given by LSU are more conservative than those by KF.
Consequence of this observation should manifest itself in intended application of
the LSU predictor for information sharing in sensor networks.

The literature reveals many contemporary examples of sensor networks with
uniformly distributed innovations and/or observation processes [21, 22]. The LSU
filtering algorithm published in [9], and the consistent predictor developed in this
paper, will find important applications in such contexts. In particular, [23] has
proposed that optimal probabilistic (i.e. Bayesian) knowledge transfer between
interacting nodes can be accomplished optimally via the data predictor. However,
results are available to date only for Kalman (normally modelled) nodes [20]. The
progress in this paper will allow the extension of the Bayesian transfer learning
technique in [23] to uniformly modelled processing nodes, significantly enriching
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the application range in networked knowledge processing. This research will be
published shortly.
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