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Abstract

Despite their deficiencies, continuous second-order traffic flow models are still com-
monly used to derive discrete-time models that help traffic engineers to model and pre-
dict traffic flow behaviour on highways. We briefly overview the development of traffic
flow theory based on continuous flow-density models of Lighthill-Whitham-Richards
(LWR) type, that lead to the second-order model of Aw-Rascle. We will then con-
centrate on widely-adopted discrete approximation to the LWR model by Daganzo’s
Cell Transmission Model. Behaviour of the discussed models will be demonstrated by
comparing the traffic flow prediction based on these models with real traffic data on
the southern highway ring of Prague.

1. Introduction

Management systems for highway traffic have existed since 1970s. These complex
systems consist of different decision-making tools that address the management of
pavement and bridges, public transport, congestion and safety, or traffic data moni-
toring. In this paper we will concentrate on numerical aspects of three mathematical
models that can be used to predict traffic flow behaviour for highway management
purposes.

Traffic flow models can be divided into four basic groups according to the level
of detail that the model attempts to implement. The most widely employed class
of traffic flow models are probably macroscopic models that disregard individual
vehicles and consider the highway traffic to be an equivalent of compressible fluid
flow. As these models are commonly used to predict and control (manage) the
highway traffic, the role of such models is crucial for the success of any management
action: A good model provides relatively accurate predictions of the future and it is
computationally as simple as possible.

In the rest of our paper we will evaluate three possible traffic flow models that
may be considered to be good candidates for modelling of highway traffic, and we
will examine their performance in predicting highway traffic flow.
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2. Macroscopic traffic models

A macroscopic traffic model incorporates traffic flux q [veh/hr],1 traffic density %
[veh/km] and velocity v [km/hr], and describes the so-called fundamental diagram
of traffic flow. Such a model can be used to predict the behaviour of a road system
when applying control or management actions (e.g. ramp metering or speed limits).

Let us first study the number of vehicles N1 and N2 entering and leaving a road
segment of length ∆x metres during ∆t seconds. Consider a hypothetical situation
where a build-up of vehicles (N2 < N1) occurs. The change in the flow rate q is
∆q = ∆N/∆t and the change in vehicle density % is ∆% = −∆N/∆x.

As the vehicles inside the segment have no possibility to exit the road, vehicles are
conserved, with ∆N denoting the number of vehicles inside the segment. Therefore,

∆q∆t = ∆N = −∆%∆x ⇔ ∆%

∆t
+

∆q

∆x
= 0.

This justifies the following relationship for continuous q(x, t) and %(x, t):

∂%

∂t
+
∂q

∂x
= 0 or ∂t%+ ∂xq = 0. (1)

Continuous macroscopic traffic flow models are typically derived from this equation,
by introducing a form of speed-influenced density. The most prominent type of the
first-order models that result from the direct application of the above equation is the
LWR model, described in the next section.

2.1. Lighthill-Whitham-Richards

Lighthill-Whitham-Richards (LWR) model [8, 10] is a first-order model that re-
sults from a direct application of the conservation law (1) where the flow rate is
function of velocity v(%)

q(x, t) = v(%(x, t)) · %(x, t).

The speed is typically expressed as

v(%) = vf (1− %

%jam

),

where vf is the free-flow speed of solitary vehicles, and %jam denotes so-called jam
density of the road, that is the maximum possible density of vehicles in the moment
when the traffic flow has completely stopped due to traffic jam.

The model is quite simple and numerically stable and even today is often used to
study traffic flow phenomena that occur on highways or in road tunnels. According
to critical studies [5, 6], the model provides results that correspond well with the
theory of kinematic waves, and its output is consistent with empirically observed
fundamental diagram data. However, this simple model is unable to capture cer-
tain phenomena that occur in everyday traffic, like stop-an-go waves or travel speed
adaptivity.

1The unit “veh” denotes a unit vehicle, an average vehicle that makes it possible to disregard
the heterogeneity of traffic flow. Also known as PCE, passenger car equivalent.

87



2.2. Second-order fluid approximations

The inability of LWR-class models to capture more complex traffic flow phenom-
ena led to creation of more elaborate models. These models use an additional set of
equations to introduce a relation similar to conservation of momentum in fluids, in
the hope that this additional level of detail would lead to a more detailed level of
description.

Two seminal works of Payne [9] and Whitham [11] emerged, and sparked a great
deal of effort resulting in numerous publications of so-called PW-type flow models,
introducing variations and extensions and proposing different numerical schemes.
However, 20 year later Daganzo [5] demonstrated that these “higher order” ap-
proaches are not appropriately constructed and lead to unrealistic results.

The only continuous traffic flow model of second order that is currently still being
studied is due to Aw and Rascle [1]. This AR-type model2 addresses most of the
previous flaws of PW-type models. It takes the composite form of two first-order
models,

∂t%+ ∂x(v%) = 0

∂t(v + p(%)) + v∂x
(
v + p(%)

)
= 0

where the pressure function of vehicle density p(%) is smooth and increasing.
An AR-type model can be quite conveniently solved using the central upwind

scheme [7, 2]. However, as we will see in our experiments, special attention has to
be paid to selecting appropriate space- and time-steps.

3. Cell Transmission Model (CTM)

Daganzo in [3] introduced the CTM, where he simplified the first-order models
by using a piecewise-linear approximation of the fundamental diagram, depicted in
Figure 1. CTM replaces the original LWR state equation (1) by a set of affine
functions

q = min (v%, qmax, w(%jam − %)) .

The follow-up paper [4] examines the evolution of traffic on a highway segment
divided into I consecutive cells numbered starting at the upstream end of the road,
i = 1, 2, . . . , I. The segments are homogeneous and their length is set equal to the
distance traveled by typical vehicle in light traffic in one clock tick (time step k of
constant length ∆t).

The cell transmission model is based on a recursion where the cell occupancy at
step k + 1 equals its occupancy at step k, plus the inflow and minus the outflow,

ni[k + 1] = ni[k] + yi[k]− yi+1[k], (2)

where the flow from cell i− 1 to i during the time interval k is assumed to be

yi[k] = min{ni−1[k − 1], Qi[k], Ni[k]− ni[k]}, (3)

2Note that AR in this paper is not related to autoregressive models.
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Figure 1: An approximation of the fundamental diagram suggested by Daganzo [3].

where Qi[k] is the capacity flow into i for time interval t, and Ni[k] − ni[k] is the
amount of empty space in cell i at time step k. Cell occupancies are updated for
each step of the clock during the simulation.

4. Experiments

In order to demonstrate the behaviour of all three discussed models, we have
tested the prediction capabilities using the data from the southern leg of the Prague
Ring (SOKP) section from km 20.1 to km 17.0. We fed the measurements, provided
by detectors at km 20.1, as a boundary condition into our models, and used the
models to predict the traffic at km 17.0. The predicted data were then compared
with the measurements provided by detectors.

The basic parameters for the simulation were the length of a segment ∆x = 150 m,
and the time step ∆t = ∆x/vf. The free flow speed vf has been identified from the
measured data as vf = 115 km/h, implying ∆t ≈ 4.7 s. Jam density %max is given
by an average length of a passenger vehicle davg = 6 m as %max = 1000/davg =
166 veh/km. Maximum vehicle flow is given by the theoretical speed limit of the
highway, which is 130 km/h.

When numerically solving a partial differential equation using a method based
on finite differences, a necessary condition of stability of the solution is provided by
Courant–Friedrichs–Lewy (CFL) condition [7]. This condition arises if explicit time
integration schemes are used for the numerical solution. As a consequence, the time
step of such a scheme must be less than a certain time, otherwise the simulation
will produce incorrect results. While the rounded time-step ∆t = 5 s is an accept-
able value for first-order LWR-type models (even if it violates the CFL condition),
integrating an AR-type model with such a large time step does not converge to
a plausible solution. The higher-order model unfortunately requires a shorter time
step fulfilling the CFL condition. Hence, for an AR-type model, ∆t = 0.5 s has been
used.

The results of all three models are compared in Figure 2. We can see that the
second-order AR-type model has still issues in following the general trends recogniz-
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Figure 2: Comparison of predictions of the LWR, AR, and CTM models with the
reference flow obtained by measurements. Left: data for one day of traffic, right: the
same data between 6:00 and 9:00.

Model ∆t [s] Steps Time [s] MSE max εr [%]

LWR 5 18017 42 59.58 42%
AR 0.5 180167 1122 80.09 101%

CTM 4.7 18880 25 27.79 14%

Table 1: Comparison of all models on real time data. MSE denotes the mean squared
error of the prediction, εr is the relative prediction error.

able in the traffic data. This is especially visible in the right panel of Figure 2 for
times between 8:00 and 9:00. The most probable reason for this anomaly is the higher
sensitivity of AR-type models to repetitive changes in the boundary conditions. Most
important observation, however, can be found in Table 1 which summarizes the com-
putational times and errors of the models: From the practical point of view the test
demonstrates that the AR-type model is almost useless due to the necessary small
time-step and resulting long computational time. A simple CTM scheme that re-
sembles cellular automata beats even the simple LWR model in both computational
speed and accuracy. Again, our assumption is that the continuous nature of the
underlying model is disturbed by the time-variable boundary conditions.

5. Conclusions

We have demonstrated three different traffic flow models and their performance
on real-world traffic flow data. Our experiment shows that from the practical point
of view, Daganzo’s CTM, a simple compartment model based on piecewise linear
approximation of the fundamental diagram of traffic flow, provides best results in
both accuracy and computational speed. In theory, a continuous higher-order model
of AR-type should be able to address traffic phenomena that the CTM is unable to
capture, however, the higher order model is significantly less numerically stable. The
need for strict fulfillment of the CFL stability condition results in tenfold decrease of
the original time-step, rendering the whole model unsuitable for practical application.
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The whole Matlab package can be downloaded from the website of the corre-
sponding author at http://staff.utia.cas.cz/prikryl/panm17.zip.
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