
On Distributed Traffic Signal Control

Jan Přikryl
Department of Applied Mathematics

Faculty of Transportation Sciences

Czech Technical University in Prague

Prague, Czech Republic

Email: prikryl@fd.cvut.cz

Jakub Novotný
Faculty of Nuclear Sciences

and Physical Engineering

Czech Technical University in Prague

Prague, Czech Republic

Václav Šmı́dl
Department of Adaptive Systems

ÚTIA AVČR, v.v.i

Prague, Czech Republic

Email: smidl@utia.cas.cz

Abstract—Distributed control mechanisms have been studied
in past decades in different application areas. Currently, multi-
agent systems are a popular topic also in the area of intelligent
transportation systems, where numerous approaches to distribu-
tion of system intelligence are being tested. One of the main
problems in distributed control, however, remains the guarantee
of reaching the global optimum – while most of the applications
perform sufficiently well, there is no way to tell that they
cannot perform even better, or that they may fail under certain
operating conditions. Luckily, for certain control paradigms such
guarantees may be given. In this paper we study two approaches
to distributed control, namely distributed linear-quadratic control
and distributed non-linear control using COBYLA algorithm, and
apply them to urban traffic control scenario using two traffic
models of different complexity. We show that the convergence
conditions are met and that the results achieved with distributed
control converge to those of centralised control mechanisms.

I. INTRODUCTION

Large systems, as are for example urban traffic networks or
energy transmission networks, can be subdivided into smaller
sub-systems that interact with each other. These smaller units
can be controlled in decentralised manner in the hope that
breaking the large system into smaller units will decrease the
dimensionality of the original system and will result in better
scalability of the control.

Large systems can be found in different areas, as, for exam-
ple, chemical plant control, power grid control, or urban traffic
control. These systems are typically composed of many smaller
and similar parts, and their centralised control is difficult
due to the number of components and limited communication
infrastructure. In some case it is even impossible to obtain
all measurements in real time and decentralised control is
therefore an imperative. These are the main reasons why in
the past more than four decades, decentralised control has
been intensively studied and different forms of decentralised
systems have been proposed [1].

This paper is further organised as follows: Section II gives
an introduction to distributed model-predictive control and
outlines control approaches employed in this paper. Two urban
traffic models that will serve as a testbed for our experiment
are introduced in Section III. In Section V we present and
evaluate the results of our experiments. Section VI summarises
and concludes the paper.

��

�������	

��

�������	

��

��

�
��
�

��
��
�

�
�	
��
��
��
�

��

�������	

��

�
��
�

��
��
�

�
�	
��
��
��
�

Fig. 1. Distributed control: Regulators Ri control their corresponding subsys-
tems Si with inputs ui and measured quantities xi. Regulators communicate
between neighbors [1].

II. DISTRIBUTED MODEL-PREDICTIVE CONTROL

In control theory, Model-Predictive Control (MPC) denotes
a control paradigm, where at certain time-step k a mathemati-
cal model of a real-world process is used to predict the future
behaviour of that process at time-steps k+1, k+2, . . . , k+h,
given a candidate vector u[k] of its control inputs [2]. The
control inputs u[k] are chosen in a way that minimises some
pre-defined objective function J(s[k]), where s[k] denotes a
vector of system state variables at time-step k. As the minimi-
sation of J(s[k]) over just a single time-step (i.e. optimising
control just for k+1) could lead to sub-optimal results in the
following steps, the minimisation is typically performed over a
longer horizon of h steps using an extended state vector s[h|k].

The distributed management model assumes communica-
tion between subsystem controllers (in this paradigm they
are usually called agents). The local information available to
these controllers includes the subsystem state variables and
information on the behavior of neighbouring subsystems. The
transmitted information typically contains the subsystem status
or control variables and their predictions [3]. This way an
agent is able to predict the effects of interaction. Diagram of

2015 IEEE 18th International Conference on Intelligent Transportation Systems

978-1-4673-6596-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ITSC.2015.150

894

a distributed system is shown in Fig. 1.

The principle of predictive control is to minimize the
system state criterion at time-step k on time horizon of length
h using J(s[h|k]). Vector s[h|k] is in this case composed
of all the variables of the large system S . The principle of
decentralization is to divide S into disjoint sub-systems Si,
S = ∪Si, ∩Si = ∅.

In the case of decentralized model-predictive control, each
controller Ri controls only its subsystem based on the mini-
mization criteria Ji(si[h|k]). This task can be summarized as
a series of optimizations in the form

min Ji(si[h|k]) (1)

where vector si[h|k] consists only of state variables that belong
to the subsystem Si. A “naı̈ve” controller would then attempt to
achieve the best local state, which may of course considerably
differ from the global optimum.

This is the reason why in the case of distributed control
another approach has to be taken. For large systems, each
subsystem usually does not interact with all other subsystems,
but only with those in its immediate surroundings — otherwise
the decentralised control would not be feasible at all. In this
situation, every agent Ri treats the system as it would consist
of three disjoint subsets S = Si ∪ Snei

i ∪ S rem
i [4]. The set

Si contains local variables measured and controlled by agent
Ri. The Snei

i are variables of neighbouring subsystems directly
interacting with Si and the set S rem

i contains the rest. For
agent R1 in Fig. 1 therefore Snei

1 = S2 and S rem
1 = S3. If

communication between agents includes all direct neighbours,
the local optimization may be based on the vector si,nei[h|k]
which is composed of local and neighbouring variables Si and
Snei
i . The question remains, whether such a distributed control

scheme is able to achieve results of the same quality as a
centralised control scheme.

The answer is partly given in a theorem due to Camponog-
ara [5], which states 9 conditions that have to be fulfilled in
order for local MPC optimalisations to convert to the optimum
obtained using a centralised approach, provided that the local
controllers operate sequentially. Reaching the global optima
in a distributed environment is thus possible given a suitable
system decomposition and agent coverage. Experiments have
even shown that we do not need to limit ourselves to linear
and convex systems [4], [5].

A. Heuristics for Asynchronous Runs

In a real world scenario, the individual agents run usually
in parallel on different computers and exchange information
through some type of communication network. The original
requirement for sequential run is therefore difficult to fulfill.
In practice it appears that results approaching globally optimal
solution can be achieved also in asynchronous runs using local
predictions based on information received in the previous time-
step [6].

One possibility how to achieve this in our scenario is to
transmit an agent’s network model of subsystem Si to its
neighbouring agents Snei

i , that can then use a mathematical
model to estimate the behavior of surrounding agents and does
not need to wait for current measurements. Although the model

is built on (older) information from the previous time step, it
allows all agents to run in parallel.

III. DISCRETE TRAFFIC MODELS

Let us now briefly overview two urban traffic models that
we will use for our experiment. Both are discrete-time models
meaning that they operate on, and produce, data sequences that
are sampled at discrete time steps, given usually by the signal
plan cycle length Tc or the data measurement period T .

A. R-model

The R-model [7] has been developed to study the effect
of the active green phase length on the corresponding queue
length. It considers a constant cycle length Tc. For the sake
of simplicity we initially assume T = Tc, although operation
with T �= Tc is also possible.

The R-model has a form of an autoregressive formula for
queue length Qj [k] at some lane j at time step k. This model
is based on traffic flow conservation law which leads to an
equation describing the transition from the queue length Qj [k]
to the new length at time-step k + 1 as

Qj [k + 1] = Qj [k] + Ij [k]−Oj [k] + ej,Q[k],

that is, in every time step the queue decreases with the outflow
Oj [k] and increases with the inflow Ij [k]. The equation takes
into account also the measurement noise ej,Q[k], which is
related to the given lane, queue length and time step. The
outflow Oj [k] depends on the queue length and on the inflow,
and its maximum is given by the capacity of the lane,

Kj [k] = sj(Gj [k] + bj).

Here, sj denotes the saturation flow, Gj [k] is the active
green length for the lane and bj is the corresponding clearing
time. The outflow computation has therefore two branches for
unsaturated and saturated conditions, namely

Oj [k] =

{
Qj [k] + Ij [k]gj [k] if Qj [k] + Ij [k]gj [k] ≤ Kj [k],

Kj [k] if Qj [k] + Ij [k] > Kj [k].
(2)

Here, gj [k] = Gj [k]/Tc denotes the relative green length.

As the typical measurement device used to collect vehicle
count is the inductive loop and the loops are usually located
quite close to the stop-bar, the model attempts to compensate
the situations when the queue tail reaches behind the loop
location by incorporating an additional regressive model of
loop occupancy ωj [k]

ωj [k + 1] = β0 + β1ωj [k] + β2Qj [k] + ej,ω[k],

where β0, β1, and β2 are regressors. This model can be used to
estimate Qj [k] in cases when the vehicle count measurements
are not reliable due to detector saturation. The relationship
between ω and Q is in fact more complex [8], but the
original authors claim that regressive models with higher order
approximations do not bring any significant improvement and
that the linear regression model is sufficient [7].

895

B. S-model

The S-model [9] also works with queue length, in this case,
however, the queue length is not only bound to the given lane,
but also to the direction of the next turn. For every lane i
we have therefore several queue lengths Qi,j [k] standing for
the queues of vehicles that will leave lane i and enter lane j.
Similarly as above, the S-model also initially assumes that the
data measurement period is equal to the cycle length, T = Tc.

The queue length is expressed as

Qi,j [k + 1] = Qi,j [k] + Tc(Δqi,j [k]− oi,j [k]), (3)

where Δqi,j [k] is the vehicle flow entering the tail of queue
Qi,j [k], and oi,j [k] is the outflow, which depends on green
length Gi,j [k], destination approach capacity Cj , queue length
and queue inflow, turning rate αi,j and vehicle count Nj [k] as

oi,j [k] = min

{
si,jGi,j [k]

Tc

,
Qi,j [k]

Tc

+Δqi,j [k],

αi,j(Cj −Nj [k])

Tc

}
.

(4)

The vehicle count in approach j is computed iteratively as

Nj [k + 1] = Nj [k] + Tc(ij [k]− oj [k]), (5)

where the inflow ij [k] into the approach j is computed as a
sum of all outflows that discharge into j, that is

ij [k] =
∑
i∈Λj

oi,j [k].

The vehicle flow Δqi,j [k] of vehicles entering the tail of queue
is given by

Δqi[k] =
Tc − γi[k]

Tc

ii[k− δi[k]] +
γi[k]

Tc

ii[k− δi[k]− 1]. (6)

Here, τi[k] denotes the delay with which the vehicles arrive to
the tail of the current queue after leaving the previous intersec-
tion, while δi[k] = �τi[k]/Tc� and γi[k] = τi[k] modTc hold
the number of signal plan cycles and the offset, respectively,
of this delay. The delay τi[k] can be expressed as

τi[k] =
(Ci −Qi[k])l

nivff

where l is the length of the approach, ni denotes the number
of its lanes, and vff is the average free-flow speed of a vehicle.

C. Update for T �= Tc

The requirement of both R-model and S-model for data
measurement with period T = Tc is difficult to fulfill in real
world conditions. While the typical cycle length varies from
cca 60 to cca 120 s, traffic flow measurements are provided in
different periods as depicted in Fig. 2. We have to generalize
both models to cope with situations when T �= Tc.

1) R-model: Under assumption of constant Tc the update of
R-model for different data collection periods is quite straight-
forward and can be accomplished by relating all Tc-related
quantities to the data collection period T . The only equation
affected by this change is the output model (2), where the
relative green gj [k] becomes gj [k] = Gj [k]/T .

Fig. 2. Signal plan cycle length vs. different data collection periods.

2) S-model: At a first glance, the adaptation of S-model to
different sampling period does not seem to be too complicated.
The queue development model for time-step k + 1 will be
almost identical to Eq. (3), the only change will be using T
instead of Tc,

Qi,j [k + 1] = Qi,j [k] + T (Δqi,j [k]− oi,j [k]).

Similarly, we will update the Eq. (5) for computing the vehicle
count in an approach,

Nj [k + 1] = Nj [k] + T (ij [k]− oj [k])

and the flow of vehicles entering the queue in Eq. (6),

Δqi,j [k] =
T − γi[k]

T

∑
j∈Λi

oj [k − δi[k]] +

+
γi[k]

T

∑
j∈Λi

oj [k − δi[k]− 1].

The situation gets more complicated when one starts to
compute the outflow oi,j [k]. The effective green length changes
in every computational step even in cases where the effective
green is kept constant — in every modelling step the relative
offset of the green phase changes as the offset is relative to the
signal plan length rather than to the data measurement period
(see Fig. 2).

In such a case it seems beneficial to compute with the
relative ratio of green length in approach i to the data collection
period, gi[k] ∈ [0; 1]. We will also need the time offset θ of the
beginning of the signal plan at the intersection, θ ∈ [0;Tc−1],
and the delay of the green phase for the given lane from the
beginning of the cycle, ΔGi[k]. Should the Tc change, we will
need to keep the beginning of the cycle in memory; in cases
of constant Tc, gi[k] can be eliminated out of the equation.
Let us denote 	 the count of complete signal plan cycles that
completed since the end of the k-th data collection period as

	 =

⌊
kT − θ

Tc

⌋
. (7)

In the k-th simulation step, the green phase starts at θ + 	 ·
Tc +ΔGi[k], but this time may not exceed the end of the k-th
period. The starting time will therefore be

gi,start[k] = min{θ + 	 · Tc +ΔGi[k], (k + 1)T} (8)

and the end time

gi,end[k] = min{θ + 	 · Tc +ΔGi[k] +Gi[k], (k + 1)T}. (9)

Using Eqns. (8) and (9) the effective relative green gi[k] in
data measurement period T can be written as

gi[k] =
gi,end[k]− gi,start[k]

T
. (10)

896

Substituting (10) into (4) we get

oi,j [k + 1] = min

{
si,jgi,j [k],

Qi,j [k]

T
+Δqi,j [k],

αi,j(Cj −Nj [k])

T

}
.

(11)

IV. LINEAR-QUADRATIC AND NON-LINEAR CONTROL

The most popular class of system models used in control
theory are linear models. As the name suggests, these models
assume linear relationship between system variables and are
therefore often expressed as a set of linear equations. As a
result, rigorous mathematical proofs of system behaviour are
often possible.

Linear-quadratic (LQ) controllers [10] are used to control
dynamic linear systems by minimising a quadratic objective
(cost) function J(s[h|k]) — see Eq. (1). Under the assumption
of linearity, this minimisation can be computed using a closed-
form formula and is therefore relatively fast. In our case, the
objective function is given by the weighted sum of squared
predicted queue lengths,

J(s[h|k]) =
h∑

i=0

N∑
j=1

wj (Qj [k + h])
2
. (12)

Unfortunately, both R-model and S-model are not strictly linear
— rather they are composed of piecewise-linear components
(see the Eq. (2) for R-model and Eqns. (8), (9), and (11) for
S-model). The LQ control assumes that the next system state
can be computed as s[k + 1] = As[k] + Bu[k], though. In
our case it means that at every step k the model is fixed to
certain linear working regime and that this setpoint remains
fixed even if the optimalised green lengths would cause the
model to switch to another subset of equations.

Both our models can be completely described by non-linear
system function f in the form s[k + 1] = f(s[k],u[k]). How-
ever, finding a minimal cost for such a generic system is not
an easy task and advanced non-linear optimalization methods
are required. One of these methods is COBYLA (Constrained
optimization by linear approximation) [11], which iteratively
approximates the actual non-linear optimization problem with
linear programming problems and is therefore very computa-
tionally demanding.

V. EXPERIMENTS

In order to demonstrate the behaviour of both models
in centralised and distributed control scenarios, a series of
experiments has been carried out in microscopic traffic simu-
lator Aimsun [12]. All traffic models and control algorithms
have been implemented using Aimsun API (AAPI) extensions
in Python programming language. The SciPy and NumPy
libraries [13] were used for linear algebra operations. An own
implementation of linear-quadratic (LQ) optimizer and a SciPy
package implementing the non-linear COBYLA optimization
algorithm have been used for optimization.

The experimental network used for experiments described
in this section is depicted in Fig. 3. Several simulation scenar-
ios were tested, but due to space constraints only one will be
presented here. The vehicle count for the presented scenario is
given in Fig. 4. The remaining scenarios may be found in [14].

I01 I02

D01N D02N

D01W D02W

I01-AW-L1 I02-AW-L1

I02-AN-L1

I01-AN-L1

Fig. 3. Experimental network. All lanes are 100m long and one-way, traffic
flows from west to east and from north to south. Turning rates are set to 50%.

Fig. 4. Traffic demand for the presented experiment. Vehicle count per T =
90 s (40 samples correspond to 1 hour of data), detector labels refer to detectors
in Fig. 3.

A. Effectivity of centralized LQ control on R-model and S-
model

In the first experiment we studied the effectivity of LQ
control by comparing the queue lengths collected by Aimsun
micro-simulator before and after an application of centralized
LQ control. First, the reference measurements were obtained
using a fixed signal plan with phase lengths computed from the
average demand given in Fig. 4. Then, both S-model and R-
model were tested using LQ control, 30-minute averages were
computed and the result compared with the reference values.

Even during the 30-minute interval where the traffic de-
mand shall be quite monotonous, the queue lengths show quite
a high variance. In order to verify the validity of our results, we
conducted the two-sample t-test of mean values on significance
level α = 0.05. The results are shown in Tab. I. A complete
analysis of experimental results from [14] shows that using the
LQ control leads to mild deterioration in less than 2% cases
and that in more than 80% cases the average queue length is
significantly shorter.

897

TABLE I. DIFFERENCES IN AVERAGE QUEUE LENGTHS AND THE

p-VALUES OF t-TEST FOR DATA IN FIG. 4.

R-model S-model

kmin kmax Qref −Qmdl p Qref −Qmdl p

1 20 0.75 0.390 −0.50 0.583
21 40 4.20 0.000 4.50 0.000
41 60 12.05 0.000 10.85 0.000
61 80 5.50 0.000 3.55 0.000
81 100 0.50 0.551 0.00 1.000

101 120 1.50 0.012 1.05 0.043
121 140 6.50 0.000 5.80 0.000
141 160 0.15 0.891 −0.25 0.795

Fig. 5. Comparison of centralized and distributed LQ control of S-model
on phase length F1 for intersections I01 and I02 from Fig. 3. FC: centralized
LQ, FD: distributed LQ. Ideally, FD should converge to FC.

B. Convergence of distributed LQ control

In the previous subsection we have shown that a centralized
management of traffic signals using the LQ optimization is a
quite effective way to improve the state of the traffic situa-
tion. However, especially when using complex algorithms, the
demand for computing power grows fast with the increasing
number of transport network nodes. Therefore in our second
experiment we studied the performance of distributed LQ
control, optimizing separately each intersection in the transport
network.

In Fig. 5 we can see a demonstration of distributed LQ

Fig. 6. Comparison of queue lengths using S-model with centralized LQ
optimalisation and non-loinear COBYLA optmizer. The reference is given by
optimal fixed signal plan.

control on two intersections from Fig. 3. Inasmuch we would
like the distributed control to converge to its centralized
counterpart as the theory suggests, we can see that in some
cases the distributed control converges only very slowly to
the centralized solution. We believe that the reason for this
behaviour are the sudden changes in the traffic demand and the
relatively short time (20 computational steps) that is given to
the local controllers to react on the change, given their limited
knowledge of the whole system.

C. Non-linear control using COBYLA optimizer

The piecewise-linear form of both R-model and S-model,
discussed in Sec. IV suggests that better results could be
achieved using non-linear control. This led us to the third set of
experiments where we investigated the tradeoff between using
a non-linear optimalisation method (which, in theory, should
achieve better results) and the original LQ control.

1) Centralised LQ vs. COBYLA: As expected, the central-
ized non-linear control using COBYLA optimizer achieves
results which are slightly better than those of LQ control.
As we have seen already in Tab. I, there are situations where
the LQ control delivers inferior results and the same can be
observed also for COBYLA — see Fig. 6. This phenomenon
is probably caused by the traffic model, which does not permit
accurate predictions of the system state which are crucial for
MPC control.

2) Distributed LQ vs. COBYLA: In the final experiment we
wanted to examine whether the nonlinear distributed control
using COBYLA is able to achieve similar results to its central-
ized version. Note that while we know that the distributed LQ
control shall converge to its centralized version, there are no
convergence guarantees in case of non-linear control. Again,
we will limit the presentation to results for S-model, which
is shown in Fig. 7. The remaining results can be again found
in [14].

3) Time complexity of LQ vs. COBYLA: The main ad-
vantage of using the COBYLA optimizer instead of linear
LQ control is that almost any kind of model can be used
with COBYLA without any need for linearisation, model

898

Fig. 7. Comparison of centralized and distributed non-linear control of S-
model on phase lengths for intersection I01 and I02. F1: centralized COBYLA,
F2: distributed COBYLA. Ideally, F2 should converge to F1.

TABLE II. TIME REQUIREMENTS FOR CONTROL SYNTHESIS FOR

INTERSECTIONS WITH TWO LANES AND TWO SIGNAL PLAN PHASES.
MEAN VALUE OF 10 RUNS.

Intersection count LQ time [s] COBYLA time [s]

1 0.006 0.184
2 0.008 0.563
3 0.012 1.121
4 0.018 1.997

simplification, and other changes. However, as we mentioned
earlier, the tradeoff of this generality lies in much higher
computational demands of COBYLA.

The time complexity of both methods is demonstrated in
Table II. We can see that while the mean computational time
for four signal plan phases (two simple intersections with two-
phase signal plan) of centralized LQ scheme is still below
10ms, the non-linear optimalization needs more than 500ms
for the same task. Moreover, the computational time grows
rapidly as the number of intersections increases. This problem,
though, can be at least partially eliminated by distributing the
computation over all intersections – our experiments indicate
that the time needed for optimizing a single intersection are in
the order of 200ms.

TABLE III. DIFFERENCES IN QUEUE LENGTHS FROM REFERENCE

VALUES FOR STUDIED MODELS AND CENTRALISED AND DISTRIBUTED

CONTROL METHODS.

kmax R+LQ S+LQ R+CO S+CO S+DLQ S+DCO

20 −1|2−4 0|3−3 0|3−3 1|3−2 −0|2−2 0|2−3

40 −4|0−9 −4|−2
−8

−4|0−10 −2|1−7 −4|−1
−9

−4|2−8

60 −12|1−17 −11|1−15 −12|0−17 −11|8−18 −12|1−18 −11|−1
−16

80 −6|1−12 −4|6−9 −7|0−11 −7|6−12 −7|−3
−12

−5|5−10

100 −0|4−7 0|5−5 −3|7−9 −3|9−7 −1|9−6 −2|7−6

120 −2|3−6 −1|2−4 −5|2−13 −5|1−10 −3|2−7 −5|−1
−9

140 −6|2−12 −6|2−12 −4|7−11 −3|6−10 −6|5−11 −4|4−9

160 −0|12−7 0|10−5 −1|12−12 2|18−4 −0|12−7 3|17−5

Entry format: average difference|maximal difference
minimal difference . Abbreviations: R, S – models, LQ –

LQ control, CO – non-linear optimalisation using COBYLA, DLQ, DCO – distributed
variants of LQ and CO.

VI. CONCLUSION

In this paper we have studied two approaches to distributed
control of urban traffic network — distributed LQ control and
distributed non-linear control using COBYLA algorithm. The
results are summarized in Tab. III. Our experiments using two
different discrete models of queue length development have
demonstrated that both LQ and COBYLA are suitable to con-
trol our experimental network and that their distributed variants
produce results that are comparable to those of centralised
control mechanisms.

REFERENCES

[1] R. Scattolini, “Architectures for distributed and hierarchical Model
Predictive Control – A review,” Journal of Process Control, vol. 19,
pp. 723–731, 2009.

[2] M. Morari, C. Garcia, J. Lee, and D. Prett, Model predictive control.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] R. Negenborn, B. D. Schutter, and J. Hellendoorn, “Multi-agent model
predictive control for transportation networks: serial versus parallel
schemes,” Engineering Applications of Artificial Intelligence, 2008.

[4] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp.
44–52.

[5] E. Camponogara, “Controlling networks with collaborative nets,” Ph.D.
dissertation, Carnegie Mellon University, 2000.

[6] D. Jia and B. H. Krogh, “Distributed model predictive control,” in
Proceedings of the American Control Conference, 2001, pp. 2767–2772.

[7] J. Homolová, “Traffic flow control management,” Ph.D. dissertation,
Czech Technical University in Prague, Faculty of Transportation Engi-
neering, Prague, 2007.

[8] J. Přikryl and J. Kocijan, “Modelling occupancy-queue relation using
gaussian process,” Neural Network World, vol. 25, no. 1, pp. 35–52,
2015.

[9] S. Lin, “Efficient model predictive control for large-scale urban traffic
networks,” Ph.D. dissertation, Delft University of Technology, 2011.

[10] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[11] M. J. Powell, “A direct search optimization method that models the
objective and constraint functions by linear interpolation,” in Advances
in optimization and numerical analysis, S. Gomez and J.-P. Hennart,
Eds. Dordrecht: Kluwer Academic, 1994, pp. 51–67.

[12] AIMSUN Getram v4.2 getting started - User’s manual, 2003.

[13] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed 2015-05-01]. [Online].
Available: http://www.scipy.org/

[14] J. Novotný, “Distributed traffic signal control,” Master thesis, Czech
Technical University in Prage, Faculty of Nuclear Sciences and Physical
Engineering, 2014, in Czech.

899

