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Abstract. This paper deals with application of heuristic algorithms (DEBR, MCRS) in blind
source separation (BSS). BSS methods focus on a separation of the (source) signal from a linear
mixture. The idea of using heuristic algorithms is introduced on the independent component
extraction (ICE) model. The motivation for considering heuristics is to obtain an initial guess
needed by many ICE algorithms. Moreover, the comparison of this initialization, and other
algorithms accuracy is performed.
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1 Introduction

Independent component analysis (ICA) is a blind source separation (BSS) problem. The
aim of this approach is to separate all components of the instantaneous linear mixing
model

x = Au. (1)

Here, x is a d×1 vector of d mixed signals, A is a d×d non-singular mixing matrix, and u
is a d×1 vector of the original signals that are assumed to be mutually independent. The
jth signal uj (the jth element of u) is modeled as a random variable with the probability
density function (pdf) pj(·). The separation of the components is to estimate A−1 from
x through finding a square de-mixing matrix W such that y = Wx are as independent
as possible. In this paper, we will assume real-valued signals and parameters.

Many algorithms to solve the ICA problem have been developed; see, e.g., [1]. It is
known that if, at most, one original signal has Gaussian pdf while the other signals are
non-Gaussian, then A−1 can be identified up to the order and scales of its rows [6]. It
means that the de-mixing matrix W can be estimated as such that G = WA ≈ PΛ,
where P and Λ is, respectively, a permutation and a diagonal matrix. The elements of G
determine the accuracy of the separation. Its ijth element, Gij, determines the presence
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of uj in the ith separated signal yi. There is a lower bound on the variance of Gij,
the Cramér-Rao Lower Bound (CRLB). The CRLB provides an algorithm-independent
bound for the estimation accuracy (for unbiased estimators). Using the CRLB theory, it
is known, for the non-Gaussian ICA, that

E[G2
ij] ≥

1

N

κj
κiκj − 1

, i 6= j, (2)

where E[·] stands for the expectation operator, N is the number of samples of x (assum-
ing identically and independently distributed samples), and κi = E[ψ2

i ] where ψi(x) =
−∂/∂x log pi(x), which is called the score function of pi where pi is pdf of ith signal. For
normalized variables with unit variance it holds that κi ≥ 1 where κi = 1 if and only if
the ith pdf is Gaussian; see, e.g., [7].

Recently, a novel approach called Independent Component Extraction (ICE) have
been introduced, see [5]. In ICE, the goal is to separate only one independent signal from
x using a priori knowledge such as an initial guess (to determine which signal should
be extracted). Without any loss on generality, let the signal of interest be s = u1. The
motivation for ICE is that ICE algorithms could solve the simpler problem (to extract only
one signal) faster that ICA methods, since in ICE the minimum number of parameters
needed for extraction of the target signal is estimated. In ICE, the mixing model (1) is
re-parameterized for the extraction of s in the way that the rest of the mixture is not
object of any particular decomposition, as compared to ICA. Following the ideas of ICE,
the signal of interest s is assumed to be non-Gaussian while the rest of the mixture is
modeled as Gaussian. The latter is motivated by the fact that the other signals are never
separated from each other (up to very special cases), so their joint distribution is close
to Gaussian even if the pdfs of u2, . . . , ud are non-Gaussian.

In [5], an ICE algorithm, called OGICE, was introduced. In this paper, we study
some performances of the OGICE algorithm and compare and combine it with selected
heuristics algorithms: Differential Evolution (DEBR) and Modifed Controlled Random
Search (MCRS). Accuracies of all methods are than compared to the CRLB.

The ICE mixing model parametrization and the statistical model of signals are de-
scribed in Section 2. Section 3 is devoted to the introduction of DEBR and MCRS algo-
rithms, which are used in Section 4 when performing numerical simulations. Conclusions
are drawn in Section 5.

The following notation will be used throughout the article. Plain letters denote scalars,
bold letters denote vectors, and bold capital letters denote matrices. The Matlab con-
vention for matrix/vector concatenation and indexing will be used, e.g., [1; g] = [1, gT ]T ,
and (A)j,: is the jth row of A.

2 Problem Statement

2.1 Mixing Model

ICE is based on a re-parameterization of (1) mixing model. Let the mixing matrix A be
partitioned as A = [a, A2], and let x be written as x = Au = as + y, where y = A2u2

and u2 = [u2, . . . , ud]
T . Since the scales of s and of a are ambiguous (s and a can be
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substituted, respectively, by αs and α−1a with any α 6= 0), we can fix the first element of
AICE equal to one, i.e. (AICE)1,1 = 1. This also corresponds to the image of that source
on the first sensor [3]. Hence, the new mixing matrix is AICE = [a, Q]. Now, the ICE
mixing model can be written as

x = AICEv, (3)

where v = [s; z], and z = Bx. The de-mixing, WICE = A−1ICE can be partitioned as
WICE = [wH ; B], where wHx = s and Bx = z.

Let a be partitioned as a = [1; g]. It is required to B be orthogonal to a, which
ensures that the signals separated by the lower part of WICE, that is Bx, do not contain
any contribution by s. A straightforward selection is B = [g − γId−1] where Id denotes
the d × d identity matrix. The free variables of WICE are therefore represented by the
elements of a and w; let w = [β; h]. Hence

WICE =

(
wT

B

)
=

(
β hT

g −γId−1

)
. (4)

The next condition is that WICE should be the inverse matrix of AICE, which guar-
antees that s = wTx. This way Q and z can be determined. The reader can verify that
the choice

AICE = [a Q] =

(
1 hT

g ghT − Id−1

)
, (5)

where β is constrained to satisfy β = 1− hTg, guarantees that WICEAICE = Id.
s
By adopting the idea of ICA, that is, taking the assumption that s and z are inde-

pendent, ICE can be formulated as follows: Find vectors g and h such that wTx and Bx,
where w = [1 − hTg; h] and B = [g, −Id−1], are independent (or as independent as
possible).

2.2 Statistical Model

The most popular ICA model (1) is non-Gaussian, i.e. all (but one) signals are non-
Gaussian i.i.d. sequences. In ICE, there are assumed only two variables: the target
signal s and z, the background, which is a vector variable having unspecified structure
(it is a mixture of u2, . . . , ud). As in [5], we will assume that (1) s has a non-Gaussian
pdf denoted as p(s), while (2) z has multivariate Gaussian pdf with covariance Cz. The
latter assumption can be justified by the fact that, z is a mixture of sources in u2. Even if
u2, . . . , ud are non-Gaussian, their mixture tends to have distribution close to Gaussian for
large number of signals (due to the Central Limit Theorem [4]).The ICE model coincides
with ICA model (1) when u2, . . . , ud are Gaussian. Hence, from (3), the pdf of x is

px(x) = ps(w
Tx)pz(Bx)| det(WICE)|, (6)

where WICE, w, and B depend on g and h as described by (4), and pz corresponds
to N (0,Cz). A straightforward calculus, not shown here to save space, can show that
| det(WICE)| = 1. Hence, the log-likelihood function, for one signal sample, is equal to

L(g,h|x) = log ps(w
Tx)− 1

2
xTBTC−1z Bx− 1

2
log (|Cz|)− (d− 1) log

√
2π, (7)
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where |Cz| denotes the determinant of Cz.
The most known measure of separation algorithm accuracy is called Interference-to-

Signal Ration (ISR). For ICE the ISR is defined as

ISR =
E[(ŵTy)2]

E[(ŵHas)2]
. (8)

As shown in [2], the Cramér-Rao Lower Bound for the mean ISR, called Cramér-Rao
Induced Bound (CRIB), was derived

E [ISR] ≥ 1

N

d− 1

κσ2
s − 1

, (9)

where κ = E

[(
∂ log p(s)

∂s

)2]
. Numerical simulations compare the results with the bound

(9) to verify algorithms efficiency.

3 Heuristic Algorithms

We will deal with the following optimization problem: For a given objective function f
the point x∗ is to be found such that:

f(x∗) = min
x∈D

f(x). (10)

The point x∗ is defined as global minimum point and D is the search space. The space
D is closed compact set. The objective function we want to optimize is the log-likelihood
(7).

3.1 Modifed Controlled Random Search (MCRS)

MCRS, introduced in [9], is basically random search controlled by procedure called Re-
flection. This technique is used for generating the next trial point. First, let us take N
random points in D from a population P . The new trial point x is generated from a
simplex S (one point from each dimension) and perform the Reflection of the point z by
the formula

y = g − Y (z − g), (11)

where g is the centroid of the d poles of the simplex, Y is a random multiplication factor
and z is one (random) pole of the simplex S. Denote xmax the point with the largest
function value in the population. The procedure runs as shown in Alg. 1.

There is plenty of choices of setting the multiplication factor Y. We have considered:

• Y = (constant),

• Y is a random variable with uniform distribution on the interval (0; t), where t is a
positive real number.

The value of the parameter t is discussed in [9].
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Algorithm 1 MCRS Algorithm

1: procedure MCRS
2: P:= population of N uniformly distributed points in D
3: while stopping condition is False do
4: y:=Reflection(P; y) until y ∈ D
5: if f(y) < f(xmax) then return xmax := y;

3.2 Differential Evolution (DEBR)

As already mentioned, we deal with the optimization problem (10). Let us consider two
population P and Q of the same size N . The basic differential evolution (DE) [8] is a
method which iteratively tries to improve the condidate solution instead of guessing a
new one as in random search. A new trial point y is composed of the current point xi
of old population and the point u obtained by using mutation. If f(y) < f(xi) the point
y is accepted and inserted into the new population Q instead of xi. After completion of
the new population Q the old population P is replaced by Q and the search continues
until stopping condition is fulfilled. The pseudocode is shown in Alg. 2

Algorithm 2 DEBR Algorithm

1: procedure DEBR
2: P:= population of N random points in D
3: while stopping condition is False do
4: for i = 1 : N do
5: compute a mutant vector u;
6: create a trial point y by the crossover of u and xi;
7: if f(y) < f(xmax) then insert y into Q;
8: else: insert xi into Q;

9: P := Q

There are many variants of DE, however main differences are only in the methodology
of generating a new trial point. We focused on two main cases:

1. DE

u = r1 − F (r2 − r3), (12)

2. DEBEST

u = xmin + F (r1 + r2 − r3 − r4), (13)

where F is a multiplication factor. The combination of these two techniques is called
DEBR [8].

The elements yj, j = 1, 2, . . . , d, of a trial point y are built up by the crossover of its
parents xi and u using the following rule

yj =

{
uj, if Uj ≤ C or j = l

xij, if Uj > C and j 6= l
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where l is a randomly chosen integer from {1, 2, . . . , d}, and U1, U2, . . . , Ud are independent
random variables uniformly distributed in [0; 1), and C ∈ [0; 1] is an input parameter
influencing the number of elements to be exchanged by crossover.

We examined that for our special case the efficiency of the DE search for the global
minimum is not really sensitive to the setting of values F and C. The recommended
values are F = 0.6 and C = 0.5 (see [8]).

3.3 Comparison

Running the simulations with different setting of parameters in MCRS and DEBR shows,
that both algorithms reach nearly equivalent performance. Moreover, both, MCRS and
DEBR, are not very sensitive to the changes of parameters. As you can see in Tab. 1,
the performance of MCRS does not depend on the multiplication factor Y .

Y = rand(0,x) Cost function # steps
2 0.7116 3450
3 0.7116 3526
4 0.7116 3681
5 0.7116 3381

Table 1: MCRS results.

The Tab. 2 shows, that the DEBR algorithm requires less steps when the probability
of crossover is set to one. The other parameters F and C does not affect the results.
Although Tab. 2 and Tab. 1 show, that MCRS needs more steps to converge, the

F Pcross Cost function # steps
0.6 0.2 0.7041 537
0.6 0.6 0.7040 532
0.6 0.8 0.7040 526
0.6 1 0.7040 470

Table 2: DEBR results.

running time of both algorithms is almost equal, since DEBR is more computationally
expensive.

4 Simulations

The CRIB (9) is the lower bound for ISR, i.e for the separation accuracy. Only efficient
methods reach the CRIB in ISR. In [5] was introduced the OGICE algorithm and ISR
of this method was compared to other methods. We perform some other examples of
ISR vs. CRIB comparisons. The aim is to compare the accuracy of OGICE with that of
MCRS (DEBR has equivalent performance). We generate d = 5 signals as follows: one
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non-Gaussian signal and four Gaussian signals. Used signals are generated with the same
length N , zero mean and unit variance.

Figure 1 shows a comparison of CRIB and ISRs of three different settings depending
on the length of the signal N for separation of a signal s, where s is drawn according to
the Laplacian distribution with zero mean and the unit variance. The dashed line with
circle points (’no-ini’ in the legend) shows the achieved ISR by OGICE when randomly
initialized, dashed-and-dotted line with circles (’MCRS’ in the legend) corresponds to
the ISR of the MCRS algorithm. The dashed-and-dotted line with crosses is then the
ISR of OGICE when initialized by the results of MCRS. As can be seen from Figure 1,
the performance of OGICE is significantly dependent on the initialization. On the other
hand, MCRS reaches even lower separation accuracy than randomly initialized OGICE.
When OGICE is initialized by MCRS, the accuracy is more stable and the method almost
reaches the lower bound.

Figure 2 shows a comparison of convergence rate of used methods. As can be seen,
when OGICE is initialized randomly, only about 60% of runs converges. Despite the
accuracy of MCRS is low, this algorithm converges to the desired signal in all runs,
which allows us to consider results from MCRS to be suitable candidate for the initial
guess for other algorithms. When OGICE is initialized this way, it converges also in all
runs.
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Figure 1: Accuracy comparison of selected separation algorithms: dashed line with circle
points is used for the accuracy of OGICE with random initialization, dashed-and-dotted
line with circles corresponds to the MCRS accuracy and dashed-and-dotted line with
crosses to OGICE initialized by the results of MCRS.
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Figure 2: Convergence rate of selected separation algorithms: dashed-and-dotted line is
used for OGICE with random initialization, stars correspond to the MCRS algorithm
and full line to OGICE initialized by the results of MCRS.

5 Conclusions

Studied heuristic algorithms, MCRS and DEBR, reached equivalent accuracy in almost
the same time. In comparison to the existing method OGICE, the heuristics are less
accurate and the duration of one run is higher that for OGICE. However, MCRS and/or
DEBR require no initialization and converge in all runs to the desired signal. The best
separation accuracy was reached when OGICE was initialized by the result of MCRS,
since then the algorithm attained the CRLB.
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J. Štěch acknowledges: The Czech Science Foundation Project GA18-15970S.

References
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