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Bayesian non-negative matrix factorization with
adaptive sparsity and smoothness prior

Ondřej Tichý, Lenka Bódiová, Václav Šmídl, Member, IEEE,

Abstract—Non-negative matrix factorization (NMF) is gener-
ally an ill-posed problem which requires further regularization.
Regularization of NMF using the assumption of sparsity is
common as well as regularization using smoothness. In many
applications it is natural to assume that both of these assumptions
hold together. To avoid ad hoc combination of these assumptions
using weighting coefficient, we formulate the problem using a
probabilistic model and estimate it in a Bayesian way. Specifically,
we use the fact that the assumptions of sparsity and smoothness
are different forms of prior covariance matrix modeling. We use a
generalized model that includes both sparsity and smoothness as
special cases and estimate all its parameters using the variational
Bayes method. The resulting matrix factorization algorithm
is compared with state-of-the-art algorithms on large clinical
dataset of 196 image sequences from dynamic renal scintigra-
phy. The proposed algorithm outperforms other algorithms in
statistical evaluation.

Index Terms—Non-negative matrix factorization, Covariance
matrix model, Blind source separation, Variational Bayes method,
Dynamic renal scintigraphy

I. INTRODUCTION

The aim of non-negative matrix factorization (NMF) is to
find low rank representation of non-negative data matrix, D ∈
Rp×n

+ , as the product of two non-negative matrices, the first,
A ∈ Rp×r

+ , comprising basis vectors in data space in columns
and the second, X ∈ Rn×r

+ , comprising coefficients scaling
the basis vectors in rows [1]. Then, the NMF model is

D ≈ AXT , (1)

where (.)T denotes transposition of the vector or matrix and
r � min(p, n) is the model order. To tackle this problem
efficiently, two algorithms were proposed by Lee and Seung,
one minimizing conventional least-square error, and other
minimizing the Kullback-Leibler divergence [2]. This allows
to apply the approach to various large data problems in data
clustering [3], hyperspectral imaging [4], or semi-blind and
blind separation of dynamic medical image data [5].

Although the non-negativity itself is an informative as-
sumption, the NMF is in general not unique and additional
constraints are often required. While many variants and im-
provements of NMF such as volume-based regularizations [6]
have been proposed, sparsity of the solution is often considered
as a natural assumption for the NMF problem since it reduces
a total number of coefficients required to encode the data
with reasonable proximity between original data matrix and
reconstruction low-rank matrices [7]. While sparsity is often
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associated with L1 norm formulation or relation between
L1 and L2 norm [8], we turn our attention to probabilistic
formulations using hierarchical priors [9], [10] since they
allow to estimate all nuisance parameters. A commonly used
form of the prior model is the zero-mean Gaussian prior for
basis or coefficient matrix with Gamma prior for diagonal
elements of their unknown covariance matrix, which is one
form of the automatic relevance determination (ARD) prin-
ciple [11]. The benefits of probabilistic formulation include
quantifying the model order [12], [13] as well as accounting
for parameter uncertainties [7]. Although the complexity of
these models is higher then that of [2], efficient inferences such
as Gibbs sampling or variational Bayes (VB) method have
been developed to estimate model parameters in reasonable
time [14] and with theoretical guarantees [15].

The sparsity is often the key assumption, however, it may
be in a contrast with other fundamental assumption: smooth-
ness. In many natural signals such as defects testing [16],
or dynamic medical data [17], it is reasonable to assume
that increments between neighboring elements are small. The
smoothness may be added to the NMF model e.g. using the
Gibbs regularization term [18] or incorporating a dependence
term into the iterative NMF algorithm [19], [17]. Various basis
functions have been exploited in [20] and also extended to
the non-negative tensor factorization problem [21]. In dynamic
medical imaging problems, the smoothness has been imposed
using convolution modeling [22] and recently by imposing
regularization term directly assuming smoothness of organ
activities [17] or organ convolution kernels [23]. However, a
NMF algorithm with seamless combination of sparsity and
smoothness is not available.

In this letter, we propose a NMF model with prior model
that combines sparsity and smoothness using flexible covari-
ance matrix model. Priors combining sparsity and smoothness
[24] has been proposed based on the fused LASSO formulation
[25]. However, they require the use of Gibbs sampler and favor
piece-wise constant solution. An alternative prior based on
adaptive covariance prior has been proposed in [26] that allows
to use faster inference algorithms based on the variational
Bayes. While it is possible to impose this prior on both X and
A (using 2D prior of [27]), we provide solution to a model
with this prior only on matrix X . The prior for matrix A
is the sparsity promoting ARD prior that is suitable to our
application in dynamic medical imaging [28].

A. Competing state of the art algorithms
The decomposition (1) becomes very popular especially

after Lee and Seung [2] introduced an efficient algorithm that
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Figure 1. ROIs used to initialize the RUDUR method for a selected data file.
ROI1 is the ROI of the parenchyma manually selected by an expert. Black
pixels are inside the ROI. Other sources have vague ROIs where all pixels
are supposed to be active except for the bottom row (ROI2), the first column
(ROI3), and the last column (ROI4).

iteratively optimizes the Euclidean distance between matrices
D and AXT given by

fNMF = ||D −AXT ||2F , (2)

where ||.||F is the Frobenius norm. The convergence to the
local optimum is guaranteed and the algorithm is very fast,
however, domain specific assumptions are difficult to incorpo-
rate. This algorithm will be denoted simply as NMF.

A version of NMF with sparsity and smoothness assump-
tions was presented in [17] as robust unmixing of dynamic
sequences using regions of interest (RUDUR) method. Region
of interest (ROI) is a binary map of each basis vector of A
(see Fig. 1 left as an example). In this approach, the basic
distance has been changed to

fWLS(A,X) = ||W (D −AXT )||2F , (3)

using diagonal weighting matrix W with elements computed
as Wii = 1

1+mink g(Ri,k)
, where Ri,k is the Euclidean distance

of the ith pixel of reconstructed basis vector and the kth pixel
of the preselected ROI, and g(x) = γx2 with selected constant
γ > 0. Note that for γ = 0, the term (3) becomes the ordinary
least squares (2).

The basic cost (3) is complemented by two additional
penalization terms

fRUDUR(A,X) = fWLS(A,X) + αfROI(A) + βfTik(X), (4)

where α > 0 and β > 0 are selected constants. The second
term penalizes distance of the estimate from the given ROI

fROI(A) = ||(R ◦R) ◦A||1,µ, (5)

where ◦ is Hadamard product and the norm ||.||1,µ is defined
as ||X||1,µ =

∑
i

∑
k

√
X2
i,k + µ2 − µ with positive constant

µ. It penalizes pixels of A which are not consistent with the
preselected ROIs. The last term is the Tikhonov regularization
with preference of smooth solution of X defined as

fTik(X) = ||ΓX||2F , (6)

where Γ is a lower bidiagonal matrix

Γ =


1 0 · · · 0

−1 1
. . .

...

0
. . . . . . 0

0 0 −1 1

 . (7)

The minimum of (4) is found numerically under conditions
A ≥ 0 and X ≥ 0.

The third related method combining sparse prior on A and
convolution parametrization of X was proposed in [22] as the
sparse blind source separation and vectorized deconvolution
(S-BSS-vecDC). It uses probabilistic interpretation of (2) as
being negative likelihood of Gaussian distribution and sparsity
on the matrix A is imposed using the ARD principle [11]

p (Ai,k|ξi,k) =tN
(
Ai,k|0, ξ−1

i,k

)
, (8)

p (ξi,k) =G (ξi,k|φ0, ψ0) , (9)

where tN denotes Gaussian distribution truncated to the pos-
itive support (representing non-negativity), G denotes gamma
distribution, and φ0 and ψ0 are prior constant selected as
10−10 yielding non-informative prior and improving numerical
stability. This prior is closely related to the conventional L1
penalization [29]. Finally, the prior on X was defined using
convolution reparametrization of each column of X as xk =
b ∗ uk, where ∗ denotes convolution, b ∈ Rn×1 is an input
function common to all sources and uk is a source specific
convolution kernel with sparsity prior on both, b and uk. Due
to imposed non-negativeness of the convolution kernel, such
prior also promotes smooth solutions. The posterior estimates
are obtained using the VB approximation [30] leading to a set
of implicit equations which needs to be solved iteratively.

II. NON-NEGATIVE MATRIX FACTORIZATION WITH
ADAPTIVE PRIOR COVARIANCE

The Bayesian approach to NMF is based on interpretation of
(2) as the negative logarithm of isotropic Gaussian likelihood
of the data matrix D [31], [22], in the form

log p (D|A,X, ω) ∝ pn

2
lnω − ω

2
||D −AXT ||2F , (10)

where symbol ∝ denotes equality up to normalizing constant.
(10) deviates from (2) and (3) in introduction of the precision
parameter ω which is also considered to be unknown. While
its value does not change the minimum of (10) it is essential
for establishing the weighting of the likelihood with respect to
the prior. The prior model of ω is selected to be conjugate to
(10), which is the Gamma distribution, p(ω) = G(ϑ0, ρ0), with
prior constants selected non-informatively as 10−10 . The prior
model for the matrix A is (8)–(9) favoring sparse solution.

A. Adaptive sparse and smooth prior on coefficient matrix

Let x1, . . . ,xr be columns of matrix X with truncated
Gaussian prior distribution with positive support

p (xk|Σx,k) = tN (xk|0n,1,Σx,k) ∝ −1

2
xTk Σ−1

x,kxk. (11)

We would like to point out that common assumptions of spar-
sity and smoothness correspond to different choices of matrix
Σx,k. The sparsity assumption using ARD principle applied
on each element of X corresponds to diagonal covariance
matrix Σx,k = diag(vk)−1, where elements of vector vk are
assumed to have Gamma prior model p(vk) = G(α0, β0). The
smoothness assumption is obtained by penalizing differences
in xk, i.e. Γxk as in (6)–(7). Interpreting (6) as negative log
probability, it is equivalent to (11) with assignment Σ−1

x,k =

βΓΓT which is identical for all columns of matrix X .
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In this letter, we propose to model xk using (11) with
covariance matrix Σx,k = Lkdiag(vk)−1LTk , where lower
diagonal matrix

Lk =


1 0 · · · 0

l1,k 1
. . .

...

0
. . . . . . 0

0 0 ln−1,k 1

 , (12)

has unknown entries on the sub-diagonal vector lk =
[l1,k, . . . , ln−1,k]. These will be estimated from the data using
Gaussian prior distribution for j = 1, . . . , n− 1, k = 1, . . . , r,

p(lj,k|ϕj,k) = N
(
lj,k|l0, ϕ−1

j,k

)
, (13)

where l0 is a chosen prior mean value and ϕj,k is a precision
hyper-parameter with prior p(ϕj,k) = G(ϕj,k|ζ0, η0). The
prior parameters l0, ζ0, η0 are common for all j, k and good
performance was reported for linear problems [26] for choices
in range l0 ∈ [−1, 0], where 0 favors sparse and −1 favors
smooth solution. We select l0 = −0.7 which slightly favors
smooth solution. Expected deviation from this value is con-
trolled by ζ0, η0. We use values ζ0, η0 = 10−2 which allows
for variation in the sufficient range circa l0±100. Significantly
higher values of ζ0, η0 result in posterior estimates closer to
l0. However, significantly lower values of ζ0, η0 results in
higher sensitivity to local extremes and potentially numerical
instability. This setting was found to be a reasonable default for
all our experiments and small varying of these parameters do
not affect the results significantly, however, it can be arbitrary
changed for different applications.

B. Variational Bayes inference
Likelihood (10), together with priors (8)–(9) and (11)–(13)

form a probabilistic model with unknown parameters A, X , ω,
ξi,k, vk, lk, ϕk, k = 1, . . . , r. Since exact inference of these
parameters is intractable, we apply the variational Bayes (VB)
method [30] to obtain approximate estimates. Specifically,
we seek an approximate posterior distribution in the form of
product of factors q:

p(ω,A, ξi,k,xk,vk, lk, ϕj,k|D) ≈ q(ω)

p∏
i=1

q(ai)×

p∏
i=1

r∏
k=1

q(ξi,k)

r∏
k=1

q(xk)

r∏
k=1

q(vk)

r∏
k=1

q(lk)

r∏
k=1

n−1∏
j=1

q(ϕj,k),

(14)

where ai denotes the ith row of matrix A.
By minimizing the Kullback-Leibler divergence between

(14) and the true posterior distributions, the best approximate
factors of the posterior distributions q̃ are found using the
VB method and are summarized in Tab. I. Together with
standard moments of the respective distributions, they form
a set of implicit equations. Solution of this set can be found
iteratively using Algorithm 1, where one possible initializa-
tion is also given. The method will be referred to as the
Bayesian non-negative matrix factorization with adaptive prior
covariance (NMF-APC) and is available for download from
http://www.utia.cz/AS/softwaretools/image_sequences/.

Algorithm 1 VB algorithm for NMF-APC method.
1) Initialization:

a) Set prior constants: ϑ0, ρ0, φ0, ψ0, α0, β0 = 10−10,
ζ0, η0 = 10−2, and l0 = −0.7.

b) Set the model order r.
c) Initialize starting parameters: 〈ω〉 = 1, 〈A〉 = 1p,r,
〈L〉 = Inr, and 〈v〉 = 1nr,1.

2) Iterate until convergence is reached:
a) Eval. q̃(xk) and subsequent q̃(vk), q̃(lk), q̃(ϕj,k).
b) Evaluate q̃(ai) and subsequent q̃(ξi,k).
c) Evaluate q̃(ω).

3) Report resulting estimates 〈A〉 and 〈X〉.

III. APPLICATION TO DYNAMIC RENAL SCINTIGRAPHY

The proposed NMF-APC method will be compared with
three competing methods (Section I-A) on a large clinical
dataset from dynamic renal scintigraphy [28]. In dynamic
scintigraphy, the radio-tracer is applied into the bloodstream
and the activity of the tracer in the body is recorded by
a scintillation camera. The obtained 2D projections of the
activity are stored in the form of matrices with counts of
particles recorded at each pixel. This can be done repetitively
to obtain a dynamic sequence. For ease of processing, images
of the sequence are stored columnwise in the matrix D. Due to
2D projection, each pixel in the recorded scintigraphic image
is a linear combination of contributions from several biological
tissues weighted by the activity of each tissue in given time
[17], [22]. The NMF model(1) is a good representation of
this sequence, with the following interpretation: columns of
matrix A are images of the sources of the radiation (tissues),
and columns of coefficient matrix X are the corresponding
time activity curves (TAC) of tissues.

A dataset of 98 dynamic image sequences with non-zero
kidney activity is available [28]. Each sequence consists of 180
images (n = 180) taken with 10 seconds temporal resolution
and with 128 × 128 image size. From these sequences, 196
sequences of kidney (left and right) were extracted using
rectangular window of the size 47× 37 (p = 1739) and time-
activity curve (TAC) was extracted for each of the 196 kidneys
by an experienced physician using standard procedures [32].
These curves will serve as the ground truth in our experiment.

Each sequence is analyzed using the proposed NMF-APC
method and the RUDUR, NMF, and S-BSS-vecDC methods.
The noise in the sequence is Poisson distributed, therefore,
scaling [33] is applied before processing. All methods have
the same initial conditions. The preselected number of sources
is four (r = 4) which is a common assumption [17], [22]
since each sequence is assumed to accumulate activity from
the parenchyma (outer part of kidney), pelvis (inner part of
kidney), other tissues activity, and blood background. The
tuning parameters of the RUDUR method are selected as
recommended by the authors of RUDUR to α = 1, β = 10,
and γ = 3. The regions of interests (ROI) required by the
RUDUR method in (3) and (5) were chosen to be the ROI of
the parenchyma provided by the expert, and non-informative
different ROIs for other tissues, see Fig. 1 for an example.
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Table I
APPROXIMATE POSTERIOR DISTRIBUTIONS OF THE PROPOSED METHOD ACCOMPANIED BY THEIR SHAPING PARAMETERS.

q̃(ω) = G(ϑ, ρ) ϑ = ϑ0 + pn
2

ρ = ρ0 + 1
2

tr
(〈

(D −AXT )T (D −AXT )
〉)

q̃(ai) = tN (µai
,Σai

) µai
= Σai

〈ω〉
∑n

j=1Di,j〈xj〉 Σai
=
(
〈ω〉
〈
XTX

〉
+ diag(

〈
ξi

〉
)
)−1

, i = 1, . . . , p

q̃(ξi,k) = G(φi,k, ψi,k) φi,k = φ0 + 1
2

ψi,k = ψ0 + 1
2

〈
A2

i,k

〉
, i = 1, . . . , p, k = 1, . . . , r

q̃(x) = tN (µx,Σx) µx = Σx〈ω〉vec
(
DT 〈A〉

)
Σx =

(
〈ω〉

(〈
ATA⊗ In

〉)
+
〈
Ldiag(v)LT

〉)−1

q̃(vj,k) = G(αi,k, βj,k) αi,k = α0 + 1
2

βj,k = β0 + 1
2

〈
LT
k xT

k xkLk

〉
i,i

, j = 1, . . . , n− 1

q̃(lj,k) = tN (µlj,k , σlj,k ) µlj,k = σlj,k
(
−
〈
vj,k

〉〈
xj,kxj+1,k

〉
+ l0

〈
ϕj,k

〉)
σlj,k =

(〈
vj,k

〉〈
x2j+1,k

〉
+
〈
ϕj,k

〉)−1
, j = 1, . . . , n− 1

q̃(ϕj,k) = G(ζj,k, ηj,k) ζj,k = ζ0 + 1
2

ηj,k = η0 + 1
2

〈
(lj,k − l0)2

〉
, j = 1, . . . , n− 1

vec() is the vectorization operator, vec(X) = [xT
1 ,x

T
2 , . . . ,x

T
r ]T , L is block diagonal matrix L = diag(L1, . . . , Lr), and v = [v1, . . . ,vr].
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Figure 2. Results of separation of the left parenchyma for a selected sequence
using (from the left): the proposed NMF-APC, RUDUR [17], NMF [2], and
S-BSS-vecDC [22] methods.

A. Selected result of separation

An example of separation of the parenchyma for a selected
sequence is given in Fig. 2. The remaining separated sources
can be displayed using example run of the NMF-ACP method
available online. In Fig. 2, the estimated parenchyma images
are displayed in the first row and the estimated time-activity
curves (TAC) are in the second row using blue lines while the
ground truth TACs are displayed using dashed red lines.

The estimated TACs in Fig. 2 clearly demonstrate the
influence of the selected prior model on the result. While the
TAC provided by the original NMF method is rather noisy,
the RUDUR method provides smoother results. However, the
resulting TAC approaches lower values in case of low signal to
noise ratio. The S-BSS-vecDC provides smooth solution which
is a result of the convolution model of the TAC. However, it
tends to slightly overestimate the ground truth curves. The
result of the proposed NMF-APC method shows its ability to
reflect abrupt changes, notable at the beginning of the TAC
and its peak, as well as to reflect the smooth parts of the
TAC. We stress that the NMF-APC follows the ground truth
curve closer than the competitors. The estimated parenchyma
images are similar for all methods except the RUDUR method
which has clearer parenchyma tissue due to availability of the
expert selected ROI of the parenchyma as shown in Fig. 1.

B. Statistical evaluation

Statistical comparison of all 196 estimated parenchyma
TACs is given in Tab. II using normalized mean absolute error

Table II
ESTIMATION ERRORS ON 196 PARENCHYMA TIME-ACTIVITY CURVES VIA

THE NMAE AND THE NMSE CRITERIA, AND P-VALUES OF T-TEST OF
IMPROVEMENT OVER NMF-APC.

Method NMAE p-value NMSE p-value
NMF-APC 0.108±0.097 – 0.029±0.058 –

RUDUR [17] 0.162±0.075 < 10−5 0.049±0.043 < 10−5

NMF [2] 0.203±0.081 < 10−5 0.074±0.049 < 10−5

S-BSS-vecDC [22] 0.118±0.084 0.0416 0.028±0.045 0.5075

(NMAE) and normalized mean square error (NMSE) with their
standard deviations. The normalization ensures that the TACs
are scaled to interval [0; 1] so that the results with different
maximum of activity can be compared.

Tab. II demonstrate that the NMF-APC method outperforms
all other methods in proximity of the parenchyma TACs to the
ground truth TACs in the sense of NMAE criterion, although
with higher standard deviations. Therefore, we test also statis-
tical significance using two-sided t-tests (with null hypothesis
that the differences between results of the NMF-APC method
and other methods comes from a normal distribution with zero
mean and unknown variance) where improvement is proved
with a p-value less then 0.05 in all cases. The NMF-APC
method is comparable with the S-BSS-vecDC method in the
sense of NMSE criterion; however, it is much simpler and
computationally cheaper (one sequence: NMF-APC 28.6 s,
RUDUR 13.7 s, NMF 0.3 s, S-BSS-vecDC 290.2 s).

IV. CONCLUSION

In this contribution, we proposed to complement the prob-
abilistic model of non-negative matrix factorization by a
sparsity and smoothness prior based on general covariance
matrix structure. Since the prior allows to use the variational
Bayes approximation, it is computationally faster than methods
based on Monte Carlo sampling. We have shown the ability of
the prior to represent smooth curves with abrupt changes on
the example from dynamic renal scintigraphy where the time
activity curves have such structure. On a clinical dataset from
dynamic renal scintigraphy consisting of 196 image sequences,
we have demonstrated that the novel method outperforms other
state-of-the-art methods in the task of blind separation of a
clinically important source.
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