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a b s t r a c t

We present a simple approach to the forecasting of conditional probability distributions
of asset returns. We work with a parsimonious specification of ordered binary choice
regressions that imposes a connection on sign predictability across different quantiles.
The model forecasts the future conditional probability distributions of returns quite
precisely when using a past indicator and a past volatility proxy as predictors. The direct
benefits of the model are revealed in an empirical application to the 29 most liquid U.S.
stocks. The forecast probability distribution is translated to significant economic gains
in a simple trading strategy. Our approach can also be useful in many other applications
in which conditional distribution forecasts are desired.
© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

‘‘Those who have knowledge, don’t predict. Those who
predict, don’t have knowledge.’’

[Lao Tzu, c. 604–531 B.C.]

Several decades of research have provided overwhelm-
ing evidence regarding the predictability of the first two
moments of stock return distributions. The expected val-
ues of stock returns can be predicted to some extent
using economic variables (Ang & Bekaert, 2006; Fama &
French, 1989; Keim & Stambaugh, 1986; Viceira, 2012),
while the conditional second moment can be character-
ized well by simple volatility models, or even measured
from high-frequency data (Andersen, Bollerslev, Diebold,
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& Labys, 2003; Bollerslev, 1986). While volatility forecast-
ing quickly became central to the financial econometrics
literature due to its importance for risk measurement
and management, research focusing on the entire return
distribution still occupies only a small fraction of the
literature.1

One of the main reasons why researchers do not tend
to focus on characterizing the entire return distribution
may be the prevailing practice of convenient mean-
variance analysis that is still central to modern asset
pricing theories. Unfortunately, investor choices guided
using the first two moments are restricted by binding
assumptions, such as the multivariate normality of stock
returns or a quadratic utility function. More importantly,
an investor is restricted to have classical preferences
based on the von Neumann-Morgenstern expected util-
ity. In contrast to this, Rostek (2010) recently developed
a notion of quantile maximization and quantile utility

1 Few studies have focused on directional forecasts or threshold
exceedances (Christoffersen & Diebold, 2006; Chung & Hong, 2007;
Nyberg, 2011).
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preferences. This important shift in decision-theoretic
foundations provokes us to depart from the limited mean–
variance thinking and work with entire distributions.

The specification and estimation of an entire condi-
tional distribution of future price changes is useful for
a number of important financial decisions. Prime exam-
ples include portfolio selection when returns are non-
Gaussian, (tail) risk measurement and management, and
market timing strategies with precise entries and exits
that reflect the information in the tails. Despite its im-
portance, forecasting the conditional distribution of future
returns has attracted little attention so far, in contrast to
point forecasts and their uncertainty. This article presents
a simple approach to forecasting a conditional distribution
of stock returns using a parameterized ordered binary
choice regression. While we focus here on financial re-
turns, we note that our approach may be useful to many
other applications in which the conditional distribution
forecasts are of interest.

The majority of studies that focus on the prediction of
conditional return distributions characterize the cumula-
tive conditional distribution by a collection of conditional
quantiles (Cenesizoglu & Timmermann, 2008; Engle &
Manganelli, 2004; Pedersen, 2015; Žikeš & Baruník, 2016).
In contrast, in a notable contribution, Foresi and Peracchi
(1995) focus on a collection of conditional probabili-
ties and describe the cumulative distribution function
of excess returns using a set of separate logistic regres-
sions. Foresi and Peracchi (1995) enable the approxima-
tion of the distribution function by estimating a sequence
of conditional binary choice models over a grid of values
that correspond to different points in the distribution. Per-
acchi (2002) argues that the conditional distributions
approach has numerous advantages over the conditional
quantile approach, and Leorato and Peracchi (2015) con-
tinue their comparison further. The approach has also
been considered by Chernozhukov, Fernández-Val, and
Melly (2013), Fortin, Lemieux, and Firpo (2011), Hothorn,
Kneib, and Bühlmann (2014), Rothe (2012), and Taylor
and Yu (2016).

This article further develops the ideas set forth by
Foresi and Peracchi (1995) and presents a simple related
model for forecasting conditional return distributions. The
proposed model is based on an ordered binary choice
regression, which is able to forecast the entire predictive
distribution of stock returns using fewer parameters than
the set of separate binary choice regressions. We achieve
this substantial reduction in the degree of parameteri-
zation by tying the coefficients of the predictors via a
smooth dependence on corresponding probability levels.
Our specification can be motivated in a semiparametric
way, as we approximate smooth probability functions
using low-order polynomials.

The probability forecasts are conditional on the past
information contained in returns, as well as on their
volatility proxy. The main reason for choosing the volatil-
ity as one of the explanatory variables is that the cross-
sectional relationship between risk and expected returns,
generally measuring a stock’s risk as the covariance be-
tween its return and some factor, is documented well in
the literature. In the laborious search for proper risk fac-
tors, volatility plays a central role in explaining expected

stock returns for decades. Although predictions regarding
expected returns are essential for understanding classi-
cal asset pricing, little is known about the potential of
these factors to identify extreme tail events of the return
distribution precisely.

Our illustrative empirical analysis estimates condi-
tional distributions of the 29 most liquid U.S. stocks and
compares their generated forecasts with those from the
buy-and-hold strategy and several benchmarks: a collec-
tion of separate binary choice models, a fully-specified
conditional density, and historical simulation. The ben-
efits of our approach translate into significant economic
gains in a simple trading strategy that uses conditional
probability forecasts.

We provide the package DistributionalFore
casts.jl in the Julia software for estimating the model
introduced in this article. The package is available at
https://github.com/barunik/DistributionalForecasts.jl.

The article is organized as follows. Section 2 describes
the model and emphasizes its differences from the col-
lection of separate binary choice models. Section 3 con-
tains information about the data we use and lays out
the details of particular specifications. Section 4 presents
empirical results, and Section 5 concludes. The appendix
contains more technical material and details of some of
the procedures used in the empirical application.

2. Model

We consider a strictly stationary series of financial
returns rt , t = 1, . . . , T . Our objective is to describe the
conditional cumulative return distribution F (rt | It−1) as
precisely as possible, where It−1 includes the history of
rt as well as, possibly, past values of other observable
variables.

Consider a partition of the support of returns by p > 1
fixed cutoffs, or thresholds

c1 < c2 < · · · < cp,

and define c0 = −∞ and cp+1 = +∞ for conve-
nience. The higher p is, the more precise the description
of the conditional distribution will be (a full discussion is
provided later in this section). The partition {cj}

p+1
j=0 is ar-

bitrary, subject to the ordering restrictions. One intuitive
partition corresponds to empirical quantiles of returns:
each cj is an empirical αj-quantile of returns, j = 1, . . . , p,
where 0 < α1 < α2 < · · · < αp < 1 are p proba-
bility levels; a reasonable grid for the probability levels
is a regularly spaced unit interval [0, 1]. Alternatively,
and perhaps more judiciously, the partition {cj}

p
j=1 and

thresholds {αj}
p
j=1 can be tied to some volatility measure

to reflect the time-varying spread of returns due to the
changing shape of the conditional distribution. Thus, in
general the elements of the partition are time-varying and
implicitly indexed by t .

Let Λ : u ↦→ [0, 1] be a (monotonically increasing)
link function. Both unordered and ordered binary choice
models are represented by a collection of conditional
probabilities

Pr{rt ≤ cj|It−1} = Λ
(
θt,j

)
, j = 1, . . . , p, (1)
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for some specification of the driving processes θt,j, j =

1, . . . , p. For convenience, define Λ(θt,0) = 0 and Λ(θt,p+1)
= 1.

Let xt−1,j, j = 1, . . . , p be a vector of predictors for
I{rt≤cj} that may depend on j via the dependence of some
of them on cj. For instance, one of the predictors may
be I{rt−1≤cj}, the past indicator (dependent on j), while
another may be rt−1, the past return (independent of j),
and yet another may represent some volatility measure
(also non-specific to j). Suppose for simplicity that the
number of predictors in xt−1,j is the same for all j and is
equal to k.

In the unordered model, the specification for the un-
derlying process θt,j is

θt,j = δ0,j + x′

t−1,jδj. (2)

There are no cross-quantile restrictions, and each binary
choice problem is parameterized separately. This results
in a flexible but highly parameterized specification. In the
proposed ordered model, we place cross-quantile restric-
tions on the parameters. In particular, the coefficients of
predictors are tied via smooth dependence on the proba-
bility levels, which leads to a substantial decrease in the
degree of parameterization.

In the language of Foresi and Peracchi (1995), no
monotonicity holds in general in the unordered model.
That is, Pr{rt ≤ cj−1|It−1} may exceed Pr{rt ≤ cj|It−1}

with positive probability even though cj−1 < cj. In the
proposed ordered model, the monotonicity property in-
sample is imposed automatically by the specification of
the ordered binary choice likelihood function. This may
require artificial adjustments of the conditional distribu-
tion values at some thresholds. Out-of-sample, the mono-
tonicity is not guaranteed to hold, but similar artificial
measures can be applied. One simple way is to shift the
value of a conditional distribution that violates mono-
tonicity at a particular threshold to its value at the
previous threshold plus an additional small amount. An
alternative way to ensure both in-sample and out-of-
sample predictability is via rearrangement (Chernozhukov,
Fernández-Val, & Galichon, 2009). Given the generally
low predictability of conditional probabilities for returns
(and hence, their low variability compared to their mean),
the share of observations that need such adjustments is
expected to be low (see below for empirical evidence);
thus, we give preference to the former, simpler method.

The specification for the underlying process θt,j is

θt,j = δ0,j + x′

t−1,jδ
(
αj

)
, (3)

where δ
(
αj

)
are coefficients that are functions of the

probability level αj. Each probability-dependent slope co-
efficient vector is specified as δ

(
αj

)
=

(
δ1

(
αj

)
, . . . , δk(

αj
))′, where for each ℓ = 1, . . . , k,

δℓ

(
αj

)
= κ0,ℓ +

qℓ∑
i=1

2i(αj − 0.5)i · κi,ℓ, (4)

and qℓ ≤ p − 1. Note that each intercept δ0,j is j -specific
and represents an ‘individual effect’ for a particular prob-
ability level, while the slopes’ δs do not have index j;

i.e., they depend on j only via dependence on the αjs. The
motivation behind such a specification is semiparametric:
any smooth function on [0, 1] can be approximated to a
desired degree of precision by the system of basis polyno-
mials {αj − 0.5, (αj − 0.5)2, . . . , (αj − 0.5)q} by making q
big enough. Because all αj ∈ (0, 1), the polynomial form
behaves nicely even for a large q; the basis polynomials
are uniformly bounded on [0, 1]. The additional weights
2i are introduced in order to line up the coefficients κi on
a more comparable level.

Let us compare the degrees of parameterization of the
unordered and ordered binary choice models. Denote

q =

k∑
ℓ=1

qℓ.

In the unordered model, the total number of parameters
is

KUO = (1 + k) p

(namely one intercept δ0,j and k slopes δj in each of p
equations for θj), while in the ordered model, the total
number of parameters is

KO = p + k + q

(namely p intercepts δ0,j and k slopes δ
(
αj

)
, each param-

eterized via 1 + qℓ parameters). The difference

KUO − KO = k (p − 1) − q

grows with p, the fineness of the partition by thresholds.
The resulting difference is also related positively to the
number of predictors used.2

In the unordered model, the composite loglikelihood
corresponding to observation t is

ℓUOt =

p+1∑
j=1

I{rt≤cj} ln
(
Λ

(
θt,j

))
, (5)

and the total composite likelihood
∑T

t=1 ℓUOt can be split
into p independent likelihoods

∑T
t=1 ℓ

(j)
t , where

ℓ
(j)
t = I{rt≤cj} ln

(
Λ

(
θt,j

))
, (6)

to be maximized over the parameter vector
(
δ0,j, δj

)′. In
the ordered model, the loglikelihood corresponding to
observation t is

ℓOt =

p+1∑
j=1

I{cj−1<rt≤cj} ln
(
∆jΛt

)
, (7)

where ∆1Λt = Λ
(
θt,1

)
and ∆jΛt = Λ

(
θt,j

)
− Λ

(
θt,j−1

)
for j = 2, . . . , p, and ∆p+1Λt = 1 − Λ

(
θt,p

)
. The total

likelihood
∑T

t=1 ℓOt is to be maximized over the parameter
vectors

(
δ0,1, . . . , δ0,p

)′and
(
κ0,1, . . . , κ0,k, κ1,1, . . . , κqk,k

)′.
Under mild suitable conditions, the estimates of the pa-
rameter vector are expected to be consistent for their
pseudotrue values and asymptotically normal around

2 In our empirical illustration, p = 37, k = 2 and q1 = 2, q2 = 3.
Hence, KUO = 111 while KO = 44, and the difference is KUO − KO = 67.
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them, with a familiar sandwich form of the asymptotic
variance.

Of course, each difference ∆jΛt needs to be positive.
This monotonicity property, although not guaranteed, is
easier to enforce in the maximization of the joint or-
dered likelihood

∑T
t=1 ℓOt than in separate maximizations

of independent unordered likelihoods, as the common
parameters will adjust automatically to these monotonic-
ity restrictions. However, if the degrees of freedom are
not sufficient to ensure this for all predictor values in
the sample we can prevent (rare) realizations of negative
differences for particular values of t by enforcing mono-
tonicity through the constraints ∆jΛt ≥ ε for all j and t ,
where ε is some small number.3

Computationally, it is convenient to maximize the total
likelihood in a number of steps, as an arbitrary initial pa-
rameter vector is likely to result in an incomputable like-
lihood, due to numerous violations of the monotonicity
property. The idea is to begin by determining approximate
values of individual intercepts and slopes, subject to their
monotonicity, then relax the restrictions on the slopes
using the evaluated values as starting points for corre-
sponding parts of the parameter vector. Towards this end,
we propose and further use the following algorithm4:

Step 1. Run a series of separate binary choice models
as per Eqs. (1) and (2) with the specification
θt,j = δ0,j + x′

t−1,jδj with δj =
(
δj,1, . . . , δj,k

)′,
j = 1, . . . , p, by maximizing the individual like-
lihoods in Eq. (6), and call the estimates thus
obtained δ̄0,j and δ̄j.

Step 2. For each ℓ = 1, . . . , k, run a linear regression
δ̄ℓ = κ0,ℓ +

∑qℓ

i=1 2
i(α − 0.5)i · κi,ℓ, where δℓ =(

δ1,ℓ, . . . , δp,ℓ
)′ and α =

(
α1, . . . αp

)′, and call the
estimates thus obtained κ̄i,ℓ, i = 0, 1, . . . , qℓ.

Step 3. Run the ordered binary choice model in Eqs. (1)
and (3) with the specification in Eq. (4) by max-
imizing the total likelihood in Eq. (7) using δ̄0,j
as starting points for δ0,j, j = 1, . . . , p, and κ̄i,ℓ
as starting points for κi,ℓ, i = 0, 1, . . . , qℓ, ℓ =

1, . . . , k.

Having estimated the conditional return distribution
evaluated at the threshold values, one can obtain the
entire (continuous) conditional distribution by using in-
terpolation schemes that preserve the monotonicity of the
outcome. To this end, we apply the Fritsch–Carlson mono-
tonic cubic interpolation (Fritsch & Carlson, 1980, see also
Appendices A.1 and A.2) and use the result for testing the
quality of the estimated distribution (see Appendices A.3
and A.4).

The quality of the approximation of the conditional
distribution constructed in the ordered model is deter-
mined by a number of factors, with the precision of inter-
polation being the least important. There is an important

3 In our empirical illustration, we forced each difference to be
bounded below by ε = 10−6 . Such a strategy has resulted in under 1%
of such interferences among all differences during in-sample estimation
and under 2% during out-of-sample forecasting.
4 The estimation can be done using the package Distribution-

alForecasts.jl developed by the authors in the Julia software. The
package is available at https://github.com/barunik/DistributionalForeca
sts.jl.

tradeoff between the number of thresholds (and hence,
the precision of the interpolation input) and the degree
of parameterization (and hence, the amount of estimation
noise). Yet another factor is the flexibility of specification
of the slopes δ on the αjs. It seems reasonable to set
the system of thresholds to be fine enough (as long as
one does not come close to the computability limits) to
describe the distribution with sufficient precision, but not
so fine that a considerable number of observations fall
between each pair of adjacent thresholds. One may also
afford higher flexibility to the slope specification for larger
sample sizes; in practice, though, low numbers are usu-
ally pretty adequate in semiparametric setups. One may
also employ formal model selection criteria such as the
Bayesian information criterion for choosing the optimal
orders of polynomials in slope specifications.

3. Data and empirical specification

We study the conditional distribution forecasts of 29
U.S. stocks5 that are traded on the New York Stock Ex-
change. These stocks have been chosen according to their
market capitalization and liquidity. The sample under in-
vestigation spans the period from August 19, 2004 to
December 31, 2015. We consider trades executed during
U.S. business hours (9:30–16:00 EST). We ensure the exis-
tence of sufficient liquidity and eliminate possible bias by
explicitly excluding weekends and bank holidays (Christ-
mas, New Year’s Day, Thanksgiving Day, Independence
Day). Our final dataset consists of a total of 2826 trading
days, of which 500 are used for in-sample estimation,
and the remaining 2326 are used for out-of-sample fore-
casting by means of a rolling window scheme with a
window size of 500 days. We split the sample so as to
have a much larger out-of-sample portion because we
perform an extensive set of tests, robustness checks and
inter-model comparisons on it.

Next we provide the details of our empirical specifica-
tion. For both ordered and unordered models, we use the
logit link function

Λ (u) =
exp(u)

1 + exp(u)
,

resulting in logit specifications. We consider a partition of
the return space into 37 equally spaced probability levels6
from α ∈ (5%, 95%), i.e., a grid with step 2.5% resulting
in a total of p = 37 quantiles.7 We use a time-varying

5 Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America
Corp (BAC), Comcast Corporation (CMCSA), Cisco Systems, Inc. (CSCO),
Chevron Corporation (CVX), Citigroup Inc. (C), Walt Disney Co (DIS),
General Electric Company (GE), Home Depot Inc. (HD), International
Business Machines Corp. (IBM), Intel Corporation (INTC), Johnson &
Johnson (JNJ), JPMorgan Chase & Co. (JPM), The Coca-Cola Co (KO),
McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK), Microsoft
Corporation (MSFT), Oracle Corporation (ORCL), PepsiCo, Inc. (PEP),
Pfizer Inc. (PFE), Procter & Gamble Co (PG), QUALCOMM, Inc. (QCOM),
Schlumberger Limited (SLB), AT&T Inc. (T), Verizon Communications
Inc. (VZ), Wells Fargo & Co (WFC), Wal-Mart Stores, Inc. (WMT), and
Exxon Mobil Corporation (XOM).
6 With our in-sample window of 500 observations, the use of more

extreme probability levels such as 1% and 99% leads to large estimation
uncertainty in the tails, but ends up successful when the model is
estimated on the whole sample.
7 We have also used partitions with p = 19 and p = 73 equally

spaced probability levels; for details, see Section 4.4.
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partition that changes with the rolling window. In each
window, cj is computed as γ (αj)

√
σ 2
t , where γ (αj) is a

quantile of the standard normal distribution, and σ 2
t is a

conditional variance of returns in the corresponding win-
dow computed from the RiskMetrics of JPMorgan Chase
standards as an exponentially-weighted moving average
with a decay factor of 0.94.

We choose k = 2 and the predictors to be

xt−1,j =

(
I{rt−1≤cj}

ln (1 + |rt−1|)

)
for all j = 1, . . . , p. The first predictor is a lagged indica-
tor that corresponds to the probability level αj, which is
supposed plausibly to have the highest predictive power
among all such indicators. The second predictor is a proxy
for a volatility measure, with the absolute return damp-
ened by the logarithmic transformation. Note that the
first predictor is specific to a specific quantile, while the
second predictor is common for all quantiles. In principle,
one could specify all predictors to be the same across
the quantiles, or, on the other hand, all predictors may
vary with the quantile. In the ordered model, after some
experimentation with statistical significance of higher-
order polynomials, we set q1 = 2 and q2 = 3.8 That is,
the polynomial is quadratic in the probability level α for
the past indicator and cubic for the past volatility proxy.

The full specification of the model for j = 1, . . . , p
empirical quantiles is

Pr{rt ≤ cj|It−1} =
exp(θt,j)

1 + exp(θt,j)
,

θt,j = δ0,j + δ1
(
αj

)
I{rt−1≤cj} + δ2

(
αj

)
ln (1 + |rt−1|) ,

with the coefficient functions

δ1
(
αj

)
= κ0,1 + 2(αj − 0.5) · κ1,1 + 22(αj − 0.5)2 · κ2,1,

δ2
(
αj

)
= κ0,2 + 2(αj − 0.5) · κ1,2 + 22(αj − 0.5)2 · κ2,2

+ 23(αj − 0.5)3 · κ3,2.

There are a total of KO = 44 parameters: p = 37
individual intercepts δ0,j and k = 2 slopes δ

(
αj

)
, one

parameterized via 1 + q1 = 3 parameters, the other via
1 + q2 = 4 parameters. This parametrization is suffi-
ciently parsimonious and approximates the distribution
quite well, and additional terms do not bring signifi-
cant improvements. Hence, estimating seven parameters
κi,ℓ in addition to the individual intercepts is enough to
approximate the conditional return distribution.

4. Empirical findings

We now present the results of estimating the condi-
tional distribution function of returns using the ordered
binary choice model. As we consider forecasts for 29
stocks, we begin by presenting individual estimates of
three illustrative stocks, namely Intel Corporation (INTC),
QUALCOMM, Inc. (QCOM), and Exxon Mobil Corporation

8 We also perform a model selection analysis with the Bayesian
information criterion in the ordered model; see Section 4.4 for details.

(XOM), then present the results for all 29 stocks in an
aggregate form.

After presenting the parameter estimates, we
evaluate the statistical and economic significance of the
predicted distributions. Furthermore, we compare the
performance of the ordered model with those of popular
and challenging benchmarks used in the literature. Specif-
ically, we include two candidate models that Kuester,
Mittnik, and Paolella (2006) found to perform best: an
asymmetric generalized autoregressive conditional het-
eroscedastic model with a skewed-t distribution (GARCH
henceforth) and a GARCH-filtered historical simulation
(FHS henceforth). Our implementation of these two alter-
native methods follows Kuester et al. (2006).

4.1. Parameter estimates

Table 1 shows estimates of cutoff-specific intercepts
δ0,j in the ordered logit model for the three illustrative
stocks. The intercepts have the expected signs — negative
for probability levels to the left of 50% and positive to
the right of 50% — due to a monotonically increasing Λ(·)
and a low predictability of the predictors, and exhibit the
expected monotonic behavior increasing from the left tail
to the right tail, thus generating an increasing cumulative
distribution function (assuming zero predictors). The in-
tercepts are statistically significant in most cases, except
for a few cutoff points near the median. The intercept
values are quite similar across the three stocks, though
there is some variability.

The left panel in Fig. 2 collects the intercept estimates
for all 29 stocks and reveals that the intercepts are indeed
similar across the stocks. The plot has a shape similar to
the inverse logit link function Λ (u) defined earlier, with
a stronger effect in the tails. A flexible j-specific inter-
cept allows one to control individual quantile effects, and
shows that unconditional expectations are an important
part of the predicted distribution.

The estimates of the seven coefficients κi,ℓ that drive
the slopes on the predictors for the three illustrative
stocks are shown in Table 2. The coefficients κi,1 cor-
respond to the lagged indicator predictor I{rt−1≤cj}. All
parameter estimates for the lagged indicator are small
in magnitude, and some are highly statistically signifi-
cant. The left plot in Fig. 1 complements these findings
with estimates of the lagged indicator coefficients for
all 29 stocks shown by the box-and-whisker plots. The
estimates document a heterogeneous effect of the lagged
indicator on the future probabilities for different stocks.
While we document zero coefficients for some stocks, the
quadratic term seems to play a big role in others.

The second predictor, namely the past volatility proxy
ln (1 + |rt−1|), carries even more important information
about future probabilities. The estimated coefficients κi,2
that correspond to the volatility predictor reveal that
the cubic polynomial has many statistically significant
coefficients (see Table 2). The right plot of Fig. 1 shows es-
timated coefficients for all 29 stocks as box-and-whisker
plots. We can see that κ1,2 and κ3,2 are significantly dif-
ferent from zero for most of the stocks, and so the past
volatility proxy contributes strongly to the prediction of
the return distributions.
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Fig. 2 plots the functions δ1
(
αj

)
, and δ2

(
αj

)
, in addition

to the intercepts. Corresponding to heterogeneous param-
eters κi,1, the function δ1

(
αj

)
is also heterogeneous for 29

stocks, exhibiting a mixed effect of the lagged indicator
predictor (shown in the middle plot of Fig. 2). Overall, we
can see that the effect is small. The coefficient function
δ2

(
αj

)
implied by the past volatility proxy shows a similar

impact.
Fig. 3 depicts an interpolated predictive conditional

CDF of returns on the interval [−1.5, 1.5] for an arbitrary
stock9 evaluated at arbitrary 100 out-of-sample periods.
This allows one to observe how the cumulative distribu-
tion varies over time. There is a certain distribution clus-
tering, i.e., the CDF possesses some persistence, while at
other periods the CDF shape stands out from the cluster.

4.2. Statistical fit

We assess the adequacy of the predicted distribu-
tion by running the generalized autocontours specifica-
tion test of González-Rivera and Sun (2015). This test
verifies whether the collection of out-of-sample gener-
alized residuals (also known as the probability integral
transform), together with their lags, are scattered uni-
formly inside a hypercube of corresponding dimensions;
see Appendix A.3 for a detailed description. We use lag
L = 1 in the contour-aggregated test with a simple
collection of sides α = (0.25, 0.50, 0.75)′ and a larger col-
lection coinciding with our full grid α = (α1, α2, . . . , αp)′.
We use a side ᾱ = 0.5 in the lag-aggregated test with
L = 3 and L = 10. Fig. 4 shows the distributions of
p-values from the González-Rivera and Sun (2015) tests
for the ordered logit model for all 29 stocks. All four
variations of the test — two contour-aggregated and two
lag-aggregated — show the adequacy of the estimated
conditional distribution.10

We also compare probabilistic forecasts of different
models in terms of proper scoring rules (Gneiting &
Raftery, 2007), namely the Brier score and the continuous
ranked probability score (CRPS); see Appendix A.4 for
a detailed description.11 Fig. 5 shows the average score
values for the four models (ordered logit, collection of
separate logits, GARCH and FHS). All four approaches de-
liver Brier scores that have similar median values, though
they differ a bit in dispersion. The CRPS scores are very
similar across all four approaches, though the logit models
dominate marginally.

4.3. Economic significance

We investigate the economic usefulness of the pro-
posed model by studying a simple profit rule for timing
the market based on the model forecasts. The idea is to

9 The minimal and maximal values of returns in the whole sample
for this stock are approximately −0.20 and 0.20.
10 We do not account for the estimation noise when constructing the
test, as this generally tends to increase asymptotic variances, meaning
that the p-values would be even higher if the estimation noise was
accounted for.
11 We follow Gneiting and Raftery (2007) and define the CRPS with a
minus sign so that its larger values are preferred to its smaller values.

explore information from the entire distribution. We build
a trading strategy by exploring the difference between
the predicted conditional and unconditional probabilities,
which indicates whether positive or negative returns are
predicted with a higher probability. In the spirit of the
previous literature (Anatolyev & Gospodinov, 2010; Breen,
Glosten, & Jagannathan, 1989; Pesaran & Timmermann,
1995), we evaluate the model forecasts in terms of prof-
its from a trading strategy for active portfolio allocation
between holding a stock and investing in a risk-free as-
set. The detailed construction of the trading strategy is
described in Appendix A.5.

Table 3 summarizes the results of running the trading
strategies in terms of mean and median returns and
the volatility, as well as the Sharpe ratio. While the
benchmark market strategy earns a 0.806 return with a
0.244 volatility, GARCH and FHS generate similar returns
with lower volatilities. When an investor uses predictions
about the entire distribution from separate logit models,
one obtains an improved mean return of 1.088 with a
much lower volatility. Finally, our proposed ordered logit
model generates a 1.296 mean return with a volatility
that is similar to those of separate logits. The Sharpe ratio
showing a risk-adjusted return, or an average return per
unit of volatility, reveals that the ordered logit model
generates the highest returns when one takes risk into
account. The figures for median values confirm this result.

Fig. 6 shows returns, volatilities, and Sharpe ratios
for all 29 stocks using box-and-whisker plots. The fig-
ure reveals that the naive buy and hold strategy yields
low returns with the highest volatility, with these re-
turns being quite heterogeneous for all stocks consid-
ered. GARCH and FHS improve the volatility estimates,
and hence yield similar returns with a lower risk. In
terms of risk-adjusted Sharpe ratios, the separate logis-
tic regressions yield similar results, while the ordered
logit model shows a marked improvement. One can see
positive Sharpe ratios for almost all stocks considered,
pointing to the highest risk-adjusted returns offered by
the ordered model.

Fig. 7 looks closely at the cumulative returns and draw-
downs of the three illustrative stocks we used earlier. It
can be seen that the returns from the ordered logit strat-
egy are consistent over time, with the lowest drawdowns.
This is the case even with a XOM that has been growing
for the whole period, making it difficult to beat the buy
and hold strategy.

Finally, Fig. 8 compares the relative performances of
all five strategies. The top left plot in the figure compares
the ordered logit with the ‘market’, or naive buy and hold
strategy, while the top right plot compares the ordered
logit with separate logits. The plots at the bottom of
Fig. 8 compare the ordered logit with the GARCH and FHS
models. We document consistently better performances
for the proposed ordered logit model than for either the
unordered logit or benchmark strategies for all 29 stocks.

4.4. Sensitivity analysis

As has been noted, after some experimentation we
have chosen a specification with p = 37 thresholds

Author's Personal Copy



S. Anatolyev and J. Baruník / International Journal of Forecasting 35 (2019) 823–835 829

and polynomial orders of q1 = 2 and q2 = 3. Here,
we report on the results with different specifications. As
a robustness check, we conduct an investigation of the
impact of partition fineness and polynomial complexity
on the performance of the proposed method.

We have estimated and evaluated the model with
three different choices of partitions, namely p = 19
(corresponding to twice as coarse a partition) and p =

73 (corresponding to twice as fine a partition). On the
one hand, p = 19 may seem too coarse for the CDF
approximation to be considered good. On the other hand,
too high a value of p may have a serious impact on the
model complexity: while the number of parameters for
the basic partition p = 37 is equal to KO = 44, that for
the finer partition is equal to 80, which is obviously too
many for our out-of-sample exercise with 500 rolling in-
sample observations. In our experiments with p = 19 and
p = 73,12 some of the generalized autocontour tests (in
particular, the three-side contour-aggregated test) exhibit
the tendency to reject the constructed conditional distri-
bution. However, the results of the economic evaluation
are not sensitive to the choice of partition, and the domi-
nance of the proposed method based on the ordered logit
over all of the other methods still prevails.

On the one hand, the polynomial orders (q1, q2) do
not have a drastic effect on the degree of parsimony; on
the other hand, the dependence of predictability on the
probability level is presumably not so sophisticated as to
require higher-order powers. Hence, one would not ex-
pect a high sensitivity to the choice of orders. We have run
the proposed model with various combinations of polyno-
mial orders (q1, q2) around the running (q1, q2) = (2, 3)
combination, and computed the value of the Bayesian
information criterion (BIC) for each. The pattern of the BIC
is presented in Fig. 9. While the values of q1 and q2 such
as zero and one are obviously too small to capture the
differences in predictability across the probability levels,
there is little sensitivity once the orders reach the selected
combination, which is clearly preferred by the BIC en
masse across the 29 stocks.

5. Conclusion

This article investigates the predictability of stock mar-
ket return distributions. We propose a relatively par-
simonious parametrization of an ordered binary choice
regression that forecasts the conditional probability dis-
tribution of returns well. We subject the proposed model
to a number of statistical tests for adequacy, and to com-
parisons with alternative methods. In order to see how
useful the model is economically, we use distributional
predictions in a simple market timing strategy. Using
29 liquid U.S. stocks, we find significant economic gains
relative to the benchmarks.

Our findings are useful for risk management and mea-
surement or for building trading strategies using the
entire conditional distribution of returns. However, the
model has a much wider potential use in any application
that exploits distribution forecasts, including the forecast-
ing of interest rates, term structures, and macroeconomic
variables.

12 The detailed results are available from the authors upon request.
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Appendix A

A.1. CDF interpolation

The Fritsch–Carlson monotonic cubic interpolation
(Fritsch & Carlson, 1980) provides a monotonically in-
creasing CDF with range [0, 1] when applied to CDF es-
timates on a finite grid.

Suppose that we have CDF F (r) defined at points (rk, F
(rk)) for k = 1, . . . , K , where F (r0) = 0 and F (rK ) = 1.
We presume that rk < rk+1 and F (rk) < F (rk+1) for all
k = 0, . . . , K −1, which is warranted by the continuity of
returns and the construction of the estimated distribution.
We start by computing the slopes of the secant lines as
∆k = (F (rk+1) − F (rk))/(rk+1 − rk) for k = 1, . . . , K − 1,
then compute the tangents at every data point as m1 =

∆1, mk =
1
2 (∆k−1 + ∆k) for k = 2, . . . , K − 1, and

mK = ∆K−1. Let αk = mk/∆k and βk = mk+1/∆k for
k = 1, . . . , K−1. If α2

k +β2
k > 9 for some k = 1, . . . , K−1,

then we set mk = τkαk∆k and mk+1 = τkβk∆k, with
τk = 3(α2

k + β2
k )

−1/2. Finally, the cubic Hermite spline is
applied: for any r ∈ [rk, rk+1] for some k = 0, . . . , K − 1,
we evaluate F (r) as

F (r) = (2t3 − 3t2 + 1)F (rk) + (t3 − 2t2 + t)hrk
+ (−2t3 + 3t2)F (rk+1) + (t3 − t2)hmk+1,

where h = rk+1 − rk and t = (r − rk)/h.

A.2. Generalized residuals

The CDF specification testing is based on the properties
of the generalized residuals (also known as the proba-
bility integral transform). First, for each out-of-sample
period t = R + 1, . . . , T , we apply the CDF interpo-
lation algorithm with input data (2rmin, 0), (cj, P̂r{rt ≤

cj|It−1}), (2rmax, 1) for j = 1, . . . , p, where rmin and rmax
are the minimal and maximal sample values of returns
within the estimation portion of the sample. That is, we
approximate the conditional CDF values outside the inter-
val [2rmin, 2rmax] by exactly zero or exactly one, which is
reasonable, as the probability of such returns is negligible.
The generalized residual εt , t = R+1, . . . , T , is computed
simply as an interpolated conditional CDF evaluated at rt .

A.3. CDF testing

The generalized residuals εt have the familiar prop-
erty that εt ∼ i.i.d.U[0, 1]. The univariate version of
the generalized autocontours test of González-Rivera and
Sun (2015) verifies whether the collection of k out-of-
sample generalized residuals and their lags are scattered
uniformly inside the [0, 1]2k hypercube.
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Fig. 1. Parameter estimates: ordered logit parameters estimated for all 29 stocks, shown as box-and-whisker plots.

Fig. 2. Parameter estimates: coefficient functions implied by the parameters estimated for all 29 stocks. Minimum and maximum values are shown
as a light grey area, 50% of the distribution is shown as a grey area, and the median is shown as a black line.

Fig. 3. Fragment of the interpolated estimated conditional CDF of returns for one of the stocks.

The testing procedure consists of the following steps.
Let the vector α contain pα ‘sides’ αi ∈ (0, 1], and consider
pairs (εt , εt−ℓ) of out-of-sample generalized residuals and
their ℓth lags, ℓ = 1, 2, . . . , L, t = R + 1, . . . , T . Under
the null hypothesis of correct specification when εt ∼

i.i.d.U[0, 1], each side αi is estimated consistently by the
sample proportion of pairs (εt , εt−ℓ) that fall into the cor-
responding generalized autocontour — the subhypercube

G-ACRα,ℓ = ×
pα

i=1[0,
√

αi]
2:

α̂α,ℓ =
1

T − R − ℓ

T∑
t=R+1+ℓ

I{(εt ,εt−ℓ)∈G-ACRα,ℓ}
.

The González-Rivera–Sun test exists in two chi-squared
variations: contour-aggregated and lag-aggregated. The
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Fig. 4. p-values from González-Rivera and Sun (2015) tests for
the ordered logit model for all 29 stocks, shown as box-and-
whisker plots. The four test specifications are shown with α =

(0.25, 0.5, 0.75)′ (a) contour-aggregated and (b) lag-aggregated; and
with α = (0.05, 0.1, . . . , 0.9, 0.95)′ (c) contour-aggregated and (d)
lag-aggregated.

contour-aggregated statistic gathers information from es-
timated generalized autocontours for a collection of dif-
ferent sides, keeping the lag, say ℓ̄, fixed. Let α̂ℓ̄ =

(α̂1,ℓ̄, . . . , α̂p,ℓ̄)
′. The lag-aggregated statistic gathers in-

formation from estimated generalized autocontours for a
collection of different lags, keeping the side, say ᾱ, fixed.
Let α̂ᾱ = (α̂ᾱ,1, . . . , α̂ᾱ,L)′.

Then, under the null of correct distributional specifica-
tion,

GRSα,ℓ̄ = (α̂ℓ̄ − α)′A−1
α,ℓ̄

(α̂ℓ̄ − α) →
d χ2

pα

and

GRSᾱ,L = (α̂ᾱ − ᾱιL)′A−1
ᾱ,L(α̂ᾱ − ᾱιL) →

d χ2
L ,

where the matrices Aα,ℓ̄ and Aᾱ,L contain the asymp-
totic variances and covariances of elements of the esti-
mated generalized autocontours, which are functions of

elements of the vector α only and need not be estimated
(see González-Rivera & Sun, 2015 for more details), and ιL
is a column vector of ones of length L.

A rejection by the González-Rivera-Sun tests means
that the generalized residuals are not likely to be uniform
on [0,1] and/or fail to be serially independent.

A.4. Scoring rules

Gneiting and Raftery (2007) list several scoring rules
that can be used to compare probabilistic forecasts of
different models of (conditional) distributions. The Brier
score for the forecast for t made at t − 1 is

Bt = −

p+1∑
j=1

(
I{cj−1<rt≤cj} − P̂r{cj−1 < rt ≤ cj}

)2
,

and is a quadratic criterion of deviations of binary realiza-
tions from probability forecasts. The CRPS for the forecast
for t made at t − 1 is

CRPSt = −

∫
∞

−∞

(
P̂r{rt ≤ r|It−1} − I{rt≤r}

)2
dr,

where the conditional CDF P̂r{rt ≤ r|It−1} is obtained
by CDF interpolation (see Appendix A.1), while the inte-
gral is computed numerically using the Gauss-Chebyshev
quadrature formulas (Judd, 1998, section 7.2) with 300
Chebychev quadrature nodes on [2rmin, 2rmax].

The average Brier score and average CRPS are com-
puted by averaging Bt and CRPSt over the out-of-sample
periods t = R + 1, . . . , T .

A.5. Trading strategy

We build a trading strategy by using a simple rule that
explores the difference between the predicted conditional
probability and the unconditional probability Pr{rt ≤

cj} = αj. We sum the differences over the interval of
empirical quantiles [a, b] as

St =

b∑
cj=a

(
P̂r{rt ≤ cj|It−1} − αj

)
.

Fig. 5. Brier scores and CRPS for (1) ordered logit, (2) separate logits, (3) GARCH, and (4) FHS, shown as box-and-whisker plots for all 29 stocks.
Larger values of the scores are preferred to smaller values.
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Fig. 6. Performances of (1) ordered logit, (2) separate logits, (3) market benchmark, (4) GARCH, and (5) FHS models. Returns, volatilities and Sharpe
ratios for all 29 stocks are shown as box-and-whisker plots.

Fig. 7. Performance: cumulative returns and drawdowns for three typical stocks. A trading strategy based on probability predictions from the
ordered logit model is shown in purple (–), separate logits are shown in bordeaux (–), GARCH is shown in red (–), FHS is shown in black (–), and
the benchmark buy and hold is shown in grey (–). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

If we sum all p available quantiles, we are using the
information from the entire distribution. If we want to use
only the information about positive returns, we sum only
half of the available empirical quantiles, corresponding
to the cutoffs at positive returns. For example, if the
positive returns are predicted with a higher probability
than the negative returns for all corresponding empirical
quantiles, the sum St will be positive. Furthermore, it
may be useful to compare St computed for the empirical
quantiles that correspond to both negative and positive
returns. After some experimentation, we obtain thresh-
old values for each stock that depend on the shape of
the conditional distributions, generating consistent prof-
its. Hence, we build the trading strategy on St exceeding
these thresholds, but note that this could be optimized

further for maximum profits. Our setup uses all quantiles,
meaning that a = c1 and b = cp, while the threshold is
set to zero.

Starting with a $1 investment at the beginning of the
sample, our investor decides to hold the stock based on
whether the predicted probability is favorable or not. We
compare the cumulative returns from this simple market-
timing strategy using predictions from the ordered logit,
the unordered logit, GARCH, FHS, and the buy and hold
strategy for all 29 stocks separately.

Appendix B. Tables

See Tables 1–3.
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Fig. 8. Relative performances: a trading strategy based on probability predictions from the ordered logit model relative to separate logits (top right),
as well as the benchmark market (top left), GARCH (bottom left), and FHS (bottom right). The median value from all 29 stocks is the black line,
surrounded by 90% of the distribution in grey. Note that the value of one shows equal performances of the two strategies being compared.

Fig. 9. Bayesian information criteria for the ordered logit model
with different polynomial orders (q1 q2) on the x-axis, shown as
box-and-whisker plots for all 29 stocks.

Appendix C. Figures: Parameter estimates

See Figs. 1 and 2.

Appendix D. Figures: Conditional CDF

See Fig. 3.

Appendix E. Figures: Statistical evaluation

See Figs. 4 and 5.

Appendix F. Figures: Economic evaluation

See Figs. 6–8.

Appendix G. Figures: Sensitivity to polynomial orders

See Fig. 9.
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Table 1
Estimates of the intercepts δ0,j in the ordered logit specification θt,j =

δ0,j + x′

t−1,jδ
(
αj

)
for the three illustrative stocks.

αj INTC QCOM XOM αj INTC QCOM XOM

5% −3.046
(0.115)

−2.775
(0.116)

−2.871
(0.118)

95% 2.898
(0.155)

2.689
(0.113)

3.042
(0.122)

7.5% −2.504
(0.096)

−2.422
(0.098)

−2.488
(0.102)

92.5% 2.704
(0.156)

2.581
(0.108)

2.579
(0.098)

10% −2.195
(0.087)

−2.148
(0.088)

−2.235
(0.092)

90% 2.026
(0.095)

2.401
(0.100)

2.474
(0.098)

12.5% −1.953
(0.081)

−1.999
(0.081)

−2.032
(0.088)

87.5% 1.702
(0.082)

2.137
(0.091)

2.105
(0.089)

15% −1.800
(0.077)

−1.810
(0.075)

−1.812
(0.083)

85% 1.666
(0.079)

2.069
(0.089)

1.962
(0.087)

17.5% −1.672
(0.074)

−1.684
(0.071)

−1.679
(0.082)

82.5% 1.455
(0.075)

1.957
(0.085)

1.751
(0.083)

20% −1.489
(0.072)

−1.546
(0.068)

−1.575
(0.082)

80% 1.338
(0.072)

1.719
(0.080)

1.645
(0.084)

22.5% −1.325
(0.070)

−1.397
(0.065)

−1.454
(0.082)

77.5% 1.214
(0.070)

1.528
(0.076)

1.492
(0.083)

25% −1.151
(0.068)

−1.252
(0.064)

−1.301
(0.081)

75% 1.049
(0.066)

1.249
(0.068)

1.336
(0.081)

27.5% −1.020
(0.067)

−1.074
(0.062)

−1.174
(0.081)

72.5% 0.899
(0.064)

1.100
(0.065)

1.171
(0.081)

30% −0.859
(0.065)

−0.928
(0.061)

−1.033
(0.080)

70% 0.828
(0.063)

0.953
(0.062)

1.035
(0.080)

32.5% −0.711
(0.064)

−0.781
(0.060)

−0.919
(0.080)

67.5% 0.764
(0.063)

0.831
(0.061)

0.873
(0.080)

35% −0.631
(0.063)

−0.633
(0.059)

−0.813
(0.080)

65% 0.650
(0.062)

0.707
(0.060)

0.678
(0.079)

37.5% −0.477
(0.062)

−0.542
(0.059)

−0.690
(0.080)

62.5% 0.539
(0.061)

0.622
(0.060)

0.531
(0.078)

40% −0.386
(0.062)

−0.465
(0.059)

−0.595
(0.080)

60% 0.425
(0.061)

0.501
(0.059)

0.393
(0.079)

42.5% −0.286
(0.062)

−0.344
(0.059)

−0.499
(0.080)

57.5% 0.334
(0.061)

0.354
(0.059)

0.227
(0.079)

45% −0.223
(0.061)

−0.280
(0.059)

−0.345
(0.080)

55% 0.226
(0.061)

0.253
(0.059)

0.109
(0.079)

47.5% −0.098
(0.062)

−0.134
(0.059)

−0.205
(0.079)

52.5% 0.096
(0.061)

0.144
(0.059)

0.023
(0.079)

50% −0.004
(0.062)

−0.014
(0.059)

−0.117
(0.079)

Note: Standard errors are given below the point estimates.

Table 2
Estimates of slope coefficients κi,ℓ in the ordered logit specification
δℓ

(
αj

)
= κ0,ℓ +

∑qℓ

i=1 2
i(αj − 0.5)i · κi,ℓ for the three illustrative stocks.

Coefficient INTC QCOM XOM Coefficient INTC QCOM XOM

κ0,1 −0.003
(0.018)

−0.169
(0.015)

−0.053
(0.011)

κ0,2 −3.33
(3.93)

−0.29
(4.00)

0.11
(8.10)

κ1,1 −0.035
(0.044)

−0.143
(0.035)

−0.117
(0.043)

κ1,2 4.92
(5.79)

−15.06
(3.08)

−17.52
(5.71)

κ2,1 0.085
(0.084)

0.542
(0.092)

0.052
(0.076)

κ2,2 12.13
(4.72)

−7.16
(5.61)

−16.85
(7.83)

κ3,2 −3.86
(7.32)

25.34
(7.52)

25.98
(9.23)

Note: Standard errors are given below the point estimates.

Table 3
Mean and median return-volatility characteristics from five trading
strategies for all 29 stocks.
Method Mean Median

Return Volatility Sharpe Return Volatility Sharpe

Ordered logit 1.296 0.159 0.381 0.789 0.161 0.322
Separate logits 1.088 0.159 0.289 0.663 0.155 0.289
Market 0.806 0.244 0.102 0.447 0.226 0.219
GARCH 0.768 0.202 0.169 0.414 0.182 0.277
FHS 0.791 0.193 0.162 0.428 0.184 0.225
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