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STOCHASTIC OPTIMIZATION PROBLEMS WITH
SECOND ORDER STOCHASTIC DOMINANCE
CONSTRAINTS VIA WASSERSTEIN METRIC

Vlasta Kaňková and Vadim Omelčenko

Optimization problems with stochastic dominance constraints are helpful to many real–life
applications. We can recall e. g., problems of portfolio selection or problems connected with
energy production. The above mentioned constraints are very suitable because they guarantee
a solution fulfilling partial order between utility functions in a given subsystem U of the utility
functions. Especially, considering U := U1 (where U1 is a system of non decreasing concave
nonnegative utility functions) we obtain second order stochastic dominance constraints. Unfor-
tunately it is also well known that these problems are rather complicated from the theoretical
and the numerical point of view. Moreover, these problems goes to semi–infinite optimization
problems for which Slater’s condition is not necessary fulfilled. Consequently it is suitable to
modify the constraints. A question arises how to do it.

The aim of the paper is to suggest one of the possibilities how to modify the original problem
with an “estimation” of a gap between the original and a modified problem. To this end the
stability results obtained on the base of the Wasserstein metric corresponding to L1 norm
are employed. Moreover, we mention a scenario generation and an investigation of empirical
estimates. At the end attention will be paid to heavy tailed distributions.

Keywords: stochastic programming problems, second order stochastic dominance con-
straints, stability, Wasserstein metric, relaxation, scenario generation, empiri-
cal estimates, light– and heavy–tailed distributions, crossing

Classification: 90C15

1. INTRODUCTION

Let (Ω,S, P ) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional
random vector defined on (Ω,S, P ), F := Fξ the distribution function of ξ, PF , and
ZF the probability measure and the support corresponding to F , respectively. Let,
moreover, g0, g : IRn×IRs → IR1 be real-valued functions, Y (:= Y (ξ(ω)) random variable
defined on (Ω,S, P ), X ⊂ IRn a nonempty “deterministic” set; EF denote the operator
of mathematical expectation corresponding to the distribution function F.
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If for x ∈ X there exist finite EF g(x, ξ), EFY (ξ) and if

F 2
g(x, ξ)(u) =

u∫
−∞

Fg(x, ξ)(y) dy, F 2
Y (u) =

u∫
−∞

FY (y) dy, u ∈ IR1,

then we can define the second order stochastic dominance constraints set XF by

XF = {x ∈ X : F 2
g(x, ξ)(u) ≤ F 2

Y (u) for every u ∈ IR1}. (1)

Remark 1.1. Stochastic dominance of second order corresponds to order in the space
of non decreasing concave nonnegative utility functions.

To define a stochastic programming problem with the second order stochastic domi-
nance constraints we assume that there exist finite mathematical expectations EF g(x, ξ),
EF g0(x, ξ), EFY (ξ) for x ∈ X. The corresponding optimization problem can be then
defined in the form:

to find ϕ(F,XF ) = inf
{
EF g0(x, ξ)|x ∈ XF

}
, (2)

where

XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1}. (3)

The equivalence of the constraints (1) and (3) can be found in [8]; see also Section 3.

Evidently, a type of the problems introduced by (2), (3) is complicated as from the
theoretical so from the numerical point of view. On one side the probability measure
appears there in the form of the mathematical expectation but on the other side these
problems belong to semi–infinite optimization problems for which Slater’s condition is
not fulfilled, generally. Consequently to this fact Dentcheva and Ruszczyński in [1]
have suggested to relax the problem and to replace the interval (−∞, +∞) in (3) by a
compact interval 〈a, b〉, a, b ∈ IR1. They defined new relaxed problem:

to find ϕa, b(F,Xa, b
F ) = inf

{
EF g0(x, ξ)|x ∈ Xa, b

F

}
, (4)

where

Xa, b
F = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ 〈a, b〉}. (5)

However they did not specified how to choose a, b, generally. Surely, it is desirable to
determine a, b to hold a “difference” between XF and Xa, b

F small. More precisely, it is
desirable to hold small the difference between

inf
{
EF g0(x, ξ)|x ∈ Xa, b

F

}
and inf

{
EF g0(x, ξ)|x ∈ XF

}
. (6)

It seems that it is not a problem to select a, b in the case of the known distributions
with thin tails, however likely the problem can arise with heavy tailed distributions. To
deal with this problem generally we employ the stability results obtained on the base of
the Wasserstein metric based on L1 norm. Furthermore we suggest an approximation
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obtained by replacing the “underlying” distribution by a discrete one with finite number
of atoms and the following scenario generation. We mention also the case when the
problem has to be solved on the data base or on stable distributions.

The paper is organized as follows: Section 2 is devoted to an analysis and a justifica-
tion of the problem relaxation in a dependence on the distribution tails. A brief survey
of results from the literature can be found in Section 3 (in details, Subsection 3.1 recalls
the suitable results on the stability based on the Wassertein metric, in Subsection 3.2
can be found simple auxiliary assertion, Subsection 3.3 recalls results for problems with
discrete probability measure). In Section 4 first a new possible relaxation is suggested
and further also a discrete approximation is introduced there. The results of this paper
are summarized in Section 5. The cases when the “underlying” distribution is replaced
by empirical one or when it belongs to the stable distributions are mentioned in Section
6. The text is finished by the Conclusion and a list of References.

2. PROBLEM ANALYSIS

The problem introduced by (2), (3) belongs to semi–infinite programming problems for
which Slater’s condition is not necessary fulfilled. Dentcheva and Ruszczyński in [1]
suggested to replace constraints set (3) by constraints set (5). In this section we try to
analyze the above mentioned situation in the dependence on the distribution tails.

Comparing problems (2) and (4) with constraints (3) and (5) we can see that

XF ⊂ Xa, b
F , ϕa, b(F, Xa, b

F ) ≤ ϕ(F, XF ); a, b ∈ IR1, a < b.

Namely, events Y (ξ) > b, g(x, ξ) > b for some x ∈ X have not to be in the relation
(5), generally, included. Consequently, there are not included, maybe, events with the
probability

P{ω : Y (ξ) > b ∪ g(x, ξ) > b for some x ∈ X}. (7)

Analyzing the situation in more details we can see that the following equation holds

Xa, b
F = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1}

∪ {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ 〈a, b〉 and,

simultaneously, there exists u ∈ (−∞, a) ∪ (b, +∞)

such that EF (u− g(x, ξ))+ > EF (u− Y (ξ))+}.

(8)

We can also write XIR1

F = Xa, b
F

⋂
X

IR1−〈a, b〉
F .

Consequently, the distribution tails of the random variables Y (ξ), g(x, ξ) for x ∈ X

determine a relationship between XF and Xa, b
F . Since the above mentioned tails depend

generally also on the “underlying” distribution of ξ it is suitable also to recall the tails
for different Fξ. To this end we summarize the corresponding quantiles in two tables.

Table 1 presents quantiles of the stable distributions Sα(σ, β, µ) (for the definition
of Sα(σ, β, µ) see, e. g., [5, 9, 11]).
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α FSα(1, 0, 0)(q95) FSα(1, 0, 0)(q99) FSα(1, 0, 0)(q99.5) FSα(1, 0, 0)(q99.99)

1.05 0.876452 0.912226 0.920843 0.953008
1.10 0.881909 0.918085 0.926646 0.957888
1.20 0.892181 0.928994 0.937373 0.966491
1.30 0.901660 0.938941 0.947056 0.973743
1.40 0.910409 0.948050 0.955829 0.979842
1.50 0.918477 0.956428 0.963812 0.984956
1.60 0.925903 0.964165 0.971108 0.989225
1.70 0.932727 0.971336 0.9707805 0.992769
1.80 0.938988 0.978001 0.983979 0.995689
1.90 0.944732 0.984210 0.989694 0.998072
2.00 0.950000 0.990000 0.995000 0.999990

Tab. 1. Sα(σ, β, µ).

A comparison of quantiles for some heavy tailed distributions (not stable) and the
normal distribution are introduced in Table 2. To this end we employ normal, Weibul,
Pareto and lognormal distributions (for their definitions see, e. g., [6]). We denote:

1. N – Normal distribution,

2. W – Weibull distribution with probability density

f(z) = c
ν ( z−z0ν )c−1 exp{−(z − z0)/ν)c for z > z0,

0 for z ≤ z0; c > 0, ν > 0, z0,

3. P – Pareto distribution with probability density

f(z) = αCαz−α−1 for z ≥ C,

0 for z < C; C > 0, α > 0,

4. L – Lognormal distribution.

Distr. Quantiles

0.999999 0.99999 0.9999 0.999 0.99 0.9

P 0.0 179.07 0.0 68.99 0.0 26.58 0.0 10.24 0.0 3.95 —
W 0.0 27.63 0.0 23.03 0.0 1842 0.0 13.82 0.0 9.21 0.0 4.61
L 0.0 1455.05 0.0 739.18 0.0 346.82 0.0 145.06 0.0 50.31 0.0 11.82
N -17.01 21.01 -15.06 9.06 -12.88 16.88 -10.36 14.36 -7.31 11.31 -3.13 7.13

Tab. 2. The value in the table are calculated for a mean value 2 and

a variance 4; the numerical results have been obtained by

K. Odintsov [7] and V. Omelčenko [3].
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Evidently, it follows from the relations (7), (8), Table 1 and Table 2 that it is suitable
to choose a, b with respect to the “underlying” distribution function F and the functions
g0, g, Y. To this end, first, we recall the stability results based on the Wasserstein metric
and L1 norm.

3. A BRIEF SURVEY OF DEFINITIONS, FORMER RESULTS AND AUXILIARY
ASSERTIONS

3.1. Wasserstein Metric

The problem introduced by (2), (3) depends on the distribution function F. Replacing F
by another s–dimensional distribution function G (for which the problem is well defined)
we obtain a modified problem. Employing triangular inequality we have

|ϕ(F,XF )− ϕ(G,XG)| ≤ |ϕ(F,XF )− ϕ(G,XF )|+ |ϕ(G,XF )− ϕ(G,XG)|. (9)

To recall the first auxiliary assertion based on the Wasserstein metric, let P(IRs) denote
the set of all (Borel) probability measures on IRs and let the systemM1

1(IRs) be defined
by the relation:

M1
1(IRs) :=

{
ν ∈ P(IRs) :

∫
IRs
‖z‖1 dν(z) <∞

}
, ‖·‖s1 := ‖·‖1 denotes L1 norm in IRs.

(10)
If the assumptions A.0, A.1 are defined by

A.0 g0(x, z) is for x ∈ X a Lipschitz function of z ∈ IRs with the Lipschitz constant L
(corresponding to the L1 norm) not depending on x,

A.1 g0(x, z) is either a uniformly continuous function on X × IRs or there exists ε > 0
such that go(x, z) is a convex function on X(ε) and bounded on X(ε)× IRs (X(ε)
denotes the ε–neighborhood of the set X),

and if Fi, Gi, i = 1, . . . , s denote one-dimensional marginal distribution functions cor-
responding to F and G, then the following assertion has been proven.

Proposition 3.1. (Kaňková and Houda [2]) Let PF , PG ∈ M1
1(IRs). If Assumption

A.0 is fulfilled, then

|EF g0(x, ξ)− EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi for x ∈ X. (11)

If, moreover, X is a compact set and Assumption A.1 is fulfilled, then also

| inf
x∈X

EF g0(x, ξ)− inf
x∈X

EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (12)
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Lemma 3.2. (Kaňková [4]) Let g(x, z), Y (z) be for every x ∈ X Lipschitz functions
of z ∈ IRs with the Lipschitz constant Lg not depending on x ∈ X. Let, moreover,
PF ∈M1

1(IRs). If XF is defined by the relation (1), then

1.

XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+ for every u ∈ IR1},

2.

(u− g(x, z))+, (u− Y (z))+, u ∈ IR1, x ∈ IRn

are Lipschitz functions of z ∈ IRs with the Lipschitz constant Lg not depending
on u ∈ IR1, x ∈ IRn.

(The results of [8] has been employed to verify Lemma 3.2.)

Investigating the problem defined by (2), (3) it can be reasonable to define for ε ∈ IR1

the sets Xε
F

Xε
F = {x ∈ X : EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ ε for every u ∈ IR1}, ε ∈ IR1

(13)
(for more details see, e. g., [2] or [4]). Evidently X0

F = XF .

If the assumptions of Lemma 3.2 are fulfilled, PF , PG ∈ M1
1(IRs), u ∈ IR1, x ∈ X,

then it follows from Proposition 3.1 that

|EF (u− g(x, ξ))+ − EG(u− g(x, ξ))+| ≤ Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

|EF (u− Y (ξ))+ − EG(u− Y (ξ))+| ≤ Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.
(14)

Consequently

x ∈ XF =⇒ x ∈ Xε
G, x ∈ XG =⇒ x ∈ Xε

F with ε = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

Generally

Xδ−ε
G ⊂ Xδ

F ⊂ Xδ+ε
G for δ ∈ IR1. (15)

Lemma 3.3. (Kaňková [4]) Let X be a nonempty compact set, PF , PG ∈ M1
1(IRs),

Assumption A.1 be fulfilled. Let, moreover, g(x, z), Y (z) be for every x ∈ X Lipschitz
functions of z ∈ ZF ∪ ZG with the Lipschitz constant Lg not depending on x ∈ X. If
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1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L̄ not depending
on z ∈ ZF ∪ ZG,

2. XF , XG defined by (2) or (4) are nonempty compact sets,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg
∑s
i=1

∫ +∞
−∞ |Fi(zi)−Gi(zi)|dzi,

then

| inf
x∈XF

EF g0(x, ξ)− inf
x∈XG

EF g0(x, ξ)| ≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (16)

(∆[·, ·] := ∆n[·, ·] denotes the Hausdorff distance in the subsets of n-dimensional Eu-
clidean space IRn; for more details see, e. g., [10].)

Proposition 3.4. (Kaňková [4]) Let X be a nonempty compact set, PF , PG ∈
M1

1(IRs), Assumptions A.0, A.1 be fulfilled. Let, moreover, g(x, z), Y (z) be for ev-
ery x ∈ X Lipschitz functions of z ∈ ZF ∪ ZG with the Lipschitz constant Lg not
depending on x ∈ X. If

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L̄ not depending
on z ∈ ZF ∪ ZG,

2. XF , XG, defined by (3) are nonempty compact sets,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉

with ε = 2Lg
∑s
i=1

∫ +∞
−∞ |Fi(zi)−Gi(zi)|dzi,

then

| inf
x∈XF

EF g0(x, ξ)− inf
x∈XG

EGg0(x, ξ)| ≤ (2DL̄Lg + L)

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (17)

(Proposition 3.1, Lemma 3.3 and the relation (9) have been employed to prove Propo-
sition 3.4.)
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3.2. Simple auxiliary assertion

We prove one simple assertion. To this end let ζ = ζ(ω) be a random variable defined on
(Ω,S, P ) and let its corresponding support Zζ fulfils the condition Zζ ⊂ 〈a, b〉, a, b ∈
R1, a < b, then

u < a =⇒ (u− ζ)+ = 0 almost surely,

u ∈ 〈a, b〉 =⇒ (u− ζ)+ = u− ζ for ζ < u,

0 for ζ ≥ u,

u ≥ b =⇒ (u− ζ)+ = u− ζ almost surely,

u ≥ b, u′ > 0 =⇒ (u+ u′ − ζ)+ = u− ζ + u′ almost surely.

Consequently

u < a =⇒ EFζ (u− ζ)+ = 0,

u ∈ 〈a, b〉 =⇒ EF ζ (u− ζ)+ =

u∫
a

(u− z) dFζ(z),

u ≥ b, u′ ≥ 0 =⇒ EFζ (u+ u′ − ζ)+ = EFζ (u− ζ) + u′,

. EFζ (u+ u′ − ζ)+ = EFζ (b− ζ)+ + u+ u
′ − b.

Evidently, setting successively ζ := Y (ξ); ζ := g(x, ξ)), x ∈ X and supposing that
almost surely Y (ξ) ∈ 〈a, b〉, g(x, ξ) ∈ 〈a, b〉, x ∈ X we can obtain

{x ∈ X : EFξ(u− g(x, ξ))+ ≤ EFξ(u− Y (ξ))+ for u ∈ IR1}

= {x ∈ X : EFξ(u− g(x, ξ))+ ≤ EFξ(u− Y (ξ))+ for u ≤ a}

∩ {x ∈ X : EFξ(u− g(x, ξ))+ ≤ EFξ(u− Y (ξ))+ for u ∈ 〈a, b〉}

∩ {x ∈ X : EFξ(b− g(x, ξ))+ ≤ EFξ(b− Y (ξ))+ for u > b}

= {x ∈ X : EFξ(u− g(x, ξ))+ ≤ EFξ(u− Y (ξ))+ for u ∈ 〈a, b〉}.

We have proven the next assertion.

Lemma 3.5. Let a, b ∈ IR1, a < b. If Y (ξ), g(x, ξ), x ∈ X are random variables such
that Y (ξ) ∈ 〈a, b〉, g(x, ξ) ∈ 〈a, b〉, x ∈ X almost surely, then we can set

Xa, b
F = {x ∈ X : EFξ(u− g(x, ξ))+ ≤ EFξ(u− Y (ξ))+ for u ∈ 〈a, b〉}.
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Remark 3.6. Evidently, to define modified constraints set Xa, b
F (introduced in Lemma

3.5) we have generally to modify, first, the corresponding distribution functions.

3.3. Second order stochastic dominance constraints
via discrete distribution

In this subsection we recall one very suitable assertion proven by Dentcheva and Ruszczyński.

Proposition 3.7. (Dentcheva and Ruszczyński [1]) Let Ȳ := Ȳ (ξ) be a random
variable defined on (Ω,S, P ). Let, moreover, Y (ξ) has a discrete distribution with real-
izations yi, i = 1, . . . , m, where a ≤ yi ≤ b, a, b ∈ IR1 for all i. Then the inequality

EFȲ (u− Ȳ (ξ))+ ≤ EFY (u− Y (ξ))+ for all u ∈ 〈a, b〉

is equivalent to

EFȲ (yi − Ȳ )+ ≤ EFY (yi − Y )+ for i = 1, . . . , m.

Furthermore, evidently, if Y (ξ) is a general random variable defined on (Ω,S, P )
(ξ := ξ(ω)) and if a < b, a, b ∈ IR1, then we can define a random variable Y a, b := Y a, b(ξ)
by

Y a, b(ξ) = Y (a) if Y (ξ) ≤ a,

Y (ξ) if Y (ξ) ∈ (a, b),

Y (b) if Y (ξ) ≥ b

(18)

and note the corresponding distribution function by F a, bY .

4. APPROACH TO DEFINITION OF RELAX PROBLEMS AND DISCRETE
APPROXIMATION

Y (ξ), g(x, ξ), x ∈ X are functions of the random vector ξ = (ξ1, . . . , ξs) and, simulta-
neously, they are functions of components ξ1, . . . , ξs. Consequently, it is often fulfilled
the following assumption:

C.1 for a1, b1 ∈ IR1, a1 < b1 there exist bounds a, b ∈ IR1, a < b such that, employing
(18) a1, b1 defines random variables ξa1, b1

i := ξa1, b1
i (ξ), i = 1, . . . , s with the sup-

ports being generally subset of 〈a1, b1〉 and one–dimensional distributions F a1, b1
i ;

simultaneously there exists a distribution function F a1, b1 := F a, bξ = F a, b with the

support being (generally) subset of
∏s
i=1〈a1, b1〉; moreover it holds

ξ ∈
s∏
i=1

〈a1, b1〉 =⇒ a < Y (ξ) < b, a < g(x, ξ) < b for x ∈ X.
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Consequently (if the assumption C.1 is fulfilled) we can define the following optimization
problems:

to find ϕa1, b1(F,Xa1, b1
Fa1, b1

) = inf
{
EF g0(x, ξ)|x ∈ Xa1, b1

F

}
, (19)

to find ϕa1, b1(F a1, b1 , Xa1, b1
F ) = inf

{
EFa1, b1 g0(x, ξ)|x ∈ Xa1, b1

F

}
, (20)

where

Xa, b
F := Xa1,b1

F = {x ∈ X : EFa1,b1 (u−g(x, ξ))+ ≤ EFa1,b1 (u−Y (ξ))+ for every u ∈ 〈a, b〉}.
(21)

According to (15), if g(x, z), Y (z) (for every x ∈ X) are Lipschitz functions of z ∈ IRs

with the Lipschitz constant Lg not depending on x ∈ X, then we can obtain

Xδ−ε
Fa1,b1

⊂ Xδ
F ⊂ Xδ+ε

Fa1,b1
with ε = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−F a1,b1
i (zi)|dzi, δ ∈ IR1;X0

F = Xa1,b1
F .

(22)

F a1, b1
i , i = 1, . . . , s can be considered as one- dimensional “marginal distribution func-

tions” corresponding to F a1, b1 .

To deal with a discrete approximation we define the following assumption:

C.2 To a natural number m, points y1, . . . , ym ∈
∏s
i=1〈a1, b1〉 and F a,bY we can set a

discrete distribution function F̄ a,b;mY with atoms y1, . . . , ym; F̄ a,b;mY approximates

F a,bY .

According to the condition C.2 it is possible to define discrete distribution function
F̄ a, b;mY corresponding to discrete modification of the random variable Y a, b and, more-
over, according to the condition C.1 it is easy to see that there exists the “underlying
discrete” distribution function F̄ a1, b1;m having a support Z̄a1, b1;m ⊂

∏s
i=1〈a1, b1〉. So

we can define the optimization problems:

to find ϕ̄a1, b1;m(Fξ, X̄
a1, b1;m

F̄
) = inf

{
EFξg0(x, ξ)|x ∈ X̄a1, b1;m

F̄

}
, (23)

to find ϕ̄a1, b1;m(F a1, b1 , X̄a1, b1;m
F̄

) = inf
{
EFa1, b1 g0(x, ξ)|x ∈ X̄F̄a1, b1;m

}
, (24)

to find ϕ̄a1, b1;m(F̄ a1, b1;m, X̄F̄a1, b1;m = inf
{
EF̄a1, b1;mg0(x, ξ)|x ∈ X̄a1, b1;m

F̄
)
}
,(25)

where

X̄a1,b1;m
F̄

= {x ∈ X : EFa1,b1 (yi−g(x, ξ))+ ≤ EF̄a1,b1;m(yi−Y (ξ))+ for every i = i, . . . ,m}.
(26)

Remark 4.1.

• To obtain the relation (26) we have employed the assertion of Proposition 3.7.

• Employing Assumption C.2 we can see that the constraints set given by (26) is

simpler then the constraints sets XF , X
a1, b1
F . Evidently, (25) can be considered as

a “discrete approximation” of the original problem.
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5. MAIN RESULTS

Now already we can summarize the former analysis, auxiliary assertions and to introduce
the properties of the relax problem with an estimation of the relax gap. To this end we
suppose: the relax problem is defined by the relation (19) with the constraints set given
by (21).

Theorem 5.1. Let Assumptions A.1, C.1 be fulfilled. Let moreover XF , X
a, b
F be

nonempty compact sets, PF ∈M1
1(IRs). If

1. g0(x, z) is for every z ∈ ZF a Lipschitz function of x ∈ X with the Lipschitz
constant L̄ not depending on z ∈ ZF ,

2. g(x, z), Y (z) are for every x ∈ X Lipschitz functions of z ∈ IRs with the Lipschitz
constant Lg not depending on x ∈ X,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg
∑s
i=1

∫ +∞
−∞ |Fi(zi)− F

a1, b1
i (zi)|dzi,

then

1. ϕ(F,XF )− ϕa1,b1(F,Xa1,b1
F )| ≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− F a1,b1
i (zi)|dzi. (27)

2. If, moreover, Assumption A.0 is fulfilled, then

|ϕ(F,XF )−ϕa1,b1(F a1,b1 , Xa1,b1
F )| ≤ (2L+2DL̄Lg)

s∑
i=1

+∞∫
−∞

|Fi(zi)−F a1,b1
i (zi)|dzi.

(28)

P r o o f . To prove the assertions of Theorem 5.1 we employ the assertion of Lemma
3.3 and we set G := F a1, b1 there. Now already we can see that the assertion 1 holds.
Replacing Lemma 3.3 by Proposition 3.4 we can see that the assertion 2 of Theorem 5.1
holds also. �

Theorem 5.1 suggests (under rather general conditions) a possibility to define the
relax problem to (2), (3). Employing the relation (27) we can see that the following
Corollary is valid.

Corollary 5.2 Let Assumptions A.1, C.1 be fulfilled. Let moreover XF , X
a, b
F be

nonempty compact sets, PF ∈M1
1(IRs), κ > 0. If

1. g0(x, z) is for every z ∈ ZF a Lipschitz function of x ∈ X with the Lipschitz
constant L̄ not depending on z ∈ ZF ,
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2. g(x, z), Y (z) are for every x ∈ X a Lipschitz functions of z ∈ IRs with the Lipschitz
constant Lg not depending on x ∈ X,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)− F a1, b1

i (zi)|dzi.

Then for a1, b1 such that

2DL̄Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− F a1, b1
i (zi)|dzi ≤ κ,

it holds for a, b that

| inf
{
EF g0(x, ξ)|x ∈ Xa, b

F

}
− inf

{
EF g0(x, ξ)|x ∈ XF

}
| ≤ κ. (29)

P r o o f . The assertion of Corollary 1 follows from Theorem 5.1 (especially from the
relation (27)). �

Remark 5.3. Evidently, it follows from the Corollary 5.2 that employing the above
mentioned approach we can obtain the relaxed problem with given relaxed gap. However
to obtain this result we have to modify first the “underlying” distribution function
(especially its one dimensional marginal distribution functions); for details see Lemma
3.5.

To introduce the next assertion we employ the relation (15) successively with G :=

F a1, b1 , G := F̄ a1, b1;m and XG := XFa1, b1 , XG := X̄a1, b1;m
F . According to (15) if

a1, b1 ∈ IR1; m > 0 is a natural number, the assumptions C.1, C.2 are fulfilled and
if g(x, z), Y (z) are Lipschitz functions of z ∈ IRs (with the Lipschitz constant Lg not
depending on x ∈ X), then for δ ∈ IR1 holds

X̄δ−ε
F̄a1, b1;m ⊂ Xδ

Fa1, b1
⊂ X̄δ+ε

Fa1,b1 ;m
with ε = 2Lg

s∑
i=1

+∞∫
−∞

|F a1,b1
i (zi)− F̄ a1, b1;m

i (zi)|dzi,

X̄δ−ε
F̄a1, b1;m, ⊂ Xδ

F ⊂ X̄
δ+ε
Fa1, b1;m with ε = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− F̄ a1, b1;m
i (zi)|dzi.

(F̄ a1, b1;m
i are one–dimensional distribution functions corresponding to F̄ a1, b1m.)
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Theorem 5.4. Let Assumptions A.1, C.1, C.2 be fulfilled. Let, moreover, XF , X
a1, b1
F ,

X̄a1, b1;m
F̄

be nonempty compact sets, PF ∈M1
1(IRs). If

1. g0(x, z) is for every z ∈ ZF a Lipschitz function of x ∈ X with the Lipschitz
constant L̄ not depending on z ∈ ZF ,

2. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg max[
∑s
i=1

∫ +∞
−∞ |F

a1, b1
i (zi) − F̄ a1, b1;m

i (zi)|dzi,
∑s
i=1

∫ +∞
−∞ |Fi(zi) −

F a1, b1
i (zi)|dzi],

then

1.

|ϕ(F, XF ) − ϕ̄a1, b1,m(F, X̄a1, b1;m

F̄
)|

≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− F̄ a1, b1;m
i (zi)|dzi,

|ϕ(F, Xa1, b1
F ) − ϕ̄a1, b1,m(F, X̄a1, b1;m

F̄
)|

≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|F a1, b1
i (zi)− F̄ a1, b1;m

i (zi)|,

|ϕ(F a1, b1 , Xa1, b1
F̄

) − ϕ̄a1, b1,m(F a1, b1 , X̄a1, b1;m
F )|

≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|F a1, b1
i (zi)− F̄ a1, b1;m

i (zi)|dzi.

2. If, moreover, Assumptions A.0 is fulfilled, then

|ϕ(F, XF )− ϕ̄a1, b1;m(F̄ a1, b1;m, X̄a1, b1;m

F̄
)|

≤ (2L+ 2DL̄Lg)[

s∑
i=1

+∞∫
−∞

|F a1, b1
i (zi)− F̄ a1, b1;m

i (zi)|dzi

+

s∑
i=1

+∞∫
−∞

|Fi(zi)− F a1, b1
i (zi)|dzi],

|ϕ(F, XF )− ϕ̄a1, b1;m(F̄ a1, b1.m, X̄a1, b1;m

F̄
)|

≤ (2L+ 2DL̄Lg)[

s∑
i=1

+∞∫
−∞

|Fi(zi)− F̄ a1, b1;m
i (zi)|dzi,

(30)
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|ϕ(F a1, b1 Xa1, b1
F )− ϕ̄a1, b1;m(F̄ a1, b1;m, X̄a1, b1;m

F̄
)|

≤ (2L+ 2DL̄Lg)[

s∑
i=1

+∞∫
−∞

|F a1, b1
i (zi)− F̄ a1, b1;m

i (zi)|dzi.

P r o o f . The assertion of Theorem 5.4 follows from Lemma 3.3, Proposition 3.4 and
the triangular inequality. �

Remark 5.5. Evidently to construct the function F̄ a1, b1;m it is reasonable to start
with the corresponding one-dimensional marginal distributions to F a1, b1 .

Evidently the results 2 of Theorem 5.4 can be employed for a scenario generation of
the original problem defined by (2) and (3).

6. A NOTE ON EMPIRICAL ESTIMATES AND STABLE DISTRIBUTIONS

Very often it is necessary to solve the problem on the data base. Mathematically said, it
means mostly that it is necessary to replace “theoretical underlying” distribution func-
tion by empirical one to obtain empirical estimates. It is known that a great attention
has been paid (in the stochastic literature) to such situation, generally. To recall at least
two results we introduce the following assumptions:

A.2 • {ξi}∞i=1 is an independent random sequence corresponding to F ,

• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . ,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1.
(FNi , i = 1, . . . , s denote one–dimensional marginal distributions corresponding
to FN .)

Proposition 6.1. (Kaňková and Houda [2]) Let PF ∈ M1
1(Rs), g(x, z), Y (z) be

Lipschitz functions of z ∈ ZF with the Lipschitz constant Lg not depending on x ∈ X,
δ > 0. Let moreover XF be a nonempty set, then

X
δ−ε(N)

FN
⊂ Xδ

F ⊂ X
δ+ε(N)

FN
with ε(N) = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi.

If, moreover the assumptions A.0, A.1, A.2 and A.3 are fulfilled, then also

ϕ(F, X
ε(N)

FN
) ≤ ϕ(F, X0

F ) ≤ ϕ(F, X
−ε(N)

FN
),

ϕ(FN , X
ε(N)

FN
) ≤ ϕ(FN , X0

F ) ≤ ϕ(FN , X
−ε(N)

FN
).
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Proposition 6.2. (Kaňková and Houda [2]) Let PF ∈ M1
1(Rs), t > 0. Let moreover

XF be a nonempty compact set. If

1. assumptions A.0, A.1, A.2, A.3 are fulfilled, XF be nonempty set,

2. • g(x, z), Y (z) is a Lipschitz function of z ∈ ZF with the Lipschitz constant
not depending on x ∈ X,

• g0(x, z) is Lipschitz function on X with the Lipschitz constant L
′

not de-
pending on z ∈ ZF ,

3. there exists ε0 > 0 such that Xε
F are nonempty compact sets for every ε ∈ 〈−ε0, ε0〉

and, moreover, there exists a constant Ĉ > 0 such that

∆n[Xε
F , X

ε
′

F ] ≤ Ĉ|ε− ε
′
| for ε, ε

′
∈ 〈−ε0, ε0〉,

4. for some r > 2 it holds that EFi |ξi|r < +∞, i = 1, . . . , s and a constant γ
fulfils the inequalities

0 < γ < 1/2− 1/r

then
P{ω : Nγ |ϕ(F, X0

F )− ϕ(FN , X0
FN )| > t} −→

N→∞
0. (31)

Evidently replacing the “underlying” distribution function by empirical one we obtain
“good” estimate of the problem (2), (3). However, it is over the possibility of this work
to define and to analyze exactly empirical estimates of the bounds a1, b1, i = 1, . . . , s
in the approximate empirical problems. But, evidently, it is possible to await that
approximate problems will have very good properties also.

The situation is rather complicated in the case of the distributions with heavy tails,
especially with the stable distributions. There very often appears crossing; see, e. g.,
[3]. Consequently to this fact the set XF can be empty. Evidently, this case also needs
a special investigation.

7. CONCLUSION

In the paper we have considered stochastic programming problems with second order
stochastic dominance constraints. It is known that these problems goes to semi–infinite
optimization problems for which Slater’s condition is not necessary fulfilled. Conse-
quently we have tried to introduce the modified problem for which this condition is
already fulfilled. To this end we have recalled the stability assertion based on the Wasser-
stein metric corresponding to the L1 norm. The gap between the original and the relax
problem has been estimated. Further, employing the stability results and the results
of [1] we have suggested a “discrete approximation”. We obtain by this approach the
optimization problem with relative simple constraints set. The approximation error can
be estimated.

At the end we have discussed the case when the theoretical distribution function has
to be replaced by empirical one and the case of the stable distributions. However both
these cases are rather complicated and there are beyond the scope of this paper.
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[8] W. Ogryczak and A. Ruszczyński: From stochastic dominance to mean–risk mod-
els: Semideviations as risk measures. Europ. J. Oper. Res. 116 (1999), 33–50.
DOI:10.1016/s0377-2217(98)00167-2
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