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Abstract. Many economic and financial situations depend simultaneously on a ran-
dom element and on a decision parameter. Mostly it is possible to influence the above
mentioned situation by an optimization model depending on a probability measure.We
focus on a special case of one–stage two–objective stochastic “Mean–Risk problem”.
Of course to determine optimal solution simultaneously with respect to the both crite-
ria is mostly impossible. Consequently, it is necessary to employ some approaches. A
few of them are known (from the literature), however two of them are very important;
the first of them is based on a scalarizing technique and the second one is based on
the stochastic dominance. The first approach has been suggested (in a special case) by
Markowitz, the second approach is based on the second order stochastic dominance.
The last approach corresponds (under some assumptions) to partial order in the set of
the utility functions.
The aim of the contribution is to deal with the both main approaches mentioned above.
First, we repeat their properties and further we try to suggest possibility to improve
the both values simultaneously with respect to the both criteria. However, we focus
mainly on the case when probability characteristics has to be estimated on the data
base.
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1 Introduction
Let (Ω,S, P ) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional random vector defined
on (Ω,S, P ), F := Fξ the distribution function of ξ, PF , and ZF the probability measure and the support corre-
sponding to F , respectively. Let, moreover, g0 : Rn × Rs → R1 be real-valued function, X ⊂ Rn a nonempty
“deterministic” set; EF , ρ := ρF denote the operator of mathematical expectation and the operator of risk mea-
sure corresponding to the distribution function F. To introduce mean-risk model let for x ∈ X there exist finite
EF g0(x, ξ), ρF g0(x, ξ). An objective optimization mean–risk problem can be defined as two–objective problem
in the following form:

Find maxEF g0(x, ξ), min ρF (g0(x, ξ)) s.t. x ∈ X. (1)

Evidently, to optimize simultaneously both objectives is mostly impossible. Different approaches are known from
the literature. We recall, at first, three of them; consequently we define new problems:
a.

Find maxEF g0(x, ξ) s.t. ρF (g0(x, ξ)) ≤ ν1, x ∈ X, (2)

b.
Find min ρF (g0(x, ξ)) s.t. EF g0(x, ξ) ≥ ν2, x ∈ X, (3)

c. Markowitz approach [10]

Find min{(1− λ)EF [−g0(x, ξ)] + λρF (g0(x, ξ))} s.t. x ∈ X; λ ∈ ⟨0, 1⟩. (4)

(ν1, ν2 are suitable constants.)

Evidently, the properties of the problems (2), (3), (4) depend on the probability measure PF , on the properties
of the function g0(x, ξ) and on the risk measure ρF (·). We recall a few well–known risk measures ρF . To this end
we set U = g0(x, ξ); they are:
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1. variance – ρF (U)(:= var(U)) = EF [U − EFU ]2,
2. absolute semi–deviation – ρF (U) (:= δ̄(U)) = EF [max (EF[U ]− U), 0],
3. the standard semi–deviation – ρF (U) (:= (δ(U)) = (EF [(max(EF [U ]− U, 0))2])1/2,
4. ρF (U) (:= Average Value-at-Risk ) = AV@Rα(U) for some fixed α ∈ [0, 1].

(For the definition of AV@Rα(U) see, e.g., [4].)

Moreover, there exists a relationship between the Mean-Risk model (1), Markowitz approach and the stochastic
dominance approach. We employ it for the second order stochastic dominance [4]. However, to introduce the cor-
responding definition we have to recall, first, a definition of the second order stochastic dominance. To this end let
Y (:= Y (ξ(ω))), V (:= V (ξ(ω))) be random variables defined on (Ω,S, P ). If there exist finite EFV (ξ), EFY (ξ)
and if

F 2
Y (ξ)(u) =

u∫
−∞

FY (ξ)(z)dz, F 2
V (ξ)(u) =

u∫
−∞

FV (ξ)(z)dz, u ∈ R1,

then Y (ξ) dominates in second order V (ξ) (Y (ξ) ≽2 V (ξ)) if

F 2
Y (ξ)(u) ≤ F 2

V (ξ)(u) for every u ∈ R1.

Definition 1. [4] The mean–risk model (1) is called consistent with the second order stochastic dominance (≽2) if
for every x ∈ X and y ∈ X,

g0(x, ξ) ≽2 g0(y, ξ) =⇒ EF g0(x, ξ) ≥ EF g0(y, ξ) and ρF (g0(x, ξ)) ≤ ρF (g0(y, ξ)). (5)

According to the definition of the second order stochastic dominance g0(x, ξ) ≽2 g0(y, ξ)means that

F 2
g0(x, ξ)

(u) =

u∫
−∞

Fg0(x, ξ)(z)dz ≤ F 2
g0(y, ξ)

(u) =

u∫
−∞

Fg0(y, ξ)(z)dz for every u ∈ R1. (6)

Employing the results [11], the stochastic second order dominance (6) can be rewritten in a more friendly form:

EF (u− g0(x, ξ))
+ ≤ EF (u− g0(y, ξ))

+ for every u ∈ R1. (7)

Evidently to analyze the above mentioned approaches we can employ already known results for deterministic
and stochastic optimization. In the next part we repeat some of them. However, before it we try to introduce
an organization of the paper. A brief survey of the corresponding definitions and auxiliary assertions is given
in Section 2. Section 3 is devoted to Markowitz approach, results determined on the base of the second order
stochastic dominance can be found in Section 4. The contribution is closed by Conclusion (Section 5).

2 Some Definitions and Auxiliary Assertions
Setting f1(x) = −EF g0(x, ξ), f2(x) = ρF (g0(x, ξ)) we can see that problem (1) is a problem of two-objective
deterministic optimization. Consequently it is possible for their investigation to employ the results achieved for
multi-objective deterministic problems.

2.1 Deterministic Multi-Objective Problems
To recall suitable results obtained for deterministic problems, let fi(x), i = 1, . . . , l be real–valued functions
defined on Rn; K ⊂ Rn be a nonempty set. The multi–objective deterministic optimization problem can be
defined by:

Find min fi(x), i = 1, . . . , l subject to x ∈ K. (8)

Definition 2. The vector x∗ is an efficient solution of the problem (8) if and only if there exists no x ∈ K such that
fi(x) ≤ fi(x

∗) for i = 1, . . . , l and such that for at least one i0 one has fi0(x) < fi0(x
∗).

Definition 3. The vector x∗ is a properly efficient solution of the multi–objective optimization problem (8) if
and only if it is efficient and if there exists a scalar M > 0 such that for each i and each x ∈ K satisfying
fi(x) < fi(x

∗) there exists at least one j such that fj(x∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤ M. (9)
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Proposition 1. [3] Let K ⊂ Rn be a nonempty convex set and let fi(x), i = 1, . . . , l be convex functions on K.
Then x0 ∈ K is a properly efficient solution of the problem (8) if and only if x0 is optimal in

Find min
x∈K

l∑
i=1

λifi(x) for some λ1, . . . , λl > 0,

l∑
i=1

λi = 1.

A relationship between efficient and properly efficient points is introduced, e.g., in [2] or [3]. We summarize it in
the following Remark.

Remark 1. Let f(x) = (f1(x), . . . , fl(x)), x ∈ K; Keff , Kpeff be sets of efficient and properly efficient points
of the problem (8). If K is a convex set, fi(x), i = 1, . . . , l are convex functions on K, then

f(Kpeff ) ⊂ f(Keff ) ⊂ f̄(Kpeff ), (f̄(Kpeff denotes the closure set of f(Kpeff )).

Remark 2. Evidently setting l = 2, K = X and f1(x) = −EF g0(x, ξ), f2(x) = ρF (g0(x, ξ)) we can see that
problem (1) corresponds to the deterministic problem (8).

Further, we recall the definition of strongly convex function.

Definition 4. Let h(x) be a real-valued function defined on a nonempty convex set K ⊂ Rn. h(x) is strongly
convex function with a parameter ρ′ > 0 if

h(λx1 + (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2)− λ(1− λ)ρ′∥x1 − x2∥22
for very x1, x2 ∈ K, λ ∈ ⟨0, 1⟩, (∥ · ∥2 := ∥ · ∥n2 denotes the Euclidean norm in Rn).

2.2 Stochastic Optimization Problems and Empirical Estimates
Let P(Rs) denote the set of all (Borel) probability measures on Rs, M1

1(Rs) be defined by the relation:

M1
1(Rs) :=

{
ν ∈ P(Rs) :

∫
Rs

∥z∥1dν(z) < ∞
}
, ∥ · ∥s1 := ∥ · ∥1 denotes L1 norm in Rs. (10)

Let, further, g : Rn ×Rs → R1 be real-valued function such that there exists a finite EF g(x, ξ) for every x ∈ X.
We introduce a system of assumptions:
A.0 g(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz constant (corresponding to the L1

norm) not depending on x,
A.1 g(x, z) is either a uniformly continuous function on X×Rs or there exists ε > 0 such that g(x, z) is a convex

function on X(ε) and bounded on X(ε)×Rs (X(ε) denotes ε–neighborhood of X),
A.2 • {ξi}∞i=1 is an independent random sequence corresponding to F ,

• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . ,
• Fi, i = 1, . . . , s denote one-dimensional marginal distribution functions corresponding to F .

Let, further, for the random value Y := Y (ξ) and ε ∈ R1 the sets Xε
F := Xε

F (Y (ξ)) be defined by

Xε
F = {x ∈ X : EF (u− g0(x, ξ))

+ − EF (u− Y (ξ))+ ≤ ε for every u ∈ R1}, ε ∈ R1. (11)

If we set XF = X0
F , then a rather general optimization problem with second order stochastic dominance

constraints can be introduce in the following form:

Find φ(F,XF ) = inf
{
EF g(x, ξ) : x ∈ XF

}
. (12)

Replacing the distribution function F by the empirical one FN , then we obtain an empirical optimization
problem. The following assertion follows from stability results presented in [9].

Proposition 2. [9] Let XF be a nonempty compact set, PF ∈ M1
1(Rs). Let, moreover, g0(x, z), Y (z) be for

every x ∈ X Lipschitz functions of z ∈ ZF with the Lipschitz constant not depending on x ∈ X. If
1. Assumptions A.0, A.1, A.2 are fulfilled,
2. g(x, z) is a Lipschitz function on X with the Lipschitz constant not depending on z ∈ ZF ,
3. there exists ε0 > 0 such that Xε

F are nonempty compact sets for every ε ∈ ⟨−ε0, ε0⟩ and, moreover, there
exists a constant Ĉ > 0 such that

∆n[X
ε
F , Xε

′

F ] ≤ Ĉ|ε− ε
′
| for ε, ε

′
∈ ⟨−ε0, ε0⟩,
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4. there exists a finite first moment of the random vector ξ,

then
P{ω : |φ(F, XF )− φ(FN , XFN | −→N−→∞ 0} = 1 (13)

A crucial assumptions (in Proposition 2) is the existence of a finite first moment of ξ. Consequently, the relation
(13) holds also for stable distributions with the parameter stability greater or equal to 1 (for the definition of stable
distribution see, e.g., [8]).

3 Mean-Risk Model via Markowitz Approach
Evidently, the following assertion follows from Proposition 1.

Proposition 3. Let X ⊂ Rn be a nonempty convex set, EF [−g0(x, ξ)], ρF (g0(x, ξ)) be finite convex functions on
X. Then xλ ∈ X is a properly efficient solution of the problem (1) if and only if xλ is optimal in the problem

Find min
x∈X

{(1− λ)EF [−g0(x, ξ)] + λρF (g0(x, ξ))} for λ ∈ (0, 1). (14)

If we denote by X̄ the set of all solutions of the problem (14) for some λ ∈ (0, 1), then according to Remark 1
the closure of the set X̄ is equal to set of all efficient points of two-objective problem (1). If, moreover, functions
EF [−g0(x, ξ)], ρF (g0(x, ξ)) are strongly convex on X with the same parameter ρ′ and if X̄ (F, X), Ḡ(F, X) are
defined by the relation:

X̄ (F, X) = {x ∈ X : x is a properly efficient point of the problem (1)},

Ḡ(F, X) = {t1, t2 : t1 = EF [−g0(x, ξ)], t2 = ρF (g0(x, ξ)) for some x ∈ X̄ (X, F )},

then the following assertion follows from [6] and [7].

Theorem 1. Let PF , PG ∈ M1
1(Rs), X be a nonempty convex compact set, A.2 be fulfilled. If

• g0(x, z) is for every (x ∈ X) a Lipschitz function of z ∈ Rs with the Lipschitz constant (corresponding to L1

norm ) not depending on x ∈ X,
• there exists a constant C1 > 0 such that

|ρF (g0(x, ξ)− ρG(g0(x, ξ))| ≤ C1
s∑

i=1

∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

• EF g0(x, ξ), ρF (g0(x, ξ)) are strongly convex on X with the same parameter ρ′ > 0,

then
P{ω : ∆n[X̄ (F, X)− X̄ (FN , X)] →N→∞ 0} = 1.

(Symbol ∆[·, ·] := ∆n[·, ·] denotes the Hausdorff distance of two nonempty sets in Rn, for the definition Haus-
dorff distance see, e.g., [14].)

Remark 3. Conditions under which variance and Avarage-value-at-Risk fulfil the assumptions of Theorem 1 can
be found in [7].

4 Mean-Risk Model via Second Order Stochastic Dominance
Let us start with model (1), problems (2), (3) and Definition 1. If we can for suitable ν1, ν2 find x0 ∈ X such that

EF g0(x0, ξ) ≥ ν2, ρF g0(x0, ξ)) ≤ ν1,

then setting Y (ξ) = g0(x0, ξ) we can define the set X(x0) by

X(x0) = {x ∈ X : EF (u− g0(x, ξ))
+ ≤ EF (u− g0(x0, ξ))

+ for every u ∈ R1}. (15)

In the case when the model (1) is consistent with the second order stochastic dominance and X(x0) is a nonempty
set, then

x ∈ X(xo) =⇒ EF g0(x, ξ) ≥ EF g0(x0, ξ) and simultaneously ρF (g0(x, ξ)) ≤ ρF (g0(x0, ξ)).
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Further, evidently, if we can determine x1 ∈ X(x0) such that EF g0(x1, ξ) > EF g0(x0, ξ), then setting Y (ξ) :=
g0(x1, ξ), we can define the set X(x1) by

X(x1) = {x ∈ X(x1) : EF (u− g0(x, ξ))
+ ≤ EF (u− g0(x1, ξ))

+ for every u ∈ R1}. (16)

Employing Definition 1 we obtain the following relations

x ∈ X(x1) =⇒ EF g0(x, ξ) ≥ EF g1(x1, ξ) and simultaneously ρF (g0(x, ξ)) ≤ ρF (g0(x1, ξ)).

Further, evidently, if we can determine x2 ∈ X(x1) such that that EF g0(x2, ξ) > EF g0(x1, ξ), then we can
setting Y (ξ) := g0(x2, ξ), employing Definition 1 define the set X(x2) by

X(x2) = {x ∈ X(x2) : EF (u− g0(x, ξ))
+ ≤ EF (u− g0(x2, ξ))

+ for every u ∈ R1} (17)

such that

x ∈ X(x2) =⇒ EF g0(x, ξ) ≥ EF g1(x2, ξ) and simultaneously ρF (g0(x, ξ)) ≤ ρF (g0(x2, ξ)).

Of course, we can continue looking for x3, x4, . . . .

Evidently
X(x2) ⊂ X(x1) ⊂ X(x0),

x ∈ X(x2) =⇒ EF g0(x, ξ) ≥ EF g0(x2, ξ) > EF g0(x1, ξ) > EF g0(x0, ξ),

ρF g0(x, ξ) ≤ ρF g0(x2, ξ) ≤ ρF g0(x1, ξ) ≤ ρF g0(x0, ξ).

Of course, theoretically, it is possible to determine already x1 ∈ X(x0) by an optimization problem:

Find max EF g0(x, ξ) s.t. x ∈ X(x0). (18)

However, problem (18) is generally semi-infinite optimization problem for which Slater’s condition is not very
often fulfilled. Many authors have dealt with this problems, we can recall e.g., [1], [5], [9], [5].

Till now (in this section) we have assumed that the underlying probability measure is known. This assumption
is fulfilled in real situations very seldom and the problem has to be analyzed on the data base. We can recall works
dealing with this situation see, e.g., [4], [9] and [15].

Remark 4.
• It has been proven in [13] (see also [4])) that the mean-risk problem using Average Value-at Risk at some level

α (as risk measure) is consistent with the second order stochastic dominance.
• Of course, it is possible to interchange the positions of EF g0(x, ξ) and ρF (g0(x, ξ)) and consequently to try

to improve the value of risk measure.

5 Conclusion
We have dealt with a special case of multi-objective stochastic optimization problems. Especially we consider
Mean-Risk problem with Markowitz approach and with the approach based on the stochastic second order domi-
nance. It could seem that our results do not cover many real situations. However, to deal with these others cases is
beyond of the scope of this contribution.
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