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Abstract. Financial Ising model is one of the simplest agent-based models
(building on a parallel between capital markets and the Ising model of ferromag-
netism) mimicking the most important stylized facts of financial returns such
as no serial correlation, fat tails, volatility clustering and volatility persistence
on the verge of non-stationarity. We present results of Monte Carlo simulation
study investigating the relationship between parameters of the model (related
to herding and minority game behaviors) and crucial characteristics of capital
market e�ciency (with respect to the e�cient market hypothesis). We find
a strongly non-linear relationship between these which opens possibilities for
further research. Specifically, the existence of both herding and minority game
behavior of market participants are necessary for attaining the e�cient market
in the sense of the e�cient market hypothesis.
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1 Introduction

Agent-based models (ABM) have attracted much attention in economics and finance in recent years
[10, 12, 21] as they describe the reality better than simplified models of traditional economics and finance.
The crucial innovation lies in assuming a boundedly rational economic agent [20, 18] instead of a perfectly
rational representative agent with homogeneous expectations [16, 14]. In these models, agents make
decision without utility maximization but usually using simple heuristics. The resulting systems are
majorly driven endogenously, i.e. without exogenous shocks forcing the dynamics.

In finance, the founding contributions were laid by Brock and Hommes models [3, 4] characteristic
by strategy-switching agents and possible bifurcation dynamics. Here, we focus on one of the simplest
ABMs built on a parallel between ferromagnetism and market dynamics, i.e. the Ising model adjusted for
financial economics. In the model, economic agents participating in the market are spins of a magnet. In
the same way as the spins, the agents are influenced by (make their decisions based on) their neighbors,
or agents with similar beliefs, but also by the overall market sentiment and activity. Such model has
been shown to mimic the basic financial stylized facts successfully [2]. We focus on the model parameters
and how they influence price and returns dynamics in the optics of the e�cient market hypothesis. The
attention is given to finding a combination of parameters which yields an e�cient market or dynamics
close to it. We show that the e↵ects of parameters are more complicated than one might expect and
their influence is apparently non-linear. This opens further research options which are shortly discussed
as well.
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2 Methodology

In this section, we provide a brief introduction to the Ising model adjusted for financial markets and we
shortly discuss the essence of the e�cient market hypothesis.

2.1 Ising model

As a representative of the agent-based models applied to finance and financial economics, we opt for
a simple Ising model adjusted for financial markets as proposed by Bornholdt [2]. The model builds
on a combination of the standard Ising model of ferromagnetism (with local field interactions) [11] and
a minority game behavior of market agents [1, 5]. Financial market is represented by a square lattice
(usually with torus-like neighborhoods) with a side of N , i.e. with N2 elements representing market
agents. These elements are referred to as spins due to their magnetization of either +1 or �1. This spin
orientation is translated into a financial market as either a buy or a sell signal (decision), respectively.
The spin orientation of agent i for a time period t is labelled as Si(t). For each agent i, the local field
hi(t) for a time period t is defined as

hi(t) =
N

X

j=1

JijSj(t) � ↵Ci(t)
1

N

N
X

j=1

Sj(t). (1)

The first term is defined as a local Ising Hamiltonian with neighbor interactions Jij . This is the reference
to the standard Ising model. The second term represents the minority game dynamics as it depends on
the total magnetization of the system M(t) ⌘ 1

N

PN
j=1 Sj(t) at time t with sensitivity ↵. Ci(t) gives the

strategy of spin i. Orientation of spin i at time t + 1 is given as

Si(t + 1) = +1 with p = [1 + exp(�2�hi(t))]�1,

Si(t + 1) = �1 with 1 � p,

which is directly connected to Eq. 1 with an additional sensitivity �, which is parallel to the inverse
temperature of the original Ising model.

The strategy term Ci(t) is given as a general term in Eq. 1 which can be further specified. A popular
choice is to highlight the minority game behavior of the spin by allowing the strategy to change with
respect to the total magnetization and the spin’s own orientation. This specification also allows for more
strategy types. Bornholdt [2] proposes the following dynamics:

Ci(t + 1) = �Ci(t) if ↵Si(t)Ci(t)
N

X

j=1

Sj(t) < 0 (2)

A simple alternative is to keep the strategy spin update immediately, which reduces the local field equation
to

hi(t) =
N

X

j=1

JijSj(t) � ↵Si(t)

�

�

�

�

�

�

1

N

N
X

j=1

Sj(t)

�

�

�

�

�

�

, (3)

i.e. it does not depend on the strategy of any spin at all.

The price dynamics of the system is extracted directly from the magnetization dynamics so that

log P (t) = M(t) ⌘ 1

N

N
X

j=1

Sj(t). (4)

2.2 E�cient market hypothesis

E�cient market hypothesis (EMH) has been a cornerstone of modern financial economics for decades.
Even though its validity has been challenged on many fronts, it still remains the firm theoretical basis
of the financial economics theory [6, 15]. In the fundamental paper, Fama [8] summarizes the empirical
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validations of the theoretical papers of himself [7] and Samuelson [17]. The theory is revised and made
clearer in Fama’s 1991 paper [9] where the market e�ciency is split into three forms based on availability
of information. From mathematical standpoint, the historical papers [7, 17] are more important as they
provide specific model forms of an e�cient market. Specifically, Fama [7] connects the (logarithmic)
price process of an e�cient market to a random walk and Samuelson [17] specifies it as a martingale.
Implications for the statistical properties of the returns process of the e�cient market are straightforward.
For the former, the returns are expected to be serially uncorrelated and follow the Gaussian (normal)
distribution, which implies independence. For the latter, only the serial uncorrelatedness is implied.
We thus have two straightforward implications of the market e�ciency – normally distributed (for the
random walk definition) and serially uncorrelated (for both random walk and martingale definition)
returns – which we use in the simulations presented in the next section.

3 Results and Discussion

3.1 Simulation setting

We are interested in the ability of the Ising model defined between Eqs. 1-4 to meet the criteria attributed
to the e�cient capital market, i.e. normality and serial uncorrelatedness of returns. To test these, we
use the Shapiro-Wilk test [19] and Ljung-Box test [13], respectively.
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Figure 1: Rejection rates of no serial correlation hypothesis for Model I according to Eq. 1. Parameter
↵ varies between 0 and 10 with a step of 1, and parameter � between 0 and 4 with a step of 0.5. Other

parameters are set at T = 1000 and N = 25, neighborhood interactions Jij are set to the nearest
neighbors and the spin itself with a weight of 1, and 0 otherwise. We provide a 3D view as well as

focusing on parameters separately.

There are two crucial parameters in the model – ↵ and � – which can influence the prices and returns
dynamics emerging from the model. We vary these two parameters and study how it influences the
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rejection rate of normality and uncorrelatedness with respective tests. In other words, we are interested
in a proportion of times these tests reject (with a significance level of 0.10) market e�ciency of series
generated by the financial Ising model with specified parameters. Based on findings of previous research
[2], we manipulate ↵ between 0 and 10 with a step of 1 and � between 0 and 4 with a step of 0.5. We
fix the time series length T = 1000 and the number of agents in the market to N2 = 252 = 625. The
neighborhood influence Jij is set equal to 1 for the nearest neighbors and the spin’s own position (five
spins in total), and 0 otherwise. For each setting, we perform 100 simulations. Two specifications are
studied – Model I given by Eq. 3, i.e. with fixed strategy spins, and Model II given by Eq. 1, i.e. with
variable strategy spins. The code in R is available upon request.

3.2 Main findings

The findings are summarized in Figs. 1 and 2 for Model I and Model II, respectively. The 3D charts
summarize the results (rejection rates) for simulations described in the previous section. Before turning
to these, it needs to be noted that for the normality testing, only the case when � = 0 gives the rejection
rates around 10% whereas for � > 0, normality is rejected practically always. This is true for both
specifications of the model and regardless the values of parameter ↵. These are thus not represented
graphically.
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Figure 2: Rejection rates of no serial correlation hypothesis for Model II according to Eq. 3.
Parameter ↵ varies between 0 and 10 with a step of 1, and parameter � between 0 and 4 with a step of

0.5. Other parameters are set at T = 1000 and N = 25, neighborhood interactions Jij are set to the
nearest neighbors and the spin itself with a weight of 1, and 0 otherwise. We provide a 3D view as well

as focusing on parameters separately.

We now turn to the tests of uncorrelatedness. For both models, we find a strongly non-linear depen-
dence between rejection of no serial correlation hypothesis and the model parameters. For the sensitivity
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to the global magnetization (parameter ↵), we find a minimal rejection rate of approximately 40% at
↵ = 3 for Model I and at ↵ = 2 for Model II. For ↵ = 0, the rejection rate is around 80% for both models,
and the same is true for the other boundary of ↵ = 10. The serial correlation dynamics thus emerges
both for no reaction to the total magnetization, i.e. avoiding the influence of the overall market situation,
and for a strong minority game behavior. There is thus no simple outcome such that a minority game
behavior induces a serial correlation structure or the other way around. Such structure emerges for both
extremes and market gets closer to e�ciency for a setting in between.

Qualitatively similar results are found for the � parameter, i.e. the sensitivity to the local field. The
minimal rejection rate is found at � = 1 for both models. For � < 1, the no serial correlation hypothesis
is rejected practically always. The relationship between � and the rejection rate is smoother for � > 1
but still the rejection rate gets very close to 100% for � > 3 for Model I and � > 2 for Model II.

These preliminary results suggest the following. First, there is no simple linear relationship between
market e�ciency and model parameters. This poses a problem for policy makers potentially trying to
get the market closer to e�ciency as there is no simple answer to this endeavor. Second, which is tightly
connected to the first, more detailed (smoother) simulations need to be undertaken to find a more precise
e�cient setting. And third, inclusion of the strategy spin plays no important role for this task.
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