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We analyze the market efficiency of 25 commodity futures across various groups—metals, energies, soft com-
modities, grains and other agricultural commodities. To do so, we utilize the recently proposed Efficiency
Index to find out that the most efficient among all of the analyzed commodities is heating oil, closely followed
by WTI crude oil, cotton, wheat, and coffee. On the other end of the ranking scale we find live cattle and feeder
cattle. The efficiency is also found to be characteristic for specific groups of commodities, with energy commod-
ities being the most efficient and other agricultural commodities (composed mainly of livestock) the least effi-
cient groups. We also discuss contributions of long-term memory, fractal dimension and approximate entropy
to the total inefficiency. Last but not least, we come across the nonstandard relationship between the fractal
dimension and theHurst exponent. For the analyzed dataset, the relationship between these two variables is pos-
itive,meaning that local persistence (trending) is connected to global anti-persistence.We attribute this behavior
to specifics of commodity futures: they may be predictable over a short term and locally, but over a long term
they return to their fundamental prices.

© 2013 Published by Elsevier B.V.
1. Introduction

Efficient market hypothesis (EMH) has been a cornerstone of finan-
cial economics for decades and it has been brought to the forefront by
the influential paper of Fama (1970), summarizing the empirical find-
ings based on efficient market hypotheses by Fama (1965) and
Samuelson (1965). Even though the actual definitions differ – the for-
mer study builds on a random walk definition and the latter on a mar-
tingale definition – the qualitative consequences are the same: the
efficiency of a market originates in the impossibility of systematic con-
trol of the market, usually in the form of above-average risk-adjusted
returns. Fama (1991) later subdivided the efficiency hypothesis into
three forms – weak, medium and strong – which vary by the different
information sets taken into consideration, and all are based on inclusion
of the information sets in market prices. The weak-form EMH says that
all past price movements (and associated statistics) are already
reflected in the market prices. Prediction of market movements based
on historical time series (technical analysis) is thus not possible for
this form. Themedium-formEMH states that all publicly available infor-
mation is already contained in the prices, while the strong-form EMH
adds all (even privately) available information. The medium form thus
discards fundamental analysis and the strong form eliminates even
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insiders from making a profit. Evidently, a weaker form of EMH is al-
ways a subset of a stronger form. Even though EMHhas been repeatedly
disparaged both empirically and theoretically (Cont, 2001; Malkiel,
2003), and even more so after the Global Financial Crisis broke out in
2007/2008, its validity remains an open issue, yet still it persists in stan-
dard textbooks on financial economics (Elton et al., 2003).

Comparison of efficiency across various assets has been discussed in
different studies. In a series of papers, Di Matteo et al. (2003, 2005) and
Di Matteo (2007) study long-termmemory and multi-scaling of a wide
portfolio of stock indices, foreign exchange rates, Treasury rates and
Eurodollar interbank interest rates using various estimators of long-
term memory. They show that stock indices of more developed coun-
tries are also more efficient yet showing weak signs of anti-
persistence (properties of long-term memory are described in detail in
the Methodology section), finding no deviations from EMH for any of
the analyzed maturities of Eurodollar and Treasury rates. For US dollar
exchange rates, the authors find diverse results with no evident pattern
connecting the exchange rate efficiency level with geographical or geo-
political properties. In another series of papers, Cajueiro and Tabak
(2004a,b,c, 2005) compare stock market indices from different conti-
nents, finding that the US and Japanese markets are the most efficient
whereas the Asian and Latin American ones are revealed to be the
least efficient. Lim (2007) studies non-linear dependencies, their
evolution in time and connection to market efficiency for a set of
stock markets. The author finds the US market to be the most effi-
cient, followed by Korea, Taiwan and Japan. On the other end of the
ranking scale lie Malaysia, Chile and Argentina. Zunino et al. (2010)
utilize the complexity–entropy causality plane to rank stock market
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indices to show that the emerging markets are less efficient than the
developed ones, as one would expect. The difference is attributed to
a lower entropy value and a higher complexity of the emergent mar-
kets. Kristoufek and Vosvrda (2013) introduce the Efficiency Index
and come up with a ranking of stock market indices, finding that
the most efficient markets are located in Western Europe, USA and
Japan, whereas the least efficient markets are situated in Latin
America and Asia.

However, to the best of our knowledge, proper attention has not
been given to a comparison of the efficiency of commodity mar-
kets. In this paper, we analyze futures markets for a wide range of
commodities – energy, metals, and various agricultural commodities –
and compare their efficiency using the Efficiency Index proposed
by Kristoufek and Vosvrda (2013). The paper is structured as follows.
Section 2 covers literature dealing with the efficiency of commodi-
ties. Section 3 describes the methodology in detail. Section 4 de-
scribes the analyzed dataset and gives the results. Section 5 is the
conclusion.We show that efficiency is related to a type of commodity
(energy commodities being the most efficient and other agricultural
commodities being the least efficient). In addition, we find a non-
standard relationship between the local and global properties of
the series: most of the series show local persistence, yet they are
globally mean-reverting. The series thus follow quite strong local
trends but over a long term, they return to their fundamental value.

2. Literature review

Testing the market efficiency in commodity markets has a long
history. Roll (1972) examines the commodity price index and argues
that the market is inefficient due to significant serial correlations
among its returns. Danthine (1977) disputes such claims and shows
that the violation of the standard martingale condition does not imply
inefficiency in the commodity spot markets with support of risk aver-
sion and no arbitrage opportunities. Gjolberg (1985) analyzes oil spot
prices at the Rotterdam market, rejects the efficiency hypothesis and
constructs a profitable trading rule for daily, weekly and monthly
price changes. Panas (1991) studies the Rotterdam oil market as well,
together with the Italian market, and based on leptokurtic monthly
price changes, he rejects the markets' efficiency. Herbert and Kreil
(1996) examine the US spot (cash) and futures markets for natural
gas and find these to be inefficient. They argue that such inefficiency is
caused by the specific structure of the US gas markets.

More recently, Tabak and Cajueiro (2007) analyze the efficiency of
Brent and WTI crude oil using the rescaled range analysis and show
that the markets are becoming more efficient in time. Alvarez-Ramirez
et al. (2008) study the auto-correlation structure of the crude oil process
using the detrended fluctuation analysis. They show that the market is
efficient over a long term, but the auto-correlation structure leads to
rejection of the efficiency over a short term. Alvarez-Ramirez et al.
(2010) further inspect the crude oil markets using lagged detrended
fluctuation analysis and argue that multi-scaling and deviations from
the random walk behavior cause the spot prices to be inefficient. The
research on evolution of efficiency in time is further extended by
Wang and Liu (2010) where the authors study short-, medium- and
long-term efficiency for various scales within the detrended fluctuation
analysis approach. They show that the WTI crude oil becomes more ef-
ficient in time for all three of the analyzed scales. Also using the
detrended fluctuation analysis, Wang et al. (2011) argue that WTI
crude oil spot and futures are not efficient for time scales shorter than
one month. Crude oil markets (Brent and WTI) are also analyzed by
Charles and Darné (2009), who use the variance ratio tests to show
that the Brent market is weak-form efficient but the WTI market is
not, while providing some discussion about effects of deregulation on
the markets.

Lee and Lee (2009) study four energy commodities – coal, oil, gas,
and electricity – using panel data stationarity tests to uncover that
none of the studied markets is efficient in the strict stationarity sense.
Lean et al. (2010) study WTI crude oil spot and futures prices using
mean–variance and stochastic dominance approaches, finding no arbi-
trage opportunities between spot and futures prices while the findings
are robust for various sub-periods and critical events. Narayan et al.
(2010) study the long-term relationship between spot and futures prices
of gold and oil. They find that investors use the gold market to hedge
against inflation, and – more importantly for our purposes – the crude
oil market predicts the gold market and vice versa, implying inefficiency.

Wang and Yang (2010) study high-frequency futures data of crude
oil, heating oil, gasoline, and natural gas using various non-linear
models. For heating oil and natural gas, the authors find market ineffi-
ciencies which are profound mainly during the bull market
conditions. Gebre-Mariam (2011) focuses on the US natural gas market
(spot and futures)finding no arbitrage opportunities for daily prices but
in general, the author claims that the markets can be seen as efficient
only for contracts with approximately a month to maturity. Martina
et al. (2011) utilize entropy approaches to WTI crude oil spot prices
and find various cycles in its prices. Entropy is also applied by Ortiz-
Cruz et al. (2012) who again study daily WTI prices, finding the market
to be efficient with two episodes of inefficiency connected to the US
recessions in the early 1990s and late 2000s. The authors stress that
deregulation of the market has helped to improve its efficiency.

Zunino et al. (2011) apply information theory methods (specifically
the permutation entropy and permutation statistical complexity) to the
commodity markets for purposes of efficiency ranking, finding silver,
copper and cotton to be the most efficient commodities. Wang et al.
(2011) study the gold market using the multifractal detrended fluctua-
tion analysis to show that the market, especially after 2001, becomes
more efficient in time. Kim et al. (2011b) use the randommatrix theory
and network analysis to show that stock and commodity markets are
well decoupled, except for oil and gold showing signs of inefficiency.
Kim et al. (2011a) then focus on the Korean agricultural market using
the detrended fluctuation analysis, finding anti-correlated series with
strong volatility clustering that leans toward inefficiency.

From these selected papers, it is evident that analysis of the efficiency
of commodity markets is fruitful with many approaches to the topic.
However, the studies usually focus on a single (or a pair of) efficiency
measure(s) to test whether the specific markets are or are not efficient.
Moreover, the analysis is usually strongly focused on a single commodity
or a small group of commodities. Here, we contribute to the literature by
applying various efficiencymeasures on awide portfolio of commodities
ranging from energy and agricultural (with several subgroups) com-
modities to metals. Moreover, we utilize the efficiency measure intro-
duced by Kristoufek and Vosvrda (2013) to rank the commodities
according to their efficiency.

3. Methodology

An efficientmarket can be defined in severalways. Themain distinc-
tion has its roots back in 1965 when Fama (1965) and Samuelson
(1965) used different definitions—a random walk and a martingale,
respectively. We stick to the martingale definition of efficiency because
it is less restrictive. Based on this definition, we assume that the returns
of a financial asset are serially uncorrelated and with finite variance for
the efficient market situation. Such a simple definition allows us to use
various measures of market efficiency, which are described in this
section. Eventually, we refer to the Efficiency Index which takes these
statistics into consideration and it helps to rank different assets accord-
ing to their efficiency while using various dynamic properties of the
time series under study.

3.1. Long-term memory

Long-term memory (long-range dependence) series are character-
ized by values in the (even distant, in theory infinitely distant) past
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influencing the present and future values. These processes are typically
described with the long-term memory parameter H (Hurst exponent)
which ranges between 0 ≤ H b 1 for stationary invertible processes.
The midpoint, H = 0.5, holds for uncorrelated (or in general short-
term memory) processes, i.e., processes of the efficient market. For
H N 0.5, the processes are positively correlated with long-termmemory
and are usually referred to as persistent. These processes systematically
follow local trendswhile still remaining stationary. ForH b 0.5, we have
long-term memory processes with negative correlations—anti-persis-
tent processes. Such processes switch direction more often than a
random process does.

More formally, the long-termmemory processes are defined in both
time and frequency domains. In the time domain, they are connected
to a power-law decaying auto-correlation function. For the auto-
correlation function ρ(k) with time lag k, the decay is characterized as
ρ(k) ∝ k2H − 2 for k → +∞. In the frequency domain, the spectrum
f(λ) with frequency λ of the long-range dependent process diverges at
the origin so that f(λ) ∝ λ1 − 2H for λ → 0+. These definitions further
lead to non-summable auto-correlations and diverging covariance of
partial sums of the process for the persistent series. Such properties
are used in various estimators of parameter H. For comparison of both
time and frequency domain estimators, see Beran (1994), Taqqu et al.
(1995), Taqqu and Teverovsky (1996), Robinson (1995), Geweke and
Porter-Hudak (1983), Di Matteo et al. (2003), Di Matteo (2007),
Barunik and Kristoufek (2010) and Teverovsky et al. (1999). Out of
these estimators, we opt for the local Whittle and GPH estimators
(explained later in this section) which are suitable for short time series
with a possible weak short-term memory (Taqqu and Teverovsky,
1996; Taqqu et al., 1995), which can easily bring a bias into the time
domain estimators (Kristoufek, 2012; Teverovsky et al., 1999). More-
over, these estimators have well-defined asymptotic properties—
they are consistent and asymptotically normal estimators (Beran,
1994; Geweke and Porter-Hudak, 1983; Phillips and Shimotsu,
2004; Robinson, 1995).

3.1.1. Local Whittle estimator
The local Whittle estimator (Robinson, 1995) is a semi-parametric

maximum likelihood estimator utilizing a likelihood function of
Künsch (1987) and focusing only on a part of the spectrum f(λ) near
the origin. The full parametric specification is thus not necessary, and
one does not need to assume any specific underlying long-termmemo-
ry model but only a model with a spectrum divergent at origin. This
way, the estimator does not take into consideration high frequencies
and it is in turn resistant to the short-termmemory bias. As an estimator
of the spectrumof series {xt}, we use the periodogramdefined as I λ j

� � ¼
1
T∑

T
t¼1exp −2πitλ j

� �
xt with j = 1, 2,…,mwherem ≤ T/2 andλj = 2πj/T.

The local Whittle estimator is defined as

Ĥ ¼ arg min
0≤Hb1

R Hð Þ; ð1Þ

where

R Hð Þ ¼ log
1
m

Xm
j¼1

λ2H−1
j I λ j

� �0@ 1A−2H−1
m

Xm
j¼1

logλ j: ð2Þ

The local Whittle estimator is consistent and asymptotically normal,
specifically

ffiffiffiffiffi
m

p
Ĥ−H0
� �

→dN 0;1=4ð Þ: ð3Þ

3.1.2. GPH estimator
Unlike the local Whittle estimator, the GPH estimator, named after

the authors Geweke and Porter-Hudak (1983), is based on a fully
functional specification of the underlying process as the fractional
Gaussian noise implying a specific spectral form:

log f λð Þ∝− H−0:5ð Þ log 4 sin2 λ=2ð Þ
� �

: ð4Þ

Again, the spectrum is estimated using the periodogram, and the
Hurst exponent is estimated using the ordinary least squares on

logI λ j

� �
∝− H−0:5ð Þlog 4 sin2 λ j=2

� �� �
: ð5Þ

The GPH estimator is consistent and asymptotically normal (Beran,
1994), specifically

ffiffiffi
T

p
Ĥ−H0
� �

→dN 0;π2
=6

� �
: ð6Þ

The GPH estimator is thus asymptotically infinitely more efficient
than the localWhittle estimator. However, this is true only if the under-
lying process is in fact the fractional Gaussian noise. Infinancial and eco-
nomic time series this is frequently not the case, as the processes are
mostly a combination of short-term (such as autoregressive moving
average – ARMA – processes of various specifications) and long-term
memory (such as the aforementioned fractional Gaussian noise of frac-
tionally integrated ARMA) processes. In this case, the GPH estimator
becomes biased. To avoid the bias, the GPH estimator is based only on
a part of the spectrum (periodogram) close to the origin similar to the
local Whittle estimator. The regression in Eq. (5) is then applied only
for a part of the periodogram based on the same parameter m as for
the local Whittle estimator1.

3.2. Fractal dimension

Contrary to the long-term memory, which can be seen as a charac-
teristic of global dependence and correlation structure, the fractal di-
mension D can be taken as a measure of local memory of the series as
it is a measure of roughness of the series (Kristoufek and Vosvrda,
2013). As specific parts of a series can be different with regard to their
roughness or smoothness, the series can be locally serially correlated
even though, on a global level, the correlations might vanish and are
not necessarily observable or detectable.

For a univariate series, the fractal dimension ranges between
1 b D ≤ 2. For self-similar processes, the fractal dimension is tightly
connected to the Hurst exponent (long-term memory) of the series so
that D = 2 − H. In economic terms, this can be understood as a perfect
transmission of a local behavior (fractal dimension) to a global behavior
(long-term memory). However, this relationship usually does not hold
perfectly for the financial series so that both D and H give different
insights into the dynamics of the series, making it worth studying
them separately.

In general, D = 1.5 holds for an uncorrelated series with no local
trending or no local anti-correlations and thus it is also a value of D for
the efficientmarket. For a low fractal dimension, D b 1.5, the roughness
of the series is lower than for an uncorrelated process; hence we
observe local trending and the series is said to be locally persistent. Con-
versely, a high fractal dimension,D N 1.5, characterizes a series rougher
than the uncorrelated one, which is connected to local anti-persistence,
i.e., such series are negatively auto-correlated locally. For purposes
of the Efficiency Index introduced later in this section, we utilize
Hall–Wood and Genton estimators (Gneiting and Schlather, 2004;
Gneiting et al., 2010). Statistical properties of these estimators are
well documented by Gneiting et al. (2010).



Table 1
Analyzed commodities.

Full name Short name Type

CBOT Corn C1 Corn Grains
CBOT Oats O1 Oats Grains
CBOT Rough Rice RR1 Rough rice Grains
CBOT Soybean Meal SM1 Soybean meal Grains
CBOT Soybean Oil BO1 Soybean oil Grains
CBOT Soybeans S1 Soybeans Grains
CBOTWheat W1 Wheat Grains
CME Feeder Cattle FC1 Feeder cattle Other agriculturals
CME Lean Hogs LN1 Lean hogs Other agriculturals
CME Live Cattle LC1 Live cattle Other agriculturals
CME Lumber LB1 Lumber Other agriculturals
COMEX Copper HG1 Copper Metals
COMEX Gold GC1 Gold Metals
COMEX Silver SI1 Silver Metals
ICE Brent Crude Oil B1 Crude oil (Brent) Energy
ICE Cocoa CC1 Cocoa Softs
ICE Coffee KC1 Coffee Softs
ICE Cotton No. 2 CT1 Cotton Softs
ICE Orange Juice Orange juice Softs
ICE Sugar No. 11 SB1 Sugar Softs
NYMEX Crude Oil CL1 Crude oil (WTI) Energy
NYMEX Heating Oil HO1 Heating oil Energy
NYMEX Natural Gas NG1 Natural Gas Energy
NYMEX Palladium PA1 Palladium Metals
NYMEX Platinum PL1 Platinum Metals

Table 2
Results.

Commodity AE DHW DG HLW HGP EI

Cocoa 0.9728 1.4665 1.4605 0.3542 0.3367 0.1594
Coffee 0.9680 1.4948 1.4606 0.4575 0.4665 0.0469
Copper 0.8264 1.5613 1.4974 0.6205 0.6992 0.1843
Corn 0.9015 1.4592 1.4299 0.5241 0.4858 0.0744
Cotton 0.9564 1.4702 1.4564 0.5057 0.4735 0.0439
Crude oil (Brent) 0.8919 1.5307 1.5084 0.5620 0.5986 0.0988
Crude oil (WTI) 0.9427 1.5243 1.4987 0.5466 0.4499 0.0309
Feeder cattle 0.3857 1.3498 1.3166 0.5751 0.3882 0.3500
Gold 0.5759 1.5161 1.4707 0.4278 0.4067 0.2277
Heating oil 0.9568 1.4943 1.4916 0.5081 0.4592 0.0280
Lean hogs 0.7081 1.3894 1.3584 0.3795 0.4256 0.2161
Live cattle 0.4527 1.4206 1.3773 0.4433 0.4306 0.2985
Lumber 1.0040 1.4301 1.4428 0.4278 0.3603 0.1236
Natural gas 1.1140 1.5246 1.4781 0.5210 0.5204 0.0607
Oats 0.9365 1.3926 1.3696 0.4105 0.2364 0.2152
Orange juice 0.8770 1.4266 1.3899 0.4126 0.3399 0.1659
Palladium 1.0230 1.4266 1.4210 0.5625 0.5970 0.1109
Platinum 0.7443 1.4686 1.4845 0.5535 0.5465 0.1393
Rough rice 0.8525 1.4278 1.4181 0.4512 0.4635 0.1149
Silver 0.8515 1.5161 1.4914 0.4685 0.4448 0.0861
Soybean meal 0.8861 1.4448 1.4328 0.4878 0.4548 0.0884
Soybean oil 0.7286 1.4735 1.4364 0.5330 0.5307 0.1465
Soybeans 0.7649 1.4900 1.4745 0.5266 0.5173 0.1209
Sugar 0.9759 1.4786 1.4818 0.5543 0.5505 0.0573
Wheat 0.9133 1.5129 1.4829 0.4626 0.5117 0.0453

53L. Kristoufek, M. Vosvrda / Energy Economics 42 (2014) 50–57
3.2.1. Hall–Wood estimator
The Hall–Wood estimator (Hall and Wood, 1993) is a box-counting

procedure which utilizes scaling of absolute deviations between steps.
Formally, we have

dA l=nð Þ ¼ ⌊ ln ⌋
X⌊n=l⌋
i¼1

xi⌊l=n⌋−x i−1ð Þ⌊l=n⌋
��� ��� ð7Þ

representing the absolute deviations. Using the definition of the fractal
dimension (Gneiting and Schlather, 2004; Gneiting et al., 2010), the
Hall–Wood estimator is given by

dDHW ¼ 2−

XL
l¼1

sl−s log dA l=nð Þ
� �

XL
l¼1

sl−sð Þ2
ð8Þ

where L ≥ 2, sl = log(l/n), and s ¼ 1
L∑

L
l¼1sl. To minimize potential bias

Hall and Wood (1993) propose using L = 2 so that we obtain the esti-
mate of the fractal dimension dDHW as

dDHW ¼ 2− log dA 2=nð Þ−log dA 1=nð Þ
g2

: ð9Þ

3.2.2. Genton estimator
Gneiting and Schlather (2004) and Gneiting et al. (2010) propose a

moment estimator method based on the robust variogram of Genton
(1998). The variogram is defined as

dV2 l=nð Þ ¼ 1
2 n−lð Þ

Xn
i¼l

xi=n−x i−lð Þl=n
� �2

; ð10Þ

and the Genton estimator is obtained as

cDG ¼ 2−

XL
l¼1

sl−sð Þ log dV2 l=nð Þ
� �

2
XL

l¼1
sl−sð Þ2

ð11Þ

where again L ≥ 2, sl = log(l/n) and s ¼ 1
L∑

L
l¼1sl . Davies and Hall

(1999), and Zhu and Stein (2002) again suggest to use L = 2 to reduce
the potential bias so that the estimate cDG reads

cDG ¼ 2− log dV2 2=nð Þ−log dV2 1=nð Þ
2log2

: ð12Þ

3.3. Approximate entropy

Entropy can be considered a measure of complexity of the
considered system. The systems with high entropy can be charac-
terized by no information flows and are thus random up to uncer-
tainty and conversely, the series with low entropy can be seen as
deterministic (Pincus and Kalman, 2004). The efficient market can
be then seen as the one with maximum entropy; and the lower
the entropy, the less efficient the market is. For purposes of the
Efficiency Index, we need an entropy measure which is bounded.
Therefore, we utilize the approximate entropy introduced by Pincus
(1991).

Let m be a positive integer and let r be a positive real number. For a
time series {u1, u2, …, uT}, with length T, let us form a sequence of
vectors X1, X2, …, XT − m + 1 in Rm where Xi = (ui, ui + 1, …,
ui + m − 1). Using the Takens metrics of distance

d Xi;X j

h i
¼ max u iþ k−1ð Þ−u jþ k−1ð Þj jð Þ; ð13Þ
and defining a characteristic function χi
m(r) as a number of instances in

which d[Xi,Xj] ≤ r/(T − m + 1) for each 1 ≤ i ≤ N − m + 1, we
define

Φm rð Þ ¼ 1
T−mþ 1

XT−mþ1

i¼1

log χm
i rð Þ� 	 ð14Þ

which is further used in

ERm ¼ lim
r→0

lim
T→∞

Φm rð Þ−Φmþ1 rð Þ
h i

: ð15Þ



Fig. 1. Efficiency Index of commodity futures. Commodities are sorted from the most efficient (left) to the least efficient (right). Some clustering based on a commodity type, which is
shown in Fig. 2 is already evident.

Fig. 2. Average Efficiency Index for groups of commodities. Groups are sorted from the
most (left) to the least (right) efficient ones. Energy commodities are the most efficient
ones whereas the other agricultural commodities are the least efficient ones. Note that
the latter group is formed mainly by the livestock commodities.
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The approximate entropy (ApEn) is then defined as

ApEn ¼ lim
m→∞

ERm: ð16Þ

Since r can be seen as a discriminating factor for the distance mea-
sured by the Takens metrics and m is the number of elements whose
closeness is measured, the approximate entropy measures a degree to
which different segments of the series follow similar patterns. For a
random process consisting of independent random variables with iden-
tical uniform distributions, the approximate entropy converges to−log
r=

ffiffiffi
3

p� �
for allm (Pincus, 1991). For a completely deterministic process,

the entropy goes to 0. Therefore, we can rescale the approximate entropy
so that 0 ≤ ApEn ≤ 1, where 0 characterizes a completely deterministic
process and 1 a completely uncertain process characteristic for the effi-
cient market2. In turn, it can be utilized in the Efficiency Index, a defini-
tion of which follows.

3.4. Capital market efficiency measure

Kristoufek and Vosvrda (2013) introduce the Efficiency Index (EI),
defined as

EI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

M̂i−M�
i

Ri

 !2
vuut ; ð17Þ

where Mi is the ith measure of efficiency, cMi is an estimate of the ith
measure, Mi

∗ is an expected value of the ith measure for the efficient
market and Ri is a range of the ith measure. In words, EI is simply a dis-
tance from the efficient market situation. Here, we base the index on
threemeasures of market efficiency—Hurst exponentHwith an expect-
ed value of 0.5 for the efficient market (MH

∗ = 0.5), fractal dimension D
with an expected value of 1.5 (MD

∗ = 1.5), and the approximate entropy
2 Note that the utilized estimator is a biased estimator of the true approximate entropy
as well documented by Pincus (1995). Nevertheless, we opt to include it in the Efficiency
Index as it controls for a different type of inefficiency than the fractal dimension and long-
termmemory do and it is the only entropymeasure which is well bounded and thus scal-
able to a closed interval.
with an expected value of 1 (MAE
∗ = 1). The Hurst exponent is taken as

an average of the GPH and the localWhittle estimates. In the sameway,
the fractal dimension is set as an average of the Hall–Wood and Genton
estimates. For the approximate entropy, we utilize the estimate de-
scribed in the corresponding section. The approximate entropy needs
to be rescaled as it ranges between 0 and 1 with the efficient market
of ApEn = 1. We thus have RAE = 2 and RD = RH = 1.

4. Data description and results

We analyze daily prices of front futures, i.e., futures with the earliest
delivery, of 25 commodities in the period between January 1, 2000 and
July 22, 20133. The dataset contains four energy types (Brent crude oil,
WTI crude oil, heating oil, and natural gas), five metals (copper, gold,
silver, palladium, and platinum), seven grains (corn, oats, rough rice, soy-
bean meal, soybean oil, soybeans and wheat), five soft commodities
(cocoa, coffee, cotton, orange juice, and sugar) and four other agricultural
3 The time series were obtained from http://www.quandl.com server on July 23, 2013.

http://www.quandl.com)
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Fig. 3. Contribution to inefficiency I. Commodities are sorted according to their efficiency with respect to Fig. 1. For about half of the futures, the approximate entropy is the dominant
inefficiency source. For the others, the long-term memory part is dominant. Fractal dimension usually only forms a smaller part of the inefficiency.
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commodities (feeder cattle, lean hogs, live cattle, and lumber) futures
from the Chicago Board of Trade (CBOT), Chicago Mercantile Exchange
(CME), InterContinentalExchange (ICE), New York Mercantile Exchange
(NYMEX), and its division Commodity Exchange (COMEX), which are
summarized in Table 1. We analyze logarithmic prices Si,t = logPi,t,
where Pi,t is the price of futures i at time t, for the fractal dimension and
logarithmic returns ri,t = Si,t − Si,t − 1 for the long-termmemory and ap-
proximate entropy. The returns of all the analyzed futures are stationary
according to ADF (Dickey and Fuller, 1979) and KPSS (Kwiatkowski et al.,
1992) tests (we do not report the p-values here).

The estimated values of Hurst exponents, fractal dimensions and
approximate entropies are summarized in Table 2. We observe that
a fractal dimension below 1.5, which indicates local persistence, is char-
acteristic for the majority of commodities. These series are thus locally
trending. This is most evident for feeder cattle, lean hogs, and live cattle,
i.e., mostly livestock futures. On the contrary, the energy commodities –
namely both crude oils and natural gas – are close to a fractal dimension
of 1.5 and, as such, they do not show any signs of local inefficiencies. For
the long-termmemory part,most of the futures are below0.5 indicating
anti-persistence which translates into a mean-reversion of prices,
something that is not commonly observed for stocks, stock indices
and exchange rates which are characterized by a unit-root behavior.
The strongest anti-persistence is seen for cocoa, oats, and orange juice.
Nonetheless, there is a portion of commodities which shows signs of
persistence. These are copper, palladium, platinum, and sugar. Cotton
and natural gas get the closest to the value of the efficient market. For
the approximate entropy, several values are close to 1 for the efficient
market4—lumber, sugar, and heating oil. The most complex, and thus
the least efficient, series include feeder cattle and live cattle.

Putting these results together, we arrive at the Efficiency Index and
efficiency ranking values which are graphically represented in Fig. 1.
Themost efficient of the commodities turns out to be heating oil, closely
followed by WTI crude oil. Cotton, wheat, and coffee come after these
with a similar level of efficiency. The ranking is then supplemented by
other commodities, the efficiency of which increases quite steadily
across the ranking. Feeder cattle is the least efficient commodity in
this set, quite closely followed by live cattle. The livestock futures thus
seem to be rather inefficient compared to the others. Connected to
this finding, we also show an average Efficiency Index value for
4 Several values even reach a value above 1 due to the finiteness of the sample.
commodities according to their type. In Fig. 2, we can see that the ener-
gy futures are the most efficient followed by soft commodities, grains,
and metals. By far the least efficient group consists of the other agricul-
tural commodities, i.e., feeder cattle, lean hogs, live cattle, and lumber.
This is well in hand with the observations about very inefficient
livestock futures.

In Figs. 3 and 4, we decompose the Efficiency Index into its parts. In
Fig. 3, the actual futures ranked according to the Efficiency Index are
represented, and in Fig. 4, these are sorted according to their type to bet-
ter see possible patterns and regularities.We observe that, for about half
of the futures, the approximate entropy is the dominant inefficiency
source. Interestingly, it is the most important part for both the most
and the least efficient commodities. For the others, the long-termmem-
ory part is dominant. Fractal dimension usually only forms a smaller
part of the inefficiency; it provides a larger contribution only for
wheat. When we look at the whole groups of commodities, we observe
that for energy, grains and other agricultural commodities, the approx-
imate entropy forms an important or even a dominant part for most of
them. For grains, fractal dimension creates a significant part for three
of the group. For soft commodities, the long-term memory is the most
important of the inefficiency contributors. And for metals, the evidence
is mixed.

Fig. 5 then illustrates a relationship between fractal dimension and
Hurst exponent. For self-similar processes, it holds that D = 2 − H.
In economic terms, self-similar processes are characteristic by trans-
lating the local properties into the global ones. Therefore, for a locally
persistent process with D b 1.5, this translates into the global persis-
tence with H N 0.5, and vice versa. However, we do not observe such
a relationship for the analyzed commodities. Actually, the depen-
dence is reversed so that the fractal dimension increases with
increase of the Hurst exponent. This is in contrast with the results
for stock indices (Kristoufek and Vosvrda, 2013). Nonetheless, such
result can be well explained by characteristics of commodity
futures—locally (or in the short term), the changes in futures prices
are partially predictable, but globally, the prices return to their
fundamental values.
5. Conclusions

We have analyzed the market efficiency of 25 commodity futures
across various groups—metals, energies, soft commodities, grains, and

image of Fig.�3


Fig. 4.Contribution to inefficiency II. Commodities are sorted according to their group. For energy, grains and other agricultural commodities, the approximate entropy forms an important
or even a dominant part for most of them. For grains, fractal dimension creates a significant part for three of the group. For soft commodities, the long-termmemory is themost important
of the inefficiency contributors. And for metals, the evidence is mixed.
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other agricultural commodities. To do so, we have utilized the recently
proposed Efficiency Index to find that the most efficient of all the ana-
lyzed commodities is heating oil, closely followed byWTI crude oil, cot-
ton, wheat and coffee. On the other (least efficient) end of the ranking
scale, we have detected live cattle and feeder cattle. The efficiency also
seems to be characteristic for specific groups of commodities—energy
commodities have been found the most efficient, followed by soft com-
modities, grains, and metals, whereas the other agricultural commodi-
ties (formed mainly of livestock) form the least efficient group. Apart
from that, we have also discussed the contributions of the long-term
memory, fractal dimension and approximate entropy to the total ineffi-
ciency. We have discovered that the contribution is type-dependent as
well, even though the regularities are not strongly pronounced. Last
but not least, we have come across the nonstandard relationship be-
tween the fractal dimension and the Hurst exponent. For the analyzed
dataset, the relationship between these two is positive, meaning that
local persistence (trending) is connected to global anti-persistence.
We attribute this to specifics of commodity futures whichmight be pre-
dictable over a short term and locally, but over a long term they return
to their fundamental price, which differs from the results found for
stock indices (Kristoufek and Vosvrda, 2013).
Fig. 5. Relationship between Hurst exponent and fractal dimension. For self-similar pro-
cesses, we expect D = 2 − H, i.e., a negative slope. The dashed line represents the least
squares fit uncovering a positive relationship between D and H.
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