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Abstract
In generalized measure theory, σ -⊕-measure is a generalization of the classical measure defined on a pseudo-addition. In this
paper, the class of pseudo-exponential distributions based on a class of σ -⊕-measure is introduced. Some examples of this
class are investigated. Then by two real data sets obtained from the last three decades of oil, and the last two decades of the
daily natural gas spot prices, we show that the pseudo-exponential distribution is better fitted than exponential distribution
using the AIC and BIC information criteria.
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1 Introduction

Generalized measure theory is very important in numerous
applications in engineering, economics, and statistics involv-
ing uncertainty. In generalizedmeasure theory, σ -⊕-measure
is a generalization of the classical measure defined on a
pseudo-addition (Pap 1993). The theory of g-calculus as an
important case of pseudo-analysis, which is a mathematical
base for fuzzy system and soft computing, was initiated by
Pap (1993, 1997) in 1993. There are many applications of
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pseudo-analysis in appliedmathematical sciences, fuzzy sets,
fuzzy numbers, optimization, system theory, and nonlinear
analysis (Pap and Štajner 1999; Mesiar and Pap 1999; Pap
1993, 2005, 2008; Pap and Ralević 1998; Pap et al. 2014;
Bede and O’ Regan 2013). For example, pseudo-analysis has
been applied in solving uncertain partial differential equa-
tions (Pap 2005) and game theory (Litvinov and Maslov
1996).

The exponential distribution is one the simplest and per-
haps the most widely applied statistical distribution. This
distribution is famous in statistics and statistical physics as
the Boltzmann–Gibbs or thermal distributions. The exponen-
tial distribution is a commonly used model in lifetime data
analysis. In statistics, the random variable X has exponential
distribution if its probability density function is given by:

fX (x) = λ exp {−λx} , x > 0, λ > 0. (1)

Econophysics (Mantegna and Stanley 1999) is a new
interdisciplinary research field which applies the statisti-
cal physics methods to problems in economics and finance.
Exponential distribution has many applications in econo-
physics (Banerjee et al. 2006). For example, in an equilibrium
temperature T , the probability of finding a physical system or
subsystem in energy E is given by P(E) = ce−E/T , where
c is the normalizing constant (Wannier 2010). The exponen-
tial distributions havemany applications in condensedmatter
physics (Bernasconi 1979; Kakalios et al. 1987; Macdonald
1985), theoretical physics (Budiyono 2013; Drăgulescu and
Yakovenko 2001), astronomy and astrophysics (Mao et al.
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2013; Collier 2004), neuroscience (Zeman et al. 2015; Trap-
penberg2009; Schwartz 1993),mechanical systems (Granato
and Lücke 1956), climate science (Field et al. 2005), and
many other physical systems.

In this paper, we expand the applicability of exponential
distribution by combining the properties of pseudo-analysis
with exponential distribution and introduce the concept of
pseudo-exponential distribution. By the real data set obtained
from WTI (West Texas Intermediate) crude oil, Oklahoma,
dollars per barrel, daily price from 1986/01/02 to 2017/07/03
and the real data set obtained from the daily Henry Hub Nat-
ural (HHN) gas spot price per million British Thermal Units
(MBTU) in periodof 1997/06/30 to 2017/06/30,we show that
pseudo-exponential distribution is better fitted than the expo-
nential distribution using the Akaike (AIC) and Bayesian
(BIC) information criteria.

The paper is organized as follows. In Sect. 2, some prelim-
inaries of the classical measure and the σ -⊕-measure theory
are given. In Sect. 3, we introduce the concept of pseudo-
exponential distribution and discuss some of its examples.
In Sect. 4, two numerical examples based on two above-
mentioned real data sets are provided and the maximum
likelihood estimators of the parameters are derived. Finally,
we present some conclusions.

2 Preliminaries and notations

In this section, we review some basic concepts that are
used in this paper. For more details, see Pap (1995, 2002);
Kolokoltsov and Maslov (1997).

2.1 Measures

Definition 1 Let � be a non-empty set. A collection of sub-
sets F of � is a σ -algebra if :

(i) � ∈ F and ∅ ∈ F;
(ii) If A ∈ F then its complement Ac ∈ F;
(iii) If A1, A2, . . . ∈ F , then their union

⋃
Ai ∈ F .

The pair (�,F) is called a measurable space.

Definition 2 Let (�,F) be a measurable space. A measure
is a function μ : F → [0,∞] which satisfies the following
conditions:

(i) μ (∅) = 0;
(ii) (σ -additivity) If {Ai } is a sequence of disjoint sets from

F , then μ
(⋃∞

i=1 Ai
) = ∑∞

i=1 μ(Ai ).
In that case, the triple (�,F , μ) is called a measure
space.

Definition 3 A probability measure is a measure P with
the additional property P (�) = 1. In that case, the triple
(�,F , P) is called a probability space.

DefineR as the real line and B(R) as σ -algebra of subsets
of R.

Definition 4 A function X : � → R is F-measurable if
X−1(B) ∈ F for every Borel set B ∈ B(R).

Definition 5 A function X : � → R is called a random
variable if it is F-measurable.

Definition 6 Theprobability density functionof a continuous
random variable X with support S is an integrable function
f : R → [0,∞) such that fX (x) � 0 if and only if x ∈ S
and

∫
S fX (x) dx = 1.

Note that if fX (x) is the probability density function of
a continuous random variable X , then the probability that X
belongs to A, where A is some interval, is given by

P(X ∈ A) =
∫

A
fX (x)dx .

2.2 �-⊕-measure

Here, we recall some notions and definitions of pseudo-
operations and σ -⊕-measure (Pap 1993). Let [a, b] be a
closed subinterval of [−∞,∞]. The full order on [a, b] will
be denoted by �.

Definition 7 A binary operation ⊕ on [a, b] is pseudo-
addition if it is commutative, non-decreasing (with respect
to � ), continuous, associative, and with a zero (neutral) ele-
ment different from b and denoted by 0.

Let [a, b]+ = {x | x ∈ [a, b] , 0 � x}.
Definition 8 A binary operation � on [a, b] is pseudo-
multiplication fitting to the pseudo-addition ⊕ if it com-
mutative, positively non-decreasing, i.e., x � y implies
x � z � y � z for all z ∈ [a, b]+, associative and with a unit
element 1 ∈ [a, b]+, i.e., for each x ∈ [a, b] , 1� x = x .We
assume also 0� x = 0 and that � is distributive over ⊕, i.e.,

x � (y ⊕ z) = (x � y) ⊕ (x � z).

The structure ([a, b] ,⊕,�) is a semiring (see Kuich 1986).

Now, we recall the definitions of a σ -⊕-measure. Let �

be a non-empty set. LetF be a σ -algebra of subsets of�. For
more details, see Pap (1995, 2002); Kolokoltsov andMaslov
(1997).

Definition 9 A σ -⊕-measure is a set function m : F →
[a, b]+ if the following conditions are fulfilled:
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(i) m (φ) = 0 (for not idempotent ⊕);
(ii) for any sequence {Ai }i∈N of pairwise disjoint sets from

A, we have

m

( ∞⋃

i=1

Ai

)

=
∞⊕

i=1

m(Ai ).

An important real semiring on the interval with contin-
uous operations is when the pseudo-operations are defined
by a monotone bijection g : [a, b] → [0,∞], i.e., pseudo-
operations are given with

x⊕ y = g−1 (g (x) + g (y)) and x� y = g−1 (g (x) g (y)) .

In this case, the structure ([a, b] ,⊕,�) is called a g-semiring
(see Pap 1993; Kuich 1986). In the case of a g-semiring, a
set function m is a σ -⊕-measure if and only if g ◦ m is
the classical measure (Pap 1993). So, we can introduce the
concept of pseudo-density function.

Definition 10 Let ([0,∞] ,⊕,�) be a g-semiring, where
the generator g : [0,∞] → [0,∞] is a strictly increas-
ing function. Let fX (x) be the probability density function
of a nonnegative continuous random variable X . The pseudo-
density function of X is a function fX ,g (x) satisfying

fX ,g (x) = Cg−1 ( fX (g (x))) , x ∈ (0,+∞),

where C is the normalizing constant, i.e., C
∫ +∞
0 g−1

( fX (g (x)) dx = 1. If such a normalizing constant C exists,
then the pseudo-density function is well defined.

3 Main results: Pseudo-exponential
distribution

Now, we introduce the concept of pseudo-exponential distri-
bution.

Definition 11 Let ([0,∞] ,⊕,�) be a g -semiring, where
the generator g : [0,∞] → [0,∞] is a strictly increasing
function. A random variable X is said to have a pseudo-
exponential distribution, if its pseudo-density function is

fX ,g (x) = Cg−1 (exp {−g(x)}) , x ∈ (0,+∞),

where C is the normalizing constant.

Some examples of the pseudo-exponential distribution are
as follows:

• for g(x) = λx, λ > 0, we have x ⊕ y = x + y and
the pseudo-exponential distribution coincides with the
exponential distribution (1).

Fig. 1 fX ,α,1(x) for α = 0.5, 1, 2, 5. fX ,1,1(x) = e−x , presents the
usual exponential distribution

• for g(x) = x2, x > 0, we have x ⊕ y = √
x2 + y2

and the pseudo-exponential distribution coincides with
the half-normal distribution with the probability density
function as,

hX (x) =
√

2

π
e− 1

2 x
2
, x > 0. (2)

Let t ∈ R. One can generalize the above distribution to
normal distribution as follows:

ϕX (t) =
{ 1

2hX (t) , t > 0,
1
2hX (−t), t < 0.

(3)

• for g(x) = αβxα, α > 0, β > 0, then x ⊕ y = (xα +
yα)

1
α and we have a generalized exponential distribution,

denoted by X ∼ GE(α, β), with the probability density
function as follows

fX ,α,β (x) = β
1
α

e−βxα



[
1 + 1

α

] , x > 0, α > 0, β > 0.

(4)

Figure 1 shows fX ,α,1(x) for different α parameters. Also,
Fig. 2 presents fX ,1,β(x) for different β parameters. In both
figures, fX ,1,1(x) = e−x , the exponential distribution, is pre-
sented with full curves.

Now we find the moment-generating function of X ∼
GE(α, β).

Theorem 12 The moment-generating function of X ∼ GE
(α, β) is given by

MX (t) =
∞∑

n=0

β− n
α tn


[ 1+n
α

]

αn!
 [
1 + 1

α

] .
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Fig. 2 fX ,1,β (x) for β = 0.3, 1, 3, 5. fX ,1,1(x) = e−x , presents the
exponential distribution

Proof It is easy to see that

MX (t) = E
(
et X

)
=

∫ ∞

0
etxβ

1
α

e−βxα



[
1 + 1

α

]dx

= β
1
α



[
1 + 1

α

]

∫ ∞

0
e−βxα+t xdx

= β
1
α



[
1 + 1

α

]

∫ ∞

0

∞∑

n=0

(t x)n

n! e−βxα

dx

=
∞∑

n=0

β− n
α tn


[ 1+n
α

]

αn!
 [
1 + 1

α

] ;

this completes the proof. ��

If X ∼ GE(α, β), then we have

E
(
Xr ) = β− r

α 

[ 1+r

α

]

α

[
1 + 1

α

] , α > 0,

β > 0, r = 1, 2, 3, . . . , n. (5)

Also, we can also obtain the variance of X ∼ GE(α, β)

as follows:

Var (X) = E
(
X2

)
− E2 (X)

= β
−2
α 


[ 3
α

]

α

[
1 + 1

α

] −
(

β
−1
α 


[ 2
α

]

α

[
1 + 1

α

]

)2

= α

[ 3

α

]



[ 1
α

(α + 1)
] − (



[ 2

α

])2

α2β
2
α

(



[ 1
α

(α + 1)
])2 .

4 Statistical applications to oil and gas daily
prices

In this section, we would like to compare our proposed dis-
tribution with some other distributions. We firstly evaluate
the Akaike (AIC) and Bayesian (BIC) information criteria
for our distribution. Then we will try to apply our proposed
distribution to two real data sets of oil and gas daily prices.

We compare the pseudo-exponential distribution with
other distributions using AIC and BIC such that

AIC := 2k − 2 ln L̂,

BIC := −2 ln L̂ + k ln n,

where n is the number of data, k is the number of estimated
parameters and L is the maximum value of the likelihood
function.

The maximum likelihood estimates (MLEs) of the param-
eters α and β based on an independent and identically
distributed sample x1, . . . , xn ∼ GE(α, β) can be obtained
from

ln L (α, β) =
∑n

i=1

[
1

α
ln β − βxα − ln

(




[

1 + 1

α

])]

.

(6)

By taking partial derivatives from (6) with respect to param-
eters, we obtain the following equations

∂ ln L
∂α

= ∑n
i=1

[
− 1

α2 ln β − xα
i β ln xi + 1

α2 �
(
1 + 1

α

)]
= 0,

∂ ln L
∂β

= ∑n
i=1

(
1

αβ − xα
i

)
= 0,

⎫
⎬

⎭

(7)

where � (x) = ∂
∂x ln
 (x).

Equation (7) yields a closed-form expression for the MLE of
β as

β̂ = n

α
∑n

i=1 x
α
i

,

and also a likelihood equation for α as

− n

α2 ln n + n

α2

(

ln α

n∑

i=1

xα
i

)

+ n

α2�

(

1 + 1

α

)

− n

α
∑n

i=1 x
α
i

∑n

i=1
xα
i ln xi = 0,

which is solved numerically with the package “nlminb” from
the statistical software R.
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Fig. 3 WTI crude oil,
Oklahoma, dollars per barrel,
daily price from 1986/01/02 to
2017/07/03
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Fig. 4 Distribution of absolute difference of WTI crude oil, from its
last 100 days moving average. The histogram obtained fromWTI crude
oil daily price in period of 1986/01/02 to 2017/07/03

4.1 Applications toWTI crude oil prices-cushing,
Oklahoma, dollars per barrel, daily

To illustrate the applicability of the proposed model in Sec-
tion 2, a real data set is analyzed. Recall the real data set
obtained from WTI crude oil, Oklahoma, dollars per bar-
rel, daily price from 1986/01/02 to 2017/07/03, described in
Fig. 3. We work on the data with n = 7849 of the absolute
difference ofWTI crude oil price from its last 100 days mov-
ing average in period of 1986 to 2017, described in Fig. 4.
Throughout this section, we also used the statistical software
R version 3.4.1 with the package nlminb for estimating the
parameters.

According to AIC and BIC, Table 1 shows that the
GE (α, β) (G-Exponential distribution) better fitted than
exponential distribution.We have considered the next classes

of distribution functions: exponential,G-exponential,Weibull,
normal, and Laplace distributions.

4.2 Applications to Henry hub natural gas spot price,
dollars per million BTU, daily

Here, the real data set of daily Henry Hub Natural (HHN)
gas spot price per million British Thermal Units (MBTU) is
analyzed. The real data set of the daily HHN gas spot price in
period of 1997/06/30 to 2017/06/30 is described in Fig. 5.We
work on the data with n = 4874 of the absolute difference of
HHN gas spot price from its last 100 days moving average
in period of 1997–2017, described in Fig. 6.

In Table 2, the values of AIC and BIC indicate that
the GE (α, β) (G-Exponential distribution) better fitted than
other distributions such as exponential, Weibull, normal and
Laplace distributions.

5 Conclusion

In this paper, we have introduced the pseudo-exponential
distribution. We have also obtained the moments and the
moment-generating function of pseudo-exponential distri-
bution GE (α, β) . Furthermore, for applicability of this
distribution, the real data set obtained from WTI crude oil,
Oklahoma, dollars per barrel, daily price from 1986/01/02 to
2017/07/03 and the real data set of daily HHN gas spot price
per dollars perMBTU in period of 1997/06/30 to 2017/06/30
have been analyzed. For two above-mentioned real data sets,
it has been obtained that the GE (α, β) distribution is better
fitted than other candidate distributions using the AIC and
BIC information criteria.
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Table 1 Results of fitting
models for WTI crude oil

Distribution α β − log L̂ AIC BIC

E (β)

Exponential
– 0.240807 19024.07 38050.15 38057.12

GE (α, β)

G-Exponential
0.6845109 0.6308010 18771.6 37547.2 37561.14

WE (α, β)

Weibull
0.863852 3.82183 18856.49 37716.97 37730.91

N
(
α, β2

)

Normal
4.1527 5.7462 24861.53 49727.06 49740.99

L (α, β)

Laplace
2.30213 3.52587 22256.2 44516.4 44530.34

Fig. 5 HHN gas spot, dollars
per MBTU, daily price from
1997/06/30 to 2017/06/30
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Table 2 Results of fitting
models for HHN gas spot daily
price

Distribution α β − log L̂ AIC BIC

E (β)

Exponential
– 1.42426 3150.32 6302.63 6309.12

GE (α, β)

G-Exponential
0.8518199 1.6889330 3127.439 6258.88 6271.86

WE (α, β)

Weibull
0.952473 0.686087 3139.98 6283.97 6296.95

N
(
α, β2

)

Normal
0.702121 0.801484 5837.33 11678.7 11691.7

L (α, β)

Laplace
0.45915 0.539328 4845.82 9695.64 9708.62
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Fig. 6 Distribution of absolute difference of HHN gas spot daily price,
from its last 100 days moving average, in period of 1997/06/30 to
2017/06/30
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