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Abstract

In this paper, a numerical Monte Carlo integration for

Choquet integrals is proposed by using a generalized

version of mean value theorem based on Choquet

integral. In special cases, this generalization can help

us to have the classical Monte Carlo integration and the

mean value theorem over some unbounded regions.
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1 | INTRODUCTION

One of the most powerful and flexible methods of statistical simulation of physical systems and
mathematical problems is the Monte Carlo method. The essential idea of this method is using
randomness to solve problems that might be deterministic in principle.1–3 There are many
statistical applications of the Monte Carlo method in different branches of physics, including
quantum systems,4–6 nuclear physics,7 particle physics,8 biological science,9,10 and financial
science.11 This method is one of the most important statistical simulations, which can be
applied to approximate an integral.12–14 For a function of one variable, the steps are
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(i) Pick n randomly distributed points y y y, ,…, n1 2 in the interval a b[ , ], where they are
selected from a uniform distribution.

(ii) Obtain the function

 ∑g
n

g y=
1

( ).
i

n

i

=1

(iii) Compute

∫ ≈g x dx b a g( ) ( − ) .
a

b

(iv) The estimate for the error is

 
≈ b a

g g

n
Error ( − )

−
,

2 2

where  ∑g n g y= (1/ ) ( )
i

n
i

2
=1

2 .

The main idea of the approximation of integrals is related to the following theorem.

Theorem 1 (Flett,15 mean value theorem for integrals). If →f a b: [ , ] is a continuous
function, then there exists a point c in a b( , ) such that

∫ f x dx b a f c( ) = ( − ) ( ).
a

b

The following example shows that the Monte Carlo integration and the classical mean value
theorem cannot work for the unbounded interval.

Example 2. Let ∈ ∞f x e f x e f x x x( ) = , ( ) = , ( ) = 1/(1 + ), [0, + )x x
1

−
2

−
3

22
. Then,

clearly, we cannot use the Monte Carlo integration and the classical mean value
theorems in Theorem 1 for f i, = 1, 2, 3i . In the Monte Carlo integration, the random
choice of points is from a uniform distribution on the domain. Then the domain ∞[0, )

cannot be directly covered by the Monte Carlo method.

Choquet integral is one of the most important concepts in the theory of fuzzy
measures, which was presented by Choquet16 in 1954 and was considered by many
researchers.16–24

In this paper, we introduce a mean value theorem and Monte Carlo method for Choquet
integral, which can be applied in different fields of applied science.

The paper is organized as follows. In Section 2, some preliminaries of the Choquet integral
are given. In Section 3, we introduce the mean value theorem for Choquet integral and discuss
the Monte Carlo integration for Choquet integral with some numerical examples. Finally, we
present some conclusions.
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2 | PRELIMINARIES AND NOTATIONS

We first recall the definition of Choquet integral and monotone measures.16–18 For more details,
see the following references.19,20,22–24

Definition 3. A monotone measure μ on a measurable space Ω( , ) is a set function
→ ∞μ: [0, ] satisfying

(i) ∅μ ( ) = 0,
(ii) ≤μ E μ F( ) ( ) whenever ⊆E F .

Definition 4 (Torra et al25). A monotone measure μ is called a fuzzy measure (or
monotone probability or capacity) if μ Ω( ) = 1.

Definition 5. Let  →m: + + be an increasing and continuous function such that
m (0) = 0. Then, a monotone measure μm is called a distorted Lebesgue measure, if

⋅ ⋅μ m δ( ) = ( ( )),m

where δ is the Lebesgue measure.

Definition 6 (Choquet,16 Denneberg,26 and Pap27). The Choquet integral of a
nonnegative real‐valued measurable function X with respect to a monotone measure μ
on ∈A is defined by

∫ ∫ ∩ ≥
∞

C X dμ μ A X t dt( ) = ( { }) ,
A 0

+

where the right‐hand side integral is the (improper) Riemann integral.

Definition 7. We say that two real‐valued measurable functions f and g are
comonotonic on A for any ∈ω ω A, ′ , if

⇒ ≤f ω f ω g ω g ω( ) < ( ′) ( ) ( ′).

Some basic properties of the Choquet integral were summarized by Denneberg,26 we list
some of them:

(a) ∫C dμ μ A( ) = ( )
A

;

(b) ∫ ∫≤C X dμ C Y dμ( ) ( )
A A

whenever ≤X Y (monotonicity);

(c) ∫ ∫C βX dμ β C X dμ( ) = ( )
A A

for any real ≥β 0 (positive homogeneity);

(d) ∫ ∫C X β dμ C X dμ βμ A( ) ( + ) = ( ) + ( )
A A

whenever X β+ is nonnegative on A (translat-

ability);
(e) ∫ ∫ ∫C X Y dμ C X dμ C Y dμ( ) ( + ) = ( ) + ( )

A A A
whenever X Y, are comonotone (comono-

tone additivity).
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Definition 8 (Torra et al23). Let Ω( , ) be a measurable space and →μ υ, : + be
monotone measures. Then υ is called a Choquet integral of μ if there exists a measurable
function →g Ω: + with

∫υ A C g dμ( ) = ( )
A

(1)

for all ∈A .

Definition 9 (Torra et al23). Let μ and υ be two monotone measures. If υ is a Choquet
integral of μ, and g satisfies (1). Then, we use notation

dυ

dμ
g= ,

and g is called a Radon‐Nikodym derivative of υ with respect to μ.

Henceforth, + always denotes the class of measurable, continuous, nonnegative, and
increasing bounded functions. Also, − be the class of measurable, continuous, nonnegative,
and decreasing bounded functions.

3 | MAIN RESULTS

Fix Ω( , ) to be ∞ ∞ ∞ ∞([− , + ], ([− , + ])), where ∞ ∞([− , + ]) is the σ‐algebra of all
Borel subsets of ∞ ∞[− , + ]. Throughout this section, we assume that

∞ ∞ → ∞μ: ([− , + ]) [0, + ] is a monotone measure and →f a b: [ , ] is a continuous
bounded function.

Theorem 10. Let ∈f ‒ and → ∞h f b f a: [ ( ), ( )] [0, ] be a continuous function such
that h x μ a f x( ) = ([ , ( )])−1 for ∈x f b f a[ ( ), ( )]. Then there exists a point ∈ξ f b f a( ( ), ( ))

such that

∫C f dμ f a f b h ξ f b μ a b( ) = ( ( ) − ( )) ( ) + ( ) ([ , ]).
a

b

Proof. For any ∈f −, we have

∫ ∫

∫

C f dμ μ a f r dr f b μ a b

h r dr f b μ a b

( ) = ([ , ( )]) + ( ) ([ , ])

= ( ) + ( ) ([ , ]),

a

b

f b

f a

f b

f a

( )

( )
−1

( )

( )
(2)

where h x μ a f x( ) = ([ , ( )])−1 for all ∈x f b f a[ ( ), ( )]. Since h is a continuous function on
f a f b[ ( ), ( )], then by (2) and the classical mean value theorem, there exists a point
∈ξ f b f a( ( ), ( )) such that
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∫C f dμ f a f b h ξ f b μ a b( ) = ( ( ) − ( )) ( ) + ( ) ([ , ]).
a

b

This completes the proof. □

Example 11. Let μ be defined as a distorted Lebesgue measure with distortion
m x x α( ) = , > 0α . Using Example 2, then

∫
∞

→ ∞ → ∞

→ ∞

C f dμ f f γ μ f ξ f γ γ

f f γ μ f ξ

( ) = ( (0) − lim ( )) ([0, ( )]) + lim ( )

= ( (0) − lim ( )) ([0, ( )]).

i i
γ

i i
γ

i
α

i
γ

i i

0

+

+

−1

+

+

−1

• For i = 1, we have f x e( ) = x
1

− and

∫
∞

C f dμ Γ α μ f ξ

ξ

( ) = [1 + ] = ([0, ( )])

= (−ln ) .α
0

+

1 1
−1

So, ∈ξ Γ α f b f a= exp{−( (1 + )) } ( ( ), ( )) = (0, 1)α
1 .

• For i = 2, we have f x e( ) = x
2

− 2
and

∫
∞

∕

C f dμ Γ μ f ξ

ξ

( ) = [1 + ] = ([0, ( )])

= (−ln ) .

α

α

0

+

2 2 2
−1

2

So, ∈ξ Γ f b f a= exp{−( (1 + )) } ( ( ), ( )) = (0, 1)
α

2
α
2 .

• For i = 3, we have f x x( ) = 1/(1 + )3
2 . Then for α0 < < 2, we have

∫
∞

∕

( )
(C f dμ μ f ξ( ) = csc ) = ([0, ( )])

=

απ απ

ξ

ξ

α

0

+

3 2 2 3
−1

1 − 2

So, ∈ξ πα πα f b f a= 1/(1 + (( /2)csc( /2)) ) ( ( ), ( )) = (0, 1)α2/ .

We see that for α = 1, the Choquet integral becomes the classical integral and the
classical mean value theorem can work for the unbounded interval ∞[0, + ).

Example 12. Let ∈f x x x( ) = 1/ , [1, 2] and μ be defined as a distorted Lebesgue
measure with distortionm x x( ) = 2. Then, the mean value theorems in Theorem 10 are valid,

∫

{ }( )
C f dμ f f μ f ξ f μ

ξ

( ) = 2 − ln 4 = 0.613706 = ( (1) − (2)) ([1, ( )]) + (2) [1, 2]

=
1

2
1 +

1
− 1 .

1

2
−1

2
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So, ∈ξ f b f a= 1/(1 + 3 − 2 ln 4 ) = 0.677105 ( ( ), ( )) = (0.5, 1).

Theorem 13. Let ∈f + and → ∞g f a f b: [ ( ), ( )] [0, ] be a continuous function such that
≔g x μ f x b( ) ([ ( ), ])−1 for ∈x f a f b[ ( ), ( )]. Then there exists a point ∈ζ f a f b( ( ), ( ))

such that

∫C f dμ f b f a μ f ζ b f a μ a b( ) = ( ( ) − ( )) ([ ( ), ]) + ( ) ([ , ]).
a

b
−1

Proof. For any ∈f +, we have

∫ ∫

∫

C f dμ μ f r b dr f a μ a b

g r dr f a μ a b

( ) = ([ ( ), ]) + ( ) ([ , ])

= ( ) + ( ) ([ , ]),

a

b

f a

f b

f a

f b

( )

( )
−1

( )

( )
(3)

where g x μ f x b( ) = ([ ( ), ])−1 for all ∈x f a f b[ ( ), ( )]. Since g is a continuous function on
f a f b[ ( ), ( )], then by (3) and the classical mean value theorem, there exists a point
∈ζ f a f b( ( ), ( )) such that

∫C f dμ f b f a g ζ f a μ a b( ) = ( ( ) − ( )) ( ) + ( ) ([ , ]).
a

b

This completes the proof. □

Example 14. Let ∈f x x x( ) = , [0, 2]3 and μ be defined as a distorted Lebesgue measure
with distortion m x x( ) = 2. Then, the mean value theorems in Theorem 13 are valid,

∫C f dμ f f μ f ζ f μ

ζ

( ) = = ( (2) − (0)) ([ ( ), 2]) + (0) [0, 2]

= 8(2 − ) .

0

2 16

5
−1

23

So, ζ = 2 − 2/53 and ∈ζ f a f b= 2.558 ( ( ), ( )) = (0, 8).

3.1 | Monte Carlo integration for Choquet integral

3.1.1 | Case 1

For a bounded function ∈f +, the Monte Carlo integration for Choquet integral has the
following steps.

(i) Pick n randomly distributed points y y y, , …, n1 2 in the interval f a f b[ ( ), ( )], where they are
selected from a uniform distribution.

(ii) Obtain

 ∑g
n

g y=
1

( ),
i

n

i

=1
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where g x μ f x b( ) = ([ ( ), ])−1 .
(iii) Compute

∫ ≈C f dμ f b f a g f a μ a b( ) ( ( ) − ( )) + ( ) ([ , ]).
a

b

(iv) The estimate for the error is

 
≈ f b f a

g g

n
Error ( ( ) − ( ))

−
,

2 2

where  ∑g n g y= (1/ ) ( )
i

n
i

2
=1

2 .

Example 15 (Torra et al,23 Example 2). Let f x π x( ) = sin(( /2) ) and ∘μ m P= be a
distorted probability with

m x
s x s

s s
( ) =

( ) − (0)

(1) − (0)
,

where s x e( ) = 1/(1 + )x−10( −0.5) and P is a truncated normal distribution N (0.5, 0.1) in
[0,1] with

a b
F b F a

F F
P[ , ] =

( , 0.5, 0.1) − ( , 0.5, 0.1)

(1, 0.5, 0.1) − (0, 0.5, 0.1)
,

where

∫
∞

F x
π

e dt( , 0.5, 0.1) =
1

2 × 0.1

x
t

−

−( −0.5) /(2×(0.1) )2 2

is the cumulative distribution function of N (0.5, 0.1). The code of the Monte Carlo
integration in Mathematica has evaluated ∫C f dμ( )

0

1
for n = 10, 100, 1000, 10 000,

100 000, and 1 000 000. The results are presented in Table 1. Errors and estimated errors
are presented in the last two columns of this table.

Example 16. Let ∈f x x x( ) = , [0, 2]3 and μ be defined as a distorted Lebesgue
measure with distortion m x x( ) = 2. Then, the code of the Monte Carlo integration in
Mathematica has evaluated ∫C f dμ( )

0

2
for n = 10, 100, 1000, 10 000, and 100 000. The

results are presented in Table 2. Errors and estimated errors are presented in the last two
columns of this table.

3.1.2 | Case 2

For a bounded function ∈f −, the Monte Carlo integration for Choquet integral has the
following steps:
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(i) Pick n randomly distributed points y y y, , …, n1 2 in the interval f b f a[ ( ), ( )], where they are
selected from a uniform distribution.

(ii) Obtain

 ∑h
n

h y=
1

( ),
i

n

i

=1

where h x μ a f x( ) = ([ , ( )])−1 .
(iii) Compute

∫ ≈C fdμ f a f b h f b μ a b( ) ( ( ) − ( )) + ( ) ([ , ]).
a

b

(iv) The estimate for the error is

 
≈ f a f b

h h

n
Error ( ( ) − ( ))

− ( )
,

2 2

where  ∑h n h y= (1/ ) ( )
i

n
i

2
=1

2 .

TABLE 1 Monte Carlo integration for ∫C f dμ( )
0

2
for f x π x( ) = sin(( /2) ) and the distorted probability

∘μ m P= presented in Example 15

n Exact value (E)23 Monte Carlo (MC) ∣∣ ∣∣E − MC  f b f a g g n( ( ) − ( )) ( − )/2 2

10 0.83897 0.809194 0.0297761 0.118032

100 0.83897 0.857496 0.0185262 0.0323732

1000 0.83897 0.845578 0.00660789 0.0106104

10 000 0.83897 0.835902 0.00306769 0.00344733

100 000 0.83897 0.839939 0.000968507 0.00108109

1 000 000 0.83897 0.838762 0.000207615 0.000342904

TABLE 2 Monte Carlo integration for ∫C f dμ( )
0

2
for f x x( ) = 3 and the distorted Lebesgue measure with

distortion m x x( ) = 2 in Example 16

n Exact value (E) Monte Carlo (MC) ∣∣ ∣∣MCE −  f b f a g g n( ( ) − ( )) ( − )/2 2

10 3.2 4.06188 0.861875 1.3259

100 3.2 3.28381 0.0838089 0.470845

1000 3.2 3.24331 0.0433094 0.139418

10 000 3.2 3.22217 0.0221691 0.0437121

100 000 3.2 3.19378 0.00621813 0.0137401
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Example 17. Let ∈f x x x( ) = 1/ , [1, 2] and μ be defined as a distorted Lebesgue
measure with distortion m x x( ) = 2. Then, the code of the Monte Carlo integration in
Mathematica has evaluated ∫C f dμ( )

0

2
for n = 10, 100, 1000, 10 000, and 100 000. The

results are presented in Table 3. Errors and estimated errors are presented in the last two
columns of this table.

Example 18. Let μ be defined as a distorted Lebesgue measure with distortion
m x x( ) = 1/2, and ∈ ∞f x x i( ), [0, + ), = 1, 2, 3i are the same as Example 2. Then, the
code of the Monte Carlo integration in Mathematica has evaluated ∫

∞
C f dμ( ) i0

for

n = 10, 100, 1000, 10 000, and 100 000. For f x e f x e( ) = , ( ) =x x
1

−
2

− 2
, and

f x x( ) = 1/(1 + )3
2 , the results are, respectively, presented in Tables 4, 5, and 6. Errors

and estimated errors are presented in the last two columns of these tables.

TABLE 3 Monte Carlo integration for ∫C f dμ( )
0

2
for f x x( ) = 1/ and the distorted Lebesgue measure μ with

distortion m x x( ) = 2 presented in Example 17

n Exact value (E) Monte Carlo (MC) ∣∣ ∣∣E − MC  f a f b f f n( ( ) − ( )) ( − ( ) )/2 2

10 0.613706 0.596105 0.0176009 0.0353673

100 0.613706 0.618482 0.00477639 0.0149729

1000 0.613706 0.612331 0.00137449 0.00412911

10 000 0.613706 0.612825 0.000880464 0.00132314

100 000 0.613706 0.613909 0.000203327 0.000417607

TABLE 4 Monte Carlo integration for ∫
∞

C f dμ( )
0 1 for f x e( ) = x

1
− with distortion m x x( ) = 1/2 presented in

Example 18

n Exact value (E) Monte Carlo (MC) ∣∣ ∣∣E − MC  f a f b f f n( ( ) − ( )) ( − ( ) )/2 2

10 0.886227 1.0251 0.138877 0.149227

100 0.8862276 0.902649 0.0164225 0.0507259

1000 0.8862276 0.894439 0.00821172 0.0147983

10 000 0.886227 0.888633 0.00240627 0.00468254

100 000 0.886227 0.886555 0.000327842 0.00147469

TABLE 5 Monte Carlo integration for ∫
∞

C f dμ( )
0 2 for f x e( ) = x

2
− 2

with distortionm x x( ) = 1/2 presented in
Example 18

n Exact value (E) Monte Carlo (MC) ∣∣ ∣∣E − MC  f a f b f f n( ( ) − ( )) ( − ( ) )/2 2

10 0.906402 0.985397 0.0789949 0.0581737

100 0.906402 0.888126 0.0182766 0.0237233

1000 0.906402 0.895629 0.0107732 0.00817426

10 000 0.906402 0.911433 0.0050302 0.00257403

100 000 0.906402 0.906858 0.000455929 0.0008031
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4 | CONCLUSIONS

We have introduced a generalized version of the mean value theorem for Choquet integral. This
generalization can help us to have the mean value theorem for some bounded functions on
unbounded regions, thus to overcome impossibility of applying the standard approaches in
these cases. Using our mean value theorem, we have proposed the method of the Monte Carlo
integration for Choquet integrals with some numerical examples.
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