

Available online at www.sciencedirect.com

FUZZY sets and systems

Fuzzy Sets and Systems 355 (2019) 100-105

www.elsevier.com/locate/fss

Short communication

A sufficient condition of equivalence of the Choquet and the pan-integral

Yao Ouyang^a, Jun Li^{b,*}, Radko Mesiar^{c,d}

^a Faculty of Science, Huzhou University, Huzhou, Zhejiang 313000, China ^b School of Sciences, Communication University of China, Beijing 100024, China ^c Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 811 05 Bratislava, Slovakia ^d UTIA CAS, Pod Vodárenskou věží 4, 182 08 Prague, Czech Republic

Received 8 January 2018; received in revised form 19 March 2018; accepted 24 March 2018 Available online 29 March 2018

Abstract

In this note, we continue to investigate the relationship between the Choquet integral and the pan-integral on infinite space. We will show that the (M)-property of monotone measures is a sufficient condition that the Choquet integral coincides with the pan-integral. In this discussion, the spaces are not restricted to be finite, thus the previous results obtained in finite space are further generalized and developed. A characteristic of the (M)-property of monotone measures is also presented. © 2018 Elsevier B.V. All rights reserved.

Keywords: Monotone measure; Choquet integral; Pan-integral; (M)-property

1. Introduction

The Choquet integral ([1]), the pan-integral ([14]) and the concave integral ([4]) are three kinds of well-known nonlinear integrals. Recently, the relationship among these integrals was investigated and many interesting results were obtained. Lehrer and Teper [4] showed that the Choquet integral coincides with the concave integral if and only if the monotone measure μ is convex (or supermodular [2]). In [9] we introduced the concept of *minimal atom* of a monotone measure and by means of the characteristics of minimal atoms we presented a necessary and sufficient condition that the concave integral coincides with the (+, ·)-based pan-integral on a finite space X. The equivalence of these two integrals on infinite space was also discussed in [11].

For the Choquet integral and the pan-integral, in [7] we introduced the concept of (*M*)-property of a monotone measure and discussed the relation between these two integrals on finite space. Following these ideas, in [10] we further proved that the (*M*)-property of a monotone measure is a necessary and sufficient condition that the Choquet integral is equivalent to the $(+, \cdot)$ -based pan-integral on finite space. In there we did not know whether our result

* Corresponding author. E-mail addresses: oyy@zjhu.edu.cn (Y. Ouyang), lijun@cuc.edu.cn (J. Li), mesiar@math.sk (R. Mesiar).

https://doi.org/10.1016/j.fss.2018.03.016 0165-0114/© 2018 Elsevier B.V. All rights reserved. is still true for infinite spaces. In this paper, we will prove that the sufficient condition that the Choquet integral coincides with the $(+, \cdot)$ -based pan-integral on finite space remains valid for infinite spaces, that is, the *(M)-property* of monotone measure is a sufficient condition that the Choquet integral is equivalent to the $(+, \cdot)$ -based pan-integral on an arbitrary space (not necessarily finite). We will also show a characteristic of the (M)-property, as we will see, the structure of a monotone measure is very "close to" additivity, that is, if a monotone measure μ possessing the (M)-property is null-additive, then it becomes to be additive.

2. Preliminaries

Let X be a nonempty set and \mathcal{A} a σ -algebra of subsets of X. A set function $\mu : \mathcal{A} \to [0, +\infty]$ is called a *monotone measure* on a measurable space (X, \mathcal{A}) if it satisfies the following conditions:

(1) $\mu(\emptyset) = 0$ and $\mu(X) > 0$;

(2) $\mu(A) \leq \mu(B)$ whenever $A \subset B$ and $A, B \in \mathcal{A}$.

When μ is a monotone measure, the triple (X, \mathcal{A}, μ) is called a monotone measure space ([12,13]).

In this paper we always assume that μ is a monotone measure on (X, \mathcal{A}) .

The monotone measure μ is said to be (i) *superadditive*, if $\mu(A \cup B) \ge \mu(A) + \mu(B)$ for any $A, B \in A, A \cap B = \emptyset$; (ii) *null-additive* [12,13], if for any $A, B \in A, \mu(B) = 0$ implies $\mu(A \cup B) = \mu(A)$; (iii) *converse null-additive* [13], if for any $A, B \in A, A \subset B$ and $\mu(A) = \mu(B) < \infty$ imply $\mu(B - A) = 0$.

The superadditivity implies converse null-additivity.

Let (X, \mathcal{A}, μ) be a monotone measure space and f a nonnegative measurable function. The $(+, \cdot)$ -based *panintegral* of f on X with respect to μ is given by

$$\int_{n}^{pan} f d\mu = \sup \left\{ \sum_{i=1}^{n} \lambda_i \mu(A_i) : \sum_{i=1}^{n} \lambda_i \chi_{A_i} \le f, \{A_i\}_{i=1}^{n} \subset \mathcal{A} \text{ is a partition of } X, \lambda_i \ge 0, n \in \mathbb{N} \right\}.$$

Notice that the concept of a pan-integral was introduced in [14] and it involves two binary operations, the panaddition \oplus and pan-multiplication \otimes of real numbers (see also [12,13]). As we did in [7,9,10], in this note we only consider the pan-integrals based on the usual addition + and multiplication \cdot .

The Choquet integral [1] of f on X with respect to μ , is defined by

$$\int_{0}^{Cho} f \, d\mu = \int_{0}^{\infty} \mu(\{x : f(x) \ge t\}) \, dt,$$

where the right-hand side integral is the improper Riemann integral. The *Choquet integral* can also be defined equivalently by

$$\int^{Cho} f \, d\mu = \sup \left\{ \sum_{i=1}^n \lambda_i \mu(A_i) : \sum_{i=1}^n \lambda_i \chi_{A_i} \le f, \{A_i\}_{i=1}^n \subset \mathcal{A} \text{ is a chain, } \lambda_i \ge 0, n \in \mathbb{N} \right\}.$$

In [7] we have proved that if the Choquet integral coincides with the $(+, \cdot)$ -based pan-integral, then the monotone measure μ is superadditive, and hence it is converse null-additive.

Proposition 2.1. ([7]) Let (X, \mathcal{A}, μ) be a monotone measure space. Then μ is superadditive if and only if $\int^{pan} f d\mu \leq \int^{Cho} f d\mu$ holds for each nonnegative measurable function f.

3. The (M) property of monotone measures

The concept of (M)-property of a monotone measure played an important role in the discussions of equivalence of the Choquet integral and the pan-integral on finite spaces (see [7,10]). We recall the concept which was proposed by Mesiar, see [7].

Definition 3.1. ([7]) Let (X, \mathcal{A}, μ) be a monotone measure space. If for any $A, B \in \mathcal{A}, A \subset B$, there exists $C \in A \cap \mathcal{A}$ such that

 $\mu(C) = \mu(A)$ and $\mu(B) = \mu(C) + \mu(B \setminus C)$,

then μ is called to have (M)-property.

Obviously, if μ is additive, then μ has (M)-property. From the definition of (M)-property, we can easily see the following result:

Proposition 3.2. ([7]) If the monotone measure μ has (M)-property, then μ is superadditive.

The following example shows that the (M)-property is indeed stronger than superadditivity (we can also refer to [10] for a similar example).

Example 3.3. Let X = [0, 1] and \mathcal{A} be the Borel algebra. The monotone measure μ is defined by

$$\mu(A) = \begin{cases} 2 & \text{if } A \supsetneq \{0, 1\} \\ 1 & \text{if } A = \{0, 1\} \\ 0 & \text{else.} \end{cases}$$

Then μ is superadditive. In fact, for any $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$, either $\mu(A) = 0$ or $\mu(B) = 0$. Then the superadditivity follows from the monotonicity of μ , i.e., $\mu(A \cup B) \ge \max(\mu(A), \mu(B)) = \mu(A) + \mu(B)$. But μ has not (M)-property. For $A = \{0, 1\}$ and B = X, to ensure $\mu(C) = \mu(A)$, it is the only case that $C = A = \{0, 1\}$, but then $\mu(B) = 2 > 1 = \mu(C) + \mu(B \setminus C)$.

Noting that the superadditivity implies converse null-additivity (in fact, for any $A, B \in A, A \subset B$ and $\mu(A) = \mu(B) < \infty$, by the superadditivity of μ , then $\mu(B) = \mu(A \cup (B - A)) \ge \mu(A) + \mu(B - A)$, therefore $\mu(B - A) = 0$), from Proposition 3.2, we get the following result:

Proposition 3.4. If μ has (M)-property, then μ is converse null-additive.

From definition of the (M)-property and by using Proposition 3.4, we can easily obtain the following result.

Proposition 3.5. Let μ be null-additive. If μ has (M)-property, then μ is additive.

4. Main result

In [10] (see also [7]) we proved that the (M)-property is a necessary and sufficient condition that the Choquet integral coincides with the $(+, \cdot)$ -based pan-integral on finite spaces (Theorem 4.6 in [10]). Now we show that the sufficiency in this result remains valid for infinite spaces. The following theorem is our main result.

Theorem 4.1. Let (X, \mathcal{A}, μ) be a monotone measure space. If μ has (M)-property, then for any nonnegative measurable function f, we have

$$\int^{Cho} f d\mu = \int^{pan} f d\mu.$$
(4.1)

Proof. Let f be an arbitrary nonnegative measurable function. Since μ has (M)-property, by Proposition 3.2, μ is superadditive. For a superadditive measure, by Theorem 10.7 in [13] (see also [7]), it holds that

$$\int^{Cho} f d\mu \ge \int^{pan} f d\mu.$$

Thus, to reach our result, it suffices to prove that for any f,

$$\int^{Cho} f d\mu \le \int^{pan} f d\mu.$$
(4.2)

For an arbitrarily given expression $\sum_{i=1}^{n} \lambda_i \chi_{B_i} \leq f$ with $\lambda_i \geq 0$ and $B_1 \subset B_2 \subset \cdots \subset B_n$, we need only to find a sequence of mutual disjoint sets $\{A_i\}_{i=1}^n$ and a sequence of nonnegative numbers $\{l_i\}_{i=1}^n$ such that

$$\sum_{i=1}^{n} l_i \chi_{A_i} \le \sum_{i=1}^{n} \lambda_i \chi_{B_i} \le f,$$
(4.3)

and

$$\sum_{i=1}^{n} \lambda_i \mu(B_i) = \sum_{i=1}^{n} l_i \mu(A_i) \le \int f d\mu.$$

$$(4.4)$$

Then, by the arbitrariness of $\sum_{i=1}^{n} \lambda_i \chi_{B_i}$, the formula (4.2) (and thus the equality (4.1)) follows. Let such an expression be given. By the (M)-property of μ , for $B_1 \subset B_2$ there is $B_1^{(1)} \subset B_1$ such that $\mu(B_1^{(1)}) = (B_1)^{(1)}$. $\mu(B_1)$ and

$$\mu(B_2) = \mu(B_1^{(1)}) + \mu(B_2 \setminus B_1^{(1)}).$$

Similarly, for $B_1^{(i-1)} \subset B_{i+1}$ there is $B_1^{(i)} \subset B_1^{(i-1)}$ such that $\mu(B_1^{(i)}) = \mu(B_1^{(i-1)}) = \mu(B_1)$ and

$$\mu(B_{i+1}) = \mu(B_1^{(i)}) + \mu(B_{i+1} \setminus B_1^{(i)}), i = 2, 3, \cdots, n-1.$$

Denote $A_1 = B_1^{(n-1)}, B_{i+1}^{(1)} = B_{i+1} \setminus B_1^{(i)}, i = 1, 2, \dots, n-1$ and $l_1 = \sum_{i=1}^n \lambda_i$. Then

$$A_1 = B_1^{(n-1)} \subset B_1^{(n-2)} \subset \cdots \subset B_1^{(1)} \subset B_1.$$

Thus,

$$l_1\chi_{A_1} + \sum_{i=2}^n \lambda_i \chi_{B_i^{(1)}} = \left(\sum_{i=1}^n \lambda_i\right) \chi_{A_1} + \sum_{i=2}^n \lambda_i \chi_{B_i^{(1)}}$$
$$\leq \lambda_1 \chi_{B_1} + \sum_{i=2}^n \lambda_i \left(\chi_{B_i^{(1)}} + \chi_{B_1^{(i-1)}}\right)$$
$$= \sum_{i=1}^n \lambda_i \chi_{B_i} \leq f.$$

Moreover, due to the fact that

$$\mu(A_1) = \mu(B_1^{(n-1)}) = \mu(B_1^{(n-2)}) = \dots = \mu(B_1^{(1)}) = \mu(B_1),$$

we have

$$l_{1}\mu(A_{1}) + \sum_{i=2}^{n} \lambda_{i}\mu(B_{i}^{(1)}) = \left(\sum_{i=1}^{n} \lambda_{i}\right)\mu(A_{1}) + \sum_{i=2}^{n} \lambda_{i}\mu(B_{i}^{(1)})$$
$$= \lambda_{1}\mu(B_{1}) + \sum_{i=2}^{n} \lambda_{i}\left(\mu(B_{i}^{(1)}) + \mu(B_{1}^{(i-1)})\right)$$
$$= \sum_{i=1}^{n} \lambda_{i}\mu(B_{i}).$$

Similarly, for $B_2^{(1)} \subset B_3^{(1)} \subset \cdots \subset B_n^{(1)}$, we can find $\{B_2^{(i)}\}_{i=2}^{n-1}$ with $B_2^{(n-1)} \subset B_2^{(n-2)} \subset \cdots \subset B_2^{(2)} \subset B_2^{(1)}$ such that $\mu(B_2^{(i)}) = \mu(B_2^{(1)})$ and

$$\mu(B_{i+1}^{(1)}) = \mu(B_2^{(i)}) + \mu(B_{i+1}^{(1)} \setminus B_2^{(i)}).$$

Denote $A_2 = B_2^{(n-1)}$, $B_{i+1}^{(2)} = B_{i+1}^{(1)} \setminus B_2^{(i)}$, $i = 2, 3, \dots, n-1$ and $l_2 = \sum_{i=2}^n \lambda_i$. Then we have,

$$\sum_{i=1}^{2} l_i \chi_{A_i} + \sum_{i=3}^{n} \lambda_i \chi_{B_i^{(2)}} \leq l_1 \chi_{A_1} + \sum_{i=2}^{n} \lambda_i \chi_{B_i^{(1)}} \leq f,$$

and

$$\sum_{i=1}^{2} l_{i}\mu(A_{i}) + \sum_{i=3}^{n} \lambda_{i}\mu(B_{i}^{(2)}) = l_{1}\mu(A_{1}) + \sum_{i=2}^{n} \lambda_{i}\mu(B_{i}^{(1)}) = \sum_{i=1}^{n} \lambda_{i}\mu(B_{i}).$$

Generally, for $B_i^{(i-1)} \subset B_{i+1}^{(i-1)} \subset \cdots \subset B_n^{(i-1)}$, $i = 2, 3, \cdots, n-1$, we can find $\{B_i^{(j)}\}_{i=i}^{n-1}$ with $B_i^{(n-1)} \subset \cdots \subset B_n^{(n-1)}$ $B_i^{(i)} \subset B_i^{(i-1)}$ such that $\mu(B_i^{(j)}) = \mu(B_i^{(i-1)})$ and

$$\mu(B_{j+1}^{(i-1)}) = \mu(B_i^{(j)}) + \mu(B_{j+1}^{(i-1)} \setminus B_i^{(j)}).$$

Denote $A_i = B_i^{(n-1)}, B_{i+1}^{(i)} = B_{i+1}^{(i-1)} \setminus B_i^{(j)}, j = i, \dots, n-1$ and $l_i = \sum_{i=1}^n \lambda_j$. Then

$$\sum_{j=1}^{i} l_j \chi_{A_j} + \sum_{j=i+1}^{n} \lambda_j \chi_{B_j^{(i)}} \leq f,$$

and

$$\sum_{j=1}^{i} l_{j}\mu(A_{j}) + \sum_{j=i+1}^{n} \lambda_{j}\mu(B_{j}^{(i)}) = \sum_{i=1}^{n} \lambda_{i}\mu(B_{i}).$$

Finally, we denote $A_n = B_n^{(n-1)}$ and $l_n = \lambda_n$.

In this way, we obtain a sequence of mutual disjoint sets $\{A_i\}_{i=1}^n$. In fact, by our construction, for any $1 \le i < j \le n$, we have $A_i \cap B_k^{(i)} = B_i^{(n-1)} \cap B_k^{(i)} = \emptyset$, $k = i + 1, \dots, n$ and $A_j = B_j^{(n-1)} \subset B_j^{(i)}$, thus $A_i \cap A_j = \emptyset$. Moreover, together with $\{A_i\}_{i=1}^n$, the sequence of nonnegative numbers $\{l_i\}_{i=1}^n$ satisfies both the formulas (4.3) and (4.4).

The proof is complete. \Box

The above theorem provides a sufficient condition to ensure the equivalence of the Choquet integral and the $(+,\cdot)$ -based pan-integral. We do not know whether this condition is also necessary (by Proposition 2.1, the superadditivity of μ is necessary). But we know that to ensure the equivalence of these two integrals, the (M)-property of μ can not be weakened to the superadditivity.

Example 4.2. Let the monotone measure μ be considered as in Example 3.3. Then μ is superadditive. Let the measurable function f be defined as

$$f(x) = \begin{cases} 2 & \text{if } x = 0, 1\\ 1 & \text{else.} \end{cases}$$

For any $\sum_{i=1}^{n} \lambda_i \chi_{A_i} \leq f$ with $A_i \cap A_j = \emptyset$, without loss of generality, we suppose $A_1 \cap \{0, 1\} \neq \emptyset$. Then $\mu(A_i) = 0$ for $i \geq 2$. If $\mu(A_1) = 2$ then $\lambda_1 \leq 1$ which implies that $\sum_{i=1}^{n} \lambda_i \mu(A_i) \leq 2$. If $\mu(A_1) = 1$ then $\lambda_1 \leq 2$ which also implies that $\sum_{i=1}^{n} \lambda_i \mu(A_i) \leq 2$. Thus $\int^{pan} f d\mu = 2$, but

$$\int^{Cho} f d\mu = \mu(X) + \mu(\{0, 1\}) = 3 > \int^{pan} f d\mu.$$

104

5. Concluding remarks

In this note, we have shown that the (M)-property of a monotone measure is sufficient for the equivalence of the Choquet integral and the $(+, \cdot)$ -based pan-integral on an arbitrary monotone measure space X (i.e., X is not necessarily finite) (Theorem 4.1). But we do not know whether it is also necessary.

As we have mentioned in Section 1, in the case of finite space, the (M)-property is not only sufficient, but also necessary for which the Choquet integral coincides with the $(+, \cdot)$ -based pan-integral. So, the first open question is to prove (or disprove) the necessity of (M)-property on an infinite space.

Notice that the concave integral introduced by Lehrer (see [4]), which is based on + and \cdot , was generalized to the pseudo-concave integral [6] based on pseudo-operations \oplus and \otimes . Also, the Choquet integral was generalized to the Choquet-like integral [5]. So the second open question is to investigate the relationships among the Choquet-like, pseudo-concave and pan-integrals (related to \oplus and \otimes operations) on arbitrary spaces.

Finally, as a dual counterpart of decomposition integral ([3]), the superdecomposition integrals were introduced in [8]. It is of interest to investigate the relationships among various superdecomposition integrals.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants No. 11571106 and No. 11371332) and by the grant APVV-14-0013.

References

- [1] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953) 131-295.
- [2] D. Denneberg, Non-Additive Measure and Integral, Kluwer Academic Publishers, Dordrecht, 1994.
- [3] Y. Even, E. Lehrer, Decomposition integral: unifying Choquet and the concave integrals, Econ. Theory 56 (2014) 33–58.
- [4] E. Lehrer, R. Teper, The concave integral over large spaces, Fuzzy Sets Syst. 159 (2008) 2130-2144.
- [5] R. Mesiar, Choquet-like integrals, J. Math. Anal. Appl. 194 (1995) 477-488.
- [6] R. Mesiar, J. Li, E. Pap, Pseudo-concave integrals, in: Adv. Intell. Syst. Comput., vol. 100, NLMUA'2011, Springer-Verlag, Berlin Heidelberg, 2011, pp. 43–49.
- [7] R. Mesiar, J. Li, Y. Ouyang, On the equality of integrals, Inf. Sci. 393 (2017) 82–90.
- [8] R. Mesiar, J. Li, E. Pap, Superdecomposition integrals, Fuzzy Sets Syst. 259 (2015) 3-10.
- [9] Y. Ouyang, J. Li, R. Mesiar, Relationship between the concave integrals and the pan-integrals on finite spaces, J. Math. Anal. Appl. 424 (2015) 975–987.
- [10] Y. Ouyang, J. Li, R. Mesiar, On the equivalence of the Choquet, pan- and concave integrals on finite spaces, J. Math. Anal. Appl. 456 (2017) 151–162.
- [11] Y. Ouyang, J. Li, R. Mesiar, Coincidences of the concave integral and the pan-integral, Symmetry 9 (6) (2017) 80-90.
- [12] E. Pap, Null-Additive Set Functions, Kluwer, Dordrecht, 1995.
- [13] Z. Wang, G.J. Klir, Generalized Measure Theory, Springer, New York, 2009.
- [14] Q. Yang, The pan-integral on fuzzy measure space, Fuzzy Math. 3 (1985) 107–114 (in Chinese).