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Abstract

In this note, we continue to investigate the relationship between the Choquet integral and the pan-integral on infinite space. 
We will show that the (M)-property of monotone measures is a sufficient condition that the Choquet integral coincides with the 
pan-integral. In this discussion, the spaces are not restricted to be finite, thus the previous results obtained in finite space are further 
generalized and developed. A characteristic of the (M)-property of monotone measures is also presented.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The Choquet integral ([1]), the pan-integral ([14]) and the concave integral ([4]) are three kinds of well-known 
nonlinear integrals. Recently, the relationship among these integrals was investigated and many interesting results 
were obtained. Lehrer and Teper [4] showed that the Choquet integral coincides with the concave integral if and only 
if the monotone measure μ is convex (or supermodular [2]). In [9] we introduced the concept of minimal atom of 
a monotone measure and by means of the characteristics of minimal atoms we presented a necessary and sufficient 
condition that the concave integral coincides with the (+, ·)-based pan-integral on a finite space X. The equivalence 
of these two integrals on infinite space was also discussed in [11].

For the Choquet integral and the pan-integral, in [7] we introduced the concept of (M)-property of a monotone 
measure and discussed the relation between these two integrals on finite space. Following these ideas, in [10] we 
further proved that the (M)-property of a monotone measure is a necessary and sufficient condition that the Choquet 
integral is equivalent to the (+, ·)-based pan-integral on finite space. In there we did not know whether our result 
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is still true for infinite spaces. In this paper, we will prove that the sufficient condition that the Choquet integral 
coincides with the (+, ·)-based pan-integral on finite space remains valid for infinite spaces, that is, the (M)-property
of monotone measure is a sufficient condition that the Choquet integral is equivalent to the (+, ·)-based pan-integral 
on an arbitrary space (not necessarily finite). We will also show a characteristic of the (M)-property, as we will see, 
the structure of a monotone measure is very “close to” additivity, that is, if a monotone measure μ possessing the 
(M)-property is null-additive, then it becomes to be additive.

2. Preliminaries

Let X be a nonempty set and A a σ -algebra of subsets of X. A set function μ :A → [0, +∞] is called a monotone 
measure on a measurable space (X, A) if it satisfies the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A, B ∈A.
When μ is a monotone measure, the triple (X, A, μ) is called a monotone measure space ([12,13]).
In this paper we always assume that μ is a monotone measure on (X, A).
The monotone measure μ is said to be (i) superadditive, if μ(A ∪B) ≥ μ(A) +μ(B) for any A, B ∈ A, A ∩B = ∅; 

(ii) null-additive [12,13], if for any A, B ∈ A, μ(B) = 0 implies μ(A ∪ B) = μ(A); (iii) converse null-additive [13], 
if for any A, B ∈ A, A ⊂ B and μ(A) = μ(B) < ∞ imply μ(B − A) = 0.

The superadditivity implies converse null-additivity.
Let (X, A, μ) be a monotone measure space and f a nonnegative measurable function. The (+, ·)-based pan-

integral of f on X with respect to μ is given by

pan∫
f dμ = sup

{ n∑
i=1

λiμ(Ai) :
n∑

i=1

λiχAi
≤ f, {Ai}ni=1 ⊂A is a partition of X,λi ≥ 0, n ∈ N

}
.

Notice that the concept of a pan-integral was introduced in [14] and it involves two binary operations, the pan-
addition ⊕ and pan-multiplication ⊗ of real numbers (see also [12,13]). As we did in [7,9,10], in this note we only 
consider the pan-integrals based on the usual addition + and multiplication ·.

The Choquet integral [1] of f on X with respect to μ, is defined by

Cho∫
f dμ =

∞∫
0

μ({x : f (x) � t}) dt,

where the right-hand side integral is the improper Riemann integral. The Choquet integral can also be defined equiv-
alently by

Cho∫
f dμ = sup

{ n∑
i=1

λiμ(Ai) :
n∑

i=1

λiχAi
≤ f, {Ai}ni=1 ⊂A is a chain, λi ≥ 0, n ∈N

}
.

In [7] we have proved that if the Choquet integral coincides with the (+, ·)-based pan-integral, then the monotone 
measure μ is superadditive, and hence it is converse null-additive.

Proposition 2.1. ([7]) Let (X, A, μ) be a monotone measure space. Then μ is superadditive if and only if 
∫ pan

f dμ ≤∫ Cho
f dμ holds for each nonnegative measurable function f .

3. The (M) property of monotone measures

The concept of (M)-property of a monotone measure played an important role in the discussions of equivalence of 
the Choquet integral and the pan-integral on finite spaces (see [7,10]). We recall the concept which was proposed by 
Mesiar, see [7].
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Definition 3.1. ([7]) Let (X, A, μ) be a monotone measure space. If for any A, B ∈A, A ⊂ B , there exists C ∈ A ∩A
such that

μ(C) = μ(A) and μ(B) = μ(C) + μ(B \ C),

then μ is called to have (M)-property.

Obviously, if μ is additive, then μ has (M)-property.
From the definition of (M)-property, we can easily see the following result:

Proposition 3.2. ([7]) If the monotone measure μ has (M)-property, then μ is superadditive.

The following example shows that the (M)-property is indeed stronger than superadditivity (we can also refer to 
[10] for a similar example).

Example 3.3. Let X = [0, 1] and A be the Borel algebra. The monotone measure μ is defined by

μ(A) =

⎧⎪⎨
⎪⎩

2 if A� {0,1}
1 if A = {0,1}
0 else.

Then μ is superadditive. In fact, for any A, B ∈ A with A ∩ B = ∅, either μ(A) = 0 or μ(B) = 0. Then the super-
additivity follows from the monotonicity of μ, i.e., μ(A ∪ B) ≥ max(μ(A), μ(B)) = μ(A) + μ(B). But μ has not 
(M)-property. For A = {0, 1} and B = X, to ensure μ(C) = μ(A), it is the only case that C = A = {0, 1}, but then 
μ(B) = 2 > 1 = μ(C) + μ(B \ C).

Noting that the superadditivity implies converse null-additivity (in fact, for any A, B ∈ A, A ⊂ B and μ(A) =
μ(B) < ∞, by the superadditivity of μ, then μ(B) = μ(A ∪ (B −A)) ≥ μ(A) +μ(B −A), therefore μ(B −A) = 0), 
from Proposition 3.2, we get the following result:

Proposition 3.4. If μ has (M)-property, then μ is converse null-additive.

From definition of the (M)-property and by using Proposition 3.4, we can easily obtain the following result.

Proposition 3.5. Let μ be null-additive. If μ has (M)-property, then μ is additive.

4. Main result

In [10] (see also [7]) we proved that the (M)-property is a necessary and sufficient condition that the Choquet 
integral coincides with the (+, ·)-based pan-integral on finite spaces (Theorem 4.6 in [10]). Now we show that the 
sufficiency in this result remains valid for infinite spaces. The following theorem is our main result.

Theorem 4.1. Let (X, A, μ) be a monotone measure space. If μ has (M)-property, then for any nonnegative measur-
able function f , we have

Cho∫
f dμ =

pan∫
f dμ. (4.1)

Proof. Let f be an arbitrary nonnegative measurable function. Since μ has (M)-property, by Proposition 3.2, μ is 
superadditive. For a superadditive measure, by Theorem 10.7 in [13] (see also [7]), it holds that

Cho∫
f dμ ≥

pan∫
f dμ.
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Thus, to reach our result, it suffices to prove that for any f ,

Cho∫
f dμ ≤

pan∫
f dμ. (4.2)

For an arbitrarily given expression 
∑n

i=1 λiχBi
≤ f with λi ≥ 0 and B1 ⊂ B2 ⊂ · · · ⊂ Bn, we need only to find a 

sequence of mutual disjoint sets {Ai}ni=1 and a sequence of nonnegative numbers {li}ni=1 such that

n∑
i=1

liχAi
≤

n∑
i=1

λiχBi
≤ f, (4.3)

and

n∑
i=1

λiμ(Bi) =
n∑

i=1

liμ(Ai) ≤
pan∫

f dμ. (4.4)

Then, by the arbitrariness of 
∑n

i=1 λiχBi
, the formula (4.2) (and thus the equality (4.1)) follows.

Let such an expression be given. By the (M)-property of μ, for B1 ⊂ B2 there is B(1)
1 ⊂ B1 such that μ(B

(1)
1 ) =

μ(B1) and

μ(B2) = μ(B
(1)
1 ) + μ(B2 \ B

(1)
1 ).

Similarly, for B(i−1)
1 ⊂ Bi+1 there is B(i)

1 ⊂ B
(i−1)
1 such that μ(B

(i)
1 ) = μ(B

(i−1)
1 ) = μ(B1) and

μ(Bi+1) = μ(B
(i)
1 ) + μ(Bi+1 \ B

(i)
1 ), i = 2,3, · · · , n − 1.

Denote A1 = B
(n−1)
1 , B(1)

i+1 = Bi+1 \ B
(i)
1 , i = 1, 2, · · · , n − 1 and l1 = ∑n

i=1 λi . Then

A1 = B
(n−1)
1 ⊂ B

(n−2)
1 ⊂ · · · ⊂ B

(1)
1 ⊂ B1.

Thus,

l1χA1 +
n∑

i=2

λiχB
(1)
i

=
(

n∑
i=1

λi

)
χA1 +

n∑
i=2

λiχB
(1)
i

≤ λ1χB1 +
n∑

i=2

λi

(
χ

B
(1)
i

+ χ
B

(i−1)
1

)

=
n∑

i=1

λiχBi
≤ f.

Moreover, due to the fact that

μ(A1) = μ(B
(n−1)
1 ) = μ(B

(n−2)
1 ) = · · · = μ(B

(1)
1 ) = μ(B1),

we have

l1μ(A1) +
n∑

i=2

λiμ(B
(1)
i ) =

(
n∑

i=1

λi

)
μ(A1) +

n∑
i=2

λiμ(B
(1)
i )

= λ1μ(B1) +
n∑

i=2

λi

(
μ(B

(1)
i ) + μ(B

(i−1)
1 )

)

=
n∑

λiμ(Bi).
i=1
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Similarly, for B(1)
2 ⊂ B

(1)
3 ⊂ · · · ⊂ B

(1)
n , we can find {B(i)

2 }n−1
i=2 with B(n−1)

2 ⊂ B
(n−2)
2 ⊂ · · · ⊂ B

(2)
2 ⊂ B

(1)
2 such that 

μ(B
(i)
2 ) = μ(B

(1)
2 ) and

μ(B
(1)
i+1) = μ(B

(i)
2 ) + μ(B

(1)
i+1 \ B

(i)
2 ).

Denote A2 = B
(n−1)
2 , B(2)

i+1 = B
(1)
i+1 \ B

(i)
2 , i = 2, 3, · · · , n − 1 and l2 = ∑n

i=2 λi . Then we have,

2∑
i=1

liχAi
+

n∑
i=3

λiχB
(2)
i

≤ l1χA1 +
n∑

i=2

λiχB
(1)
i

≤ f,

and

2∑
i=1

liμ(Ai) +
n∑

i=3

λiμ(B
(2)
i ) = l1μ(A1) +

n∑
i=2

λiμ(B
(1)
i ) =

n∑
i=1

λiμ(Bi).

Generally, for B(i−1)
i ⊂ B

(i−1)
i+1 ⊂ · · · ⊂ B

(i−1)
n , i = 2, 3, · · · , n − 1, we can find {B(j)

i }n−1
j=i with B(n−1)

i ⊂ · · · ⊂
B

(i)
i ⊂ B

(i−1)
i such that μ(B

(j)
i ) = μ(B

(i−1)
i ) and

μ(B
(i−1)
j+1 ) = μ(B

(j)
i ) + μ(B

(i−1)
j+1 \ B

(j)
i ).

Denote Ai = B
(n−1)
i , B(i)

j+1 = B
(i−1)
j+1 \ B

(j)
i , j = i, · · · , n − 1 and li = ∑n

j=i λj . Then

i∑
j=1

lj χAj
+

n∑
j=i+1

λjχB
(i)
j

≤ f,

and

i∑
j=1

ljμ(Aj ) +
n∑

j=i+1

λjμ(B
(i)
j ) =

n∑
i=1

λiμ(Bi).

Finally, we denote An = B
(n−1)
n and ln = λn.

In this way, we obtain a sequence of mutual disjoint sets {Ai}ni=1. In fact, by our construction, for any 1 ≤ i < j ≤ n, 

we have Ai ∩ B
(i)
k = B

(n−1)
i ∩ B

(i)
k = ∅, k = i + 1, · · · , n and Aj = B

(n−1)
j ⊂ B

(i)
j , thus Ai ∩ Aj = ∅. Moreover, 

together with {Ai}ni=1, the sequence of nonnegative numbers {li}ni=1 satisfies both the formulas (4.3) and (4.4).
The proof is complete. �
The above theorem provides a sufficient condition to ensure the equivalence of the Choquet integral and the 

(+, ·)-based pan-integral. We do not know whether this condition is also necessary (by Proposition 2.1, the super-
additivity of μ is necessary). But we know that to ensure the equivalence of these two integrals, the (M)-property of 
μ can not be weakened to the superadditivity.

Example 4.2. Let the monotone measure μ be considered as in Example 3.3. Then μ is superadditive. Let the mea-
surable function f be defined as

f (x) =
{

2 if x = 0,1

1 else.

For any 
∑n

i=1 λiχAi
≤ f with Ai ∩ Aj = ∅, without loss of generality, we suppose A1 ∩ {0, 1} �= ∅. Then μ(Ai) = 0

for i ≥ 2. If μ(A1) = 2 then λ1 ≤ 1 which implies that 
∑n

i=1 λiμ(Ai) ≤ 2. If μ(A1) = 1 then λ1 ≤ 2 which also 
implies that 

∑n
i=1 λiμ(Ai) ≤ 2. Thus 

∫ pan
f dμ = 2, but

Cho∫
f dμ = μ(X) + μ({0,1}) = 3 >

pan∫
f dμ.
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5. Concluding remarks

In this note, we have shown that the (M)-property of a monotone measure is sufficient for the equivalence of 
the Choquet integral and the (+, ·)-based pan-integral on an arbitrary monotone measure space X (i.e., X is not 
necessarily finite) (Theorem 4.1). But we do not know whether it is also necessary.

As we have mentioned in Section 1, in the case of finite space, the (M)-property is not only sufficient, but also 
necessary for which the Choquet integral coincides with the (+, ·)-based pan-integral. So, the first open question is to 
prove (or disprove) the necessity of (M)-property on an infinite space.

Notice that the concave integral introduced by Lehrer (see [4]), which is based on + and ·, was generalized to 
the pseudo-concave integral [6] based on pseudo-operations ⊕ and ⊗. Also, the Choquet integral was generalized to 
the Choquet-like integral [5]. So the second open question is to investigate the relationships among the Choquet-like, 
pseudo-concave and pan-integrals (related to ⊕ and ⊗ operations) on arbitrary spaces.

Finally, as a dual counterpart of decomposition integral ([3]), the superdecomposition integrals were introduced 
in [8]. It is of interest to investigate the relationships among various superdecomposition integrals.
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