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Abstract

Eighteen open problems posed during FSTA 2014 (Liptovský Ján, Slovakia) are presented. These problems concern fuzzy 
logics, fuzzy partitions, copulas, triangular norms and related aggregation functions. Some open problems concerning effect and 
MV algebras are also included.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

A public announcement of open problems had a great impact on the development of several areas of science, 
including mathematics. It seems so that the most famous was the formulation of D. Hilbert’s problems [20]. In the 
domain of fuzzy sets and related topics, several open problems were published in monographs [7,31,41,48]. There are 
several papers devoted purely to open problems concerning triangular norms [1,30]. Other collections of open prob-
lems are linked to problems posed at conferences; recall for example the collections summarizing the open problems 
posed at the 2nd, 8th and 10th FSTA conferences [28,39,37]. To illustrate the influence of these collections to the 
development of mathematics, observe that just within the field of fuzzy sets there are more than 40 papers devoted to 
the solution of some of the exposed problems. The aim of this paper is the presentation of open problems posed during 
the conference FSTA 2014 “The Twelfth International Conference on Fuzzy Set Theory and Applications” held from 
January 26 to January 31, 2014 in Liptovský Ján, Slovakia.

The paper is organized as follows. In each section a brief introduction to the area of summarized open problems 
prepared by persons introducing these problems is given. In the 2nd section triangular norms and related negations 
are discussed. Section 3 is devoted to open problems on fuzzy implications. Section 4 deals with copulas. Preorders 
induced by uninorms are studied in Section 5. Section 6 discusses the construction of aggregation functions by means 
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of penalty functions. Fuzzy partitions are discussed in Section 7, while Section 8 concerns fuzzy logics. In Section 9, 
several open problems on the field of universal integrals are introduced. Section 10 deals with effect algebras. States 
on MV-algebras are studied in Section 11. Finally some concluding remarks with e-mail addresses of authors of 
presented open problems are added.

2. Are Archimedean t-norms with strong associated negations left-continuous?

T-norms can be categorized under different classes based on their analytic and algebraic properties, viz., continuity, 
left-continuity, Archimedeanness, nilpotence, cancellativity, etc. Already some interrelationships among them are 
known under some conditions – for instance, it is well known that under Archimedeanness left-continuity is equivalent 
to continuity [33]. Similarly, when one assumes continuity of a t-norm T , many properties, which are otherwise not 
equivalent, become equivalent, for instance strict monotonicity of a T is equivalent to strictness, which is further 
equivalent to conditional cancellativity, while existence of only trivial idempotent elements becomes equivalent to 
Archimedeanness. For more such interrelationships please see [31].

When one considers a t-norm T with an involutive associated negation, i.e., the function

NT (x) = sup
{
t ∈ [0,1] ∣∣ T (x, t) ≤ 0

}
is such that NT ◦ NT = id[0,1], the only known result is that nilpotence is equivalent to continuity.

Our study on the mutual equivalences among the above properties under this setting [23] resulted into the following 
problem:

Problem 2.1 (B. Jayaram). Does there exist any Archimedean t-norm T , whose NT is involutive but is not condition-
ally cancellative or left-continuous? In other words, is an Archimedean t-norm T whose NT is involutive necessarily 
conditionally cancellative or left-continuous?

3. Lattice of fuzzy implications and the exchange principle

The exchange principle, i.e. the equation of the form

I
(
x, I (y, z)

) = I
(
y, I (x, z)

)
, x, y, z ∈ [0,1], (EP)

where I : [0, 1]2 → [0, 1], generalizes the classical tautology

p → (q → r) ≡ q → (p → r)

and is one of the most important properties of a fuzzy implication both from theoretical and applicational point of view 
(see [2]). Unfortunately, in general, (EP) is not preserved by standard lattice operations minimum and maximum. For 
a counterexample see [2, Remark 6.1.5], where it is shown that the Goguen implication

IGG(x, y) =
{

1, if x ≤ y,
y
x
, if y > x,

and the Reichenbach implication

IRC(x, y) = 1 − x + xy

satisfy (EP), but fuzzy implications IGG ∨ IRC and IGG ∧ IRC do not satisfy (EP). In particular, this implies that if I , 
J are two (S,N)-implications, then I ∨ J and I ∧ J are not necessarily (S,N)-implications. One can easily check that 
the same holds for R-implications generated from left-continuous t-norms, or f - and g-implications.

Problem 3.1 (M. Baczyński, B. Jayaram). Characterize the subfamily of all fuzzy implications ((S,N)-implications, 
R-implications, etc.) which preserve the (EP) for lattice operations.
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4. Constructions of copulas

The definition and importance of copulas can be found and is discussed in many publications, recall only lecture 
notes [40]. Just for the sake of self-containedness we recall the definition of n-ary copula.

Definition 4.1. Let n ≥ 2 be fixed. A function C : [0,1]n → [0,1] is called a (n-ary) copula whenever it is n – 
increasing and satisfies boundary conditions, i.e.,

(C1) for any x, y ∈ [0,1]n, x1 ≤ y1, . . . , xn ≤ yn it holds

VC

([x,y]) =
∑

ε ∈{−1,1}n

(
C

(
z(ε)

) n∏
i=1

εi

)
≥ 0,

where z(ε) = (z
ε1
1 , . . . zεn

n ), z1
i = yi and z−1

i = xi , i = 1, . . . , n;
(C2) C(x) = 0 whenever 0 ∈ {x1, . . . , xn} and C(x) = xi whenever xj = 1 for each j �= i.

Recently, an interesting method of constructing parametric families (Cλ)λ∈[0,1] of 2-copulas, starting from any 
copula C : [0,1]2 → [0,1], C �= Min, was introduced in [38],

Cλ(x, y) = C(x, y) + λ
(
x − C(x, y)

)(
y − C(x, y)

)
. (1)

Observe that if C = Min then Cλ = Min for each λ ∈ [0,1]. For the product copula Π , (Πλ)λ∈[0,1] is a subfamily of 
well known Fairley–Gumbel–Morgenstern family,

Πλ(x, y) = xy + λx(1 − x)y(1 − y).

Our first open problem concerns the possibility of extending the construction (1) to higher dimension.

Problem 4.1 (Mesiar). Let C : [0,1]n → [0,1] be an n-ary copula. Define C1 : [0,1]n → [0,1] by

C1(x1, . . . , xn) = C(x1, . . . , xn) −
n∏

i=1

(
xi − C(x1, . . . , xn)

)
. (2)

Is the function C1 n-increasing, i.e., is it an n-copula? If in general not, characterize all n-copulas C such that C1 is 
an n-copula, too.

Observe that if, for a given n-copula C, C1 given by (2) is n-copula, then also Cλ : [0,1]n → [0,1], λ ∈ [0,1], 
given by

Cλ(x1, . . . , xn) = C(x1, . . . , xn) − λ

n∏
i=1

(
xi − C(x1, . . . , xn)

)
is an n-copula.

For each 2-copula C : [0,1]2 → [0,1], the function C∗ : [0,1]2 → [0,1] given by

C∗(x, y) = x + y − C(x, y)

is called a dual copula (to C).
It is immediate that for the lower Fréchet–Hoeffding bound W : [0,1]2 → [0,1], W(x, y) = max{x + y − 1, 0}, the 

function W(λ) : [0,1]2 → [0,1], λ ∈ [0,1], given by

W(λ) = W

1 + λ(1 − W ∗)
,

satisfies W(λ) = W , i.e., it is a 2-copula.
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For the product 2-copula Π , define

Π(λ) = Π

1 + λ(1 − Π∗)
, i.e., Π(λ)(x, y) = xy

1 + λ − λx − λy + λxy
.

Recall that Π(λ) is Ali–Haq–Mikhail copula with parameter λ (i.e., a 2-copula), see [40]. Similarly, it is not difficult 
to check that Min(λ) given by

Min(λ) = Min

1 + λ(1 − Min∗)
is a copula for each λ ∈ [0,1].

We wonder whether this type of construction of parametric families of copulas can be based on an arbitrary 2-copula 
C �= W .

Problem 4.2 (Mesiar). Let C : [0,1]2 → [0,1] be a 2-copula. For λ ∈ [0,1], define C(λ) : [0,1]2 → [0,1] by

C(λ) = C

1 + λ − λC∗ .

Is the function C(λ) a 2-copula, too? If not, in general, characterize the set of all parameters λ ∈ [0,1] for which C(λ)

is a 2-copula (obviously, C(0) = C is a 2-copula).

Observe that due to a recent result from [34], C · C∗ is a 2-copula for any 2-copula C.
Consequently

C[λ] = C · (1 − λ + λC∗), λ ∈ [0,1],
is a parametric family of 2-copulas.

For C = Π , (Π [λ])λ∈[0,1] is a subfamily of Fairley–Gumbel–Morgenstern family of copulas, while for C = Min, 
(Min[λ])λ∈[0,1] is a subfamily of Fréchet family.

5. Preorders induced by uninorms

In [27], the following order induced by t-norms was introduced:

Definition 5.1. Let L be a bounded lattice, T be a t-norm on L. Then the order

x �T y ⇔ (∃� ∈ L)T (�, y) = x (3)

is called a t-order for the t-norm T .

Uninorms were introduced by Yager and Rybalov in [54]. A complete characterization of representable uninorms 
can be found in [13].

Definition 5.2. A uninorm U is a function U : [0, 1]2 → [0, 1] that is increasing, commutative, associative and has a 
neutral element e ∈ [0, 1].

A uninorm Ur with a neutral element e ∈]0, 1[ is said to be representable if there exists a continuous, strictly 
increasing function g : [0, 1] → [−∞, ∞] with g(0) = −∞, g(1) = ∞ and g(e) = 0, and such that

Ur(x, y) = g−1(g(x) + g(y)
)
.

We say that a uninorm U with the neutral element e ∈]0, 1[ contains a zoomed-out representable uninorm, if there exist 
0 ≤ a < e < b ≤ 1 and a continuous strictly increasing function f : [a, b] → [−∞, ∞] with f (a) = −∞, f (b) = ∞
and f (e) = 0, and such that for all (x, y) ∈ ]a, b[2 we have

U(x, y) = f −1(f (x) + f (y)
)
.
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In formula (3) we can replace the t-norm T by an arbitrary uninorm U . Of course, the relation �U is not necessarily an 
ordering. The relation �U was studied in [21]. Particularly, it was shown that if the uninorm U contains a zoomed-out 
representable uninorm Ur , then the relation �U is not anti-symmetric.

Problem 5.1 (M. Kalina). Is the condition that U does not contain a zoomed-out representable uninorm sufficient for 
the relation �U to be anti-symmetric?

6. Penalty functions over lattices

In many applied problems a crucial step is that of fusing data from several sources into one single output which 
provides a good representation of the fused information. When data are provided in a numerical way, one commonly 
used tool is an aggregation function. However, the choice of an appropriate aggregation function for a given problem 
can be a very difficult task. Usually, many authors just make use of an aggregation function (or a class of aggregation 
functions) regardless the specific data being considered. However, recently it has been shown that, at least for some 
specific decision making problems, the choice of one aggregation or another in a given problem leads to completely 
different solutions [5].

Since their introduction by Mesiar, Yager and Calvo [8], penalty functions have shown themselves very useful in 
this kind of problems where the choice of the appropriate fusion technique (aggregation function) for the considered 
problem is not clear [5,17]. Recall that a penalty function is defined as follows.

Definition 6.1. A penalty function is a mapping

P : [0,1]n+1 → [0,∞[
such that

1. P(x1, . . . , xn, y) = 0 if and only if x1 = · · · = xn = y;
2. P is quasiconvex in y; that is, for every x1, . . . , xn, y1, y2, λ ∈ [0, 1] it holds that:

P
(
x1, . . . , xn, λy1 + (1 − λ)y2

) ≤ max
(
P(x1, . . . , xn, y1),P (x1, . . . , xn, y2)

)
Basically, these functions are able to determine the dissimilarity between the input y and each of the data xi . The 

larger this dissimilarity is, the larger the output of P . So, by means of a minimization procedure, it is possible to 
find an output which is the least dissimilar to a given set of input in the sense defined by the penalty function itself. 
Moreover, such way of measuring the dissimilarity may be different for each of the components. For instance, recall 
the definition of restricted dissimilarity function.

Definition 6.2. A restricted dissimilarity function is a mapping d : [0, 1]2 → [0, 1] such that, for every x, y, z ∈ [0, 1]

1. d(x, y) = d(y, x);
2. d(x, y) = 0 iff x = y;
3. d(x, y) = 1 iff {x, y} = {0, 1};
4. if x ≤ y ≤ z then d(x, y) ≤ d(x, z) and d(y, z) ≤ d(x, z).

Then, if d1, . . . , dn : [0, 1]2 → [0, 1] (i ∈ {1, . . . , n}) are n restricted dissimilarity functions which are quasiconvex 
in one variable and if K is a positive convex function of one variable with a unique minimum at x = 0, it follows that 
a penalty function can be defined as:

P(x1, . . . , xn, y) = K
(
d1(x1, y), . . . , dn(xn, yn)

)
.

The relevance of these functions lies in the fact that every averaging aggregation function can be recovered through 
the use of these penalty functions. That is, every aggregation function whose values are always between the minimum 
of all the considered inputs and the maximum of all the inputs can be obtained as a penalty-based function, where the 
latter, for a given penalty function P , is defined by:
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f (x1, . . . , xn) = arg min
y

P (x1, . . . , xn, y)

Note that quasiconvexity ensures that the minimum is attained either at a single point or in an interval. In the last 
case, we just define the output of f as the mid-point of such interval.

Penalty functions have been successfully used to improve the results of some classical algorithms in decision 
making problems. And, on the other hand, also extensions of fuzzy sets, and in particular, interval-valued fuzzy 
sets have allowed an improvement on the results of algorithms which make use of fuzzy techniques. The extension 
of penalty functions to these more general settings, however, is difficult, since the notion of quasiconvexity is not 
properly defined in general for lattices [4], nor does there exist an easy, natural procedure to carry out such extension.

Problem 6.1 (H. Bustince, J. Fernandez, M. Pagola, D. Paternain, E. Barrenechea). To define properly penalty func-
tions and penalty-based functions in the lattice of closed subintervals of the unit interval [0, 1], L([0, 1]), in such a 
way that averaging aggregation operators in this lattice can be recovered as penalty-based functions.

Note that this problem also implies the consideration of which is the order used for defining monotonicity in 
L([0, 1]). So it is necessary to consider two possible situations:

1. To define penalty functions in L([0, 1]) with respect to the partial order [a, b] ≤L [c, d] iff a ≤ c and b ≤ d .
2. To define penalty functions with respect to linear admissible orders; that is, with respect to linear orders that 

extend the partial order ≤L.

7. Generalized uniform fuzzy partitions

Ruspini was probably the first who suggested in [47] to relax the crisp borders of equivalence classes by member-
ship functions and consider a partition of a set using overlapping fuzzy sets. Ruspini’s idea initiated a deep research 
in the field of fuzzy partitions. In the literature, various definitions of fuzzy partitions have been proposed. The open 
problem concerns fuzzy partitions defined by an appropriate generalization of classical axioms – covering and dis-
jointness property – see, for example, [6,10,32,42]. More specifically, we are interested in uniform fuzzy partitions
of the real line, where all fuzzy sets of the partition are equal in size and shape and regularly shifted along the real 
line. The importance of this type of fuzzy partitions can be mainly seen in real applications for their simple form 
often providing a deeper insight into settings of parameters. Let us mention here fuzzy histogram estimation [36,49]
or fuzzy transform [43,44], where the uniform fuzzy partitions have a prominent position, but we may also imagine 
their use in the application fields like fuzzy control or fuzzy relation equations.

Roughly speaking the open problem is about an effective construction of uniform fuzzy partitions with more than 
two overlapping fuzzy sets. The solution would help researches in the investigation of various techniques based on 
uniform fuzzy partitions.

Let R denote the set of real numbers. A function K : R → [0, 1] is said to be a generating function if K is an even 
function that is non-increasing on [0, ∞) and K(x) > 0 iff x ∈ (−1, 1) holds true. A generating function K is said to 
be normal if K(0) = 1.

Typical examples of normal generating functions are triangular and raised cosine functions:

KT (x) = max
(
1 − |x|,0

)
and KC(x) =

{ 1
2 (1 + cos(πx)), −1 ≤ x ≤ 1;
0, otherwise.

Let K be a generating function (in general, not normal), h and r be positive real numbers and x0 ∈ R. A system of 
fuzzy sets {Ai | i ∈ Z} defined by

Ai(x) = K

(
x − x0 − i r

h

)
for any i ∈ Z is called a generalized uniform fuzzy partition (GUFP) of the real line determined by the quadruplet 
(K, h, r, x0) if the following Ruspini condition is satisfied:

S(x) =
∑

Ai(x) = 1

i∈Z
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holds for any x ∈ R. The parameters h, r and x0 are called a bandwidth, shift, and central node, respectively.
A full characterization of generalized uniform fuzzy partitions using the sum of suitable integrals has been proved 

in [22]. In contrast to the Ruspini condition, particular surfaces under the generating function are investigated here, 
which helps to understand in a better way the structure of GUFPs.

Theorem 7.1. Put α = r
h

. A quadruplet (K, h, r, x0) determines a generalized uniform fuzzy partition iff

∞∑
i=1

y+(i−1)α∫
iα−y

K(x)dx = y − α

2
(4)

holds for any y ∈ [α
2 , α].

A simple consequence of the preceding theorem is a necessary condition for GUFPs stating the important interre-
lation among the generating function K , the bandwidth h, and the shift r .

Corollary 7.1. If (K, h, r, x0) determines a generalized uniform fuzzy partition, then 
∫ 1
−1 K(x)dx = r

h
.

Let K be a normal generating function (i.e., K(0) = 1), and let α ∈ (0, 1]. Define Kα(x) = α ·K(x), where α ·K(x)

is the common product of real numbers. In [22], Holčapek et al. have proved that the necessary and sufficient condition 
for GUFPs can be significantly simplified in the cases of triangular and raised cosine generating functions.

Theorem 7.2. Let K ∈ {KT , KC}. Then, (K r
h
, h, r, x0) determines a GUFP iff h

r
∈N.

The unquestionable benefit of this theorem is probably the simplest procedure how to construct all GUFPs based 
on triangular or raised cosine generating functions. Indeed, we need not verify if the parameters satisfy the Ruspini 
condition or (4), and it is sufficient to consider h and r such that the ratio of h to r is a natural number and set the 
generating function to K r

h
.

Studying particular cases one open question arises and we do not see a straightforward answer. The question 
is whether the previous particular result may be generalized for further normal generating functions, for example, 
defined by splines, Bernstein basis polynomials, or Shepard kernels (see [3]). It can be demonstrated that there are 
generating functions such that the assumption h/r ∈N is too weak to guarantee a GUFP. On the other hand, we know 
that the triangular and raised cosine functions satisfy the following symmetry condition:

y+ 1
2∫

1
2 −y

K(x)dx = y (5)

holds true for any y ∈ [0, 12 ].
The open question is the confirmation or falsification of the following hypothesis.

Problem 7.1 (M. Holčapek, I. Perfilieva, V. Novák and V. Kreinovich). Let K be a normal generating function satisfying 
the symmetry condition (5). Then, (K r

h
, h, r, x0) determines a GUFP iff h

r
∈N.

If this hypothesis is not true, it would be very helpful to specify a condition (similarly to the symmetry condition) 
for generating functions under which the necessary and sufficient condition can be expressed in such a simple form.

8. Quantitative logic – what is a suitably general setting?

Quantitative logic was introduced by GUO-JUN WANG together with colleagues and students in papers like 
[50,51,55]. It is explained, e.g., in [52,53] and offers for its propositional part the following setting. There is a basic 
many-valued logic Lb which has as truth degree set W the real unit interval or a (finite) subset of it, and also suitable 
connectives. Typical examples are provided by the Łukasiewicz logics, and more generally by t-norm based logics. 
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But also classical two-valued logic is allowed for Lb. The crucial idea is to connect with each formula ϕ of such 
a logic L a kind of meta-degree τLb

(ϕ) in W which is determined by some sort of “averaging” over the L-degrees 
which ϕ has in all the possible evaluations of its atomic parts, i.e. its propositional variables. To look a bit more into 
the technical details let ϕ contain n propositional variables, and let be ϕ̂ : Wn → W the n-ary truth degree function 
determined by the formula ϕ. If Lb has W = Wm = {0, 1

m−1 , 2
m−1 , . . . , 1} as truth degree set, then quantitative logic 

considers the normed weighted sum

τLb
(ϕ) = 1

mn

∑
w∈W

w · ∥∥ϕ̂−1(w)
∥∥

as this meta-degree, with ‖M‖ denoting the standard cardinality of the set M .
If Lb has W = W∞ = [0, 1] as truth degree set, then quantitative logic considers the integral value

τLb
(ϕ) =

∫
[0,1]n

ϕ̂(x1, . . . , xn)dx1 . . .dxn

as this meta-degree.
The first problem which has been discussed in this context then is to determine how the meta-degrees of combined 

formulas depend upon the meta-degrees of their constituents. Other problems concern degrees of similarity between 
formulas or degrees of consistency for sets of formulas.

Problem 8.1 (S. Gottwald). Which other types of aggregation operators instead of the integral or the weighted sum 
are suitable here? And how depends their choice from intended applications?

Problem 8.2 (S. Gottwald). Particularly, does one need – as in the case of the integral – a measure in the truth degree 
set, or can one do well without, too?

Problem 8.3 (S. Gottwald). How to generalize this setting for the case that the truth degree set is a lattice?

Problem 8.4 (S. Gottwald). Particularly, what about suitable measures on lattices; and what about aggregation opera-
tors on lattices?

9. Universal integrals, monotone measures and convergences

Let (X, A) be a measurable space, where A is a σ -algebra of subsets of a non-empty set X, and let S be the family 
of all measurable spaces. A class of all A-measurable functions f : X → [0, 1] will be denoted by F(X,A), and a class 
of all capacities on A (i.e., non-decreasing set functions m : A → [0, 1] with m(∅) = 0 and m(X) = 1) is denoted by 
M(X,A). Let S : [0, 1]2 → [0, 1] be a semicopula, i.e., a non-decreasing function in both coordinates with the neutral 
element 1, and satisfying the inequality S(x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2.

Problem 9.1 (O. Hutník). To characterize all the semicopulas S for which the inequality

S(x + y, z) ≤ S(x, z) + S(y, z) (6)

holds for each x, y ∈ [0, 1] such that x + y ∈ [0, 1].

The above problem arises when studying properties of certain universal integrals, see [29]. Indeed, a class of the 
smallest semicopula-based universal integrals has the form

IS(m,f ) := sup
t∈[0,1]

S
(
t, hm,f (t)

)
,

where (X, A) ∈ S , (m, f ) ∈ M(X,A) × F(X,A), and the function hm,f : [0, 1] → [0, 1] is defined by hm,f (t) :=
m({x ∈ X; f (x) ≥ t}). The inequality (6) plays an important role when considering transformation theorem as well 
as translatability of the integral IS , see [18].
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Problem 9.2 (O. Hutník). Characterize a class of semicopulas S, for which the equality IS(m, f + α) = IS(m, f ) + α

holds for each (X, A) ∈ S , each (m, f ) ∈ M(X,A) ×F(X,A) and α ∈ [0, 1] such that f + α ∈ [0, 1].
Easily, for constant functions, an arbitrary semicopula S and monotone set functions m the above mentioned 

property of integral IS holds trivially. Moreover, a class of semicopulas, for which the integral equality holds, is 
non-empty, because the Łukasiewicz t-norm TL solves this open problem, see [18].

Problem 9.3 (O. Hutník). To characterize a class of semicopulas S for which the property(∀α ∈ [0,1]) IS

(
m,S(α,f )

) = S
(
α, IS(m,f )

)
holds for all (X, A) ∈ S and all (m, f ) ∈ M(X,A) ×F(X,A).

We conjecture that the class of semicopulas solving Problem 9.3 will contain only the (semi)copulas minimum M
and product Π .

Let m ∈M(X,A). A sequence (fn)
∞
1 ∈ F(X,A) converges strictly in measure m to a function f ∈ F(X,A), if

lim
n→∞m

({
x ∈ X; ∣∣fn(x) − f (x)

∣∣ �= 0
}) = 0.

It is a well-known fact that strict convergence in measure is stronger than convergence in measure.

Problem 9.4 (O. Hutník). Characterize all the non-additive set functions for which strict convergence in measure is 
equivalent to convergence in measure on any measurable space.

For a fixed semicopula S we say that a sequence (fn)
∞
1 ∈F(X,A) converges in mean (with respect to the integral IS ) 

to a function f ∈ F(X,A), if

lim
n→∞ IS

(
m, |fn − f |) = 0.

It is shown in [19] that mean convergence does not imply strict convergence in measure (even for continuous semi-
copulas with trivial zero divisors). Therefore, we may naturally ask:

Problem 9.5 (O. Hutník). For which class of semicopulas (of capacities, eventually) is strict convergence in measure 
equivalent to mean convergence?

We conjecture that autocontinuous capacities may solve the latter open problem.

10. Sharpness and lattice order in effect algebras

Effect algebras [14] (discovered independently in [35,16]) were introduced by Foulis and Bennett to study the 
problems of unsharp measurements in quantum mechanics.

In [24], homogeneous effect algebras were introduced and studied. An effect algebra is homogeneous if and only if, 
for all u, u1, u2 such that u ≤ v1 ⊕ v2 ≤ u′ there are v1, v2 such that u = u1 ⊕u2, u1 ≤ v1 and u2 ≤ v2. Homogeneous 
effect algebras are a common generalization of orthoalgebras [15], lattice effect algebras [46] and effect algebras 
satisfying the Riesz decomposition property [45].

An element a of an effect algebra is sharp iff a ∧ a′ = 0. It is known that the set of all sharp elements in a 
homogeneous effect algebra E forms an orthoalgebra S(E). It is known [26] that if E is a lattice, then S(E) is a 
lattice.

Problem 10.1 (G. Jenča). Prove or disprove: if E is an orthocomplete (see [25]) homogeneous effect algebra E such 
that S(E) is a lattice, then E is a lattice effect algebra.

We note that in the absence of orthocompleteness there is a counterexample: the set P [0, 1] of all polynomial 
functions [0, 1] → [0, 1] equipped with the usual partial addition is a homogeneous effect algebra, S(P [0, 1]) = {0, 1}
is clearly a lattice, but P [0, 1] is not a lattice.

The problem is open even for finite homogeneous effect algebras.
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11. Generator of the variety of state MV-algebras

State MV-algebras were introduce in [12] in order to present an algebraic characterization of a notion of a state. 
We recall that according to [12], a state MV-algebra is a couple (A, τ), where A = (A; ⊕, �,∗ , 0, 1) is an MV-algebra 
and τ is a mapping from A into A, called an internal state or a state operator, such that

(i) τ(1) = 1.
(ii) τ(x ⊕ y) = τ(x) ⊕ τ(y � (x � y)).

(iii) τ(x∗) = τ(x)∗.
(iv) τ(τ (x) ⊕ τ(y)) = τ(x) ⊕ τ(y).

Basic properties of state MV-algebras are described in [12]. In particular, if τ is a state operator on A, then τ ◦τ = τ . 
If, in addition, τ satisfies τ(x ⊕ y) = τ(x) ⊕ τ(y), x, y ∈ A, (A, τ) is said to be a state morphism MV-algebra and τ
is a state morphism operator. It is possible to show, [9], that a mapping τ : A → A is a state morphism operator on A
iff τ is an MV-endomorphism on A such that τ ◦ τ = τ .

We denote by SMV and SMMV the variety of state MV-algebras and state morphism MV-algebras, respectively. 
Then SMMV is a proper subvariety of the variety SMV . If A = (A; ⊕, �,∗ , 0, 1) is an MV-algebra, then the 
operator τA : A × A → A × A defined by τA(a, b) = (a, a), (a, b) ∈ A × A is a state morphism operator, called a 
diagonal operator on A × A and (A × A; τA) is a state morphism MV-algebra. It is well-known that the MV-algebra 
of the real interval [0, 1] generates the variety of MV-algebras. It was an open problem posed in [9] whether does the 
state-morphism MV-algebra ([0, 1]2, τ[0,1]) generates the variety of state morphism MV-algebras. This was answered 
in positive in [11, Theorem 5.4 (3)].

Inspired by this, we formulate the following open problem:

Problem 11.1 (A. Dvurečenskij). According to [11, Theorem 5.4 (3)], find a generator of the variety of state MV-
algebras. Is this generator connected in some way with the MV-algebra of the real interval?

12. Concluding remarks

We have summarized 18 open problems coming from different areas covered by Fuzzy Sets and Systems journal. 
We believe that these problems will attract several researchers and that we will see soon most of these problems 
solved. Moreover, we believe, too, that in some cases our collection will initiate an intensive research in the discussed 
areas.

For interested scholars we add here the e-mail contact to persons presenting these problems:

Section 2. Balasubramaniam Jayram, jbala@iith.ac.in
Section 3. Michał Baczyński, michal.baczynski@us.edu.pl
Section 4. Radko Mesiar, mesiar@math.sk
Section 5. Martin Kalina, kalina@math.sk
Section 6. Humberto Bustince, bustince@unavarra.es
Section 7. Michal Holčapek, michal.holcapek@osu.cz
Section 8. Siegfried Gottwald, gottwald@uni-leipzig.de
Section 9. Ondrej Hutník, ondrej.hutnik@upjs.sk
Section 10. Gejza Jenča, jenca@math.sk
Section 11. Anatolij Dvurečenskij, dvurecenskij@mat.savba.sk

We wish all the possible solvers great success and satisfaction from their solutions.
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