
Brazilian Journal of Probability and Statistics
2015, Vol. 29, No. 4, 878–896
DOI: 10.1214/14-BJPS251
© Brazilian Statistical Association, 2015

Generalizations of some probability inequalities and Lp

convergence of random variables for any monotone measure

Hamzeh Agahia, Adel Mohammadpoura and Radko Mesiarb,c

aAmirkabir University of Technology
bSlovak University of Technology

cAcademy of Sciences of the Czech Republic

Abstract. This paper has three specific aims. First, some probability inequal-
ities, including Hölder’s inequality, Lyapunov’s inequality, Minkowski’s in-
equality, concentration inequalities and Fatou’s lemma for Choquet-like ex-
pectation based on a monotone measure are shown, extending previous work
of many researchers. Second, we generalize some theorems about the con-
vergence of sequences of random variables on monotone measure spaces for
Choquet-like expectation. Third, we extend the concept of uniform integra-
bility for Choquet-like expectation. These results are useful for the solution
of various problems in machine learning and made it possible to derive new
efficient algorithms in any monotone system. Corresponding results are valid
for capacities, the usefulness of which has been demonstrated by the rapidly
expanding literature on generalized probability theory.

1 Choquet-like expectation

Choquet (1954) extended the idea of probability measure to the concept of “capac-
ity” so defining the “Choquet expectation”, which has been shown to have many
applications in statistics, economics, and finance, among other fields (Huber and
Strassen, 1973, 1974; Maccheroni and Marinacci, 2005; Wasserman and Kadane,
1990). For example, a new concept of nonadditive limit laws based on Choquet
expectation has been recently discussed in Maccheroni and Marinacci (2005). In
Bayesian statistics, as imprecise probabilities, Bayes’ theorem for Choquet ca-
pacities was proposed by Wasserman and Kadane (1990). Furthermore, Huber and
Strassen (1973, 1974) have established the minimax tests and the Neyman–Pearson
lemma for capacities.

As a rather new theory, pseudo-analysis has proved itself to be a vast source
of powerful tools that are being successfully applied in many mathematical the-
ories as well as in various practical problems (see Maslov and Samborskij,
1992; Pap, 2002, 2005; Pap and Vivona, 2000). Mesiar (1995) introduced two
classes of Choquet-like integrals based on pseudo-analysis. The first class is called
“Choquet-like expectation” which further generalizes the Choquet expectation
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concept to any monotone measure based on pseudo-analysis. In this class, pseudo-
operations are defined by a continuous strictly increasing function g. Notice that
the main motivation for Choquet-like expectation lies in the possibility of ex-
panding the applicability of Choquet expectation by combining the properties of
pseudo-analysis. Another one concerns the Choquet-like integrals based on the
special operator “sup” and a pseudo-multiplication ⊗. Note that the second class
is not an extension of the Lebesgue integral.

Probability inequalities are at the heart of the mathematical analysis of various
problems (Boucheron et al., 2003; Finner, 1992; Matkowski, 1996). For instance,
concentration inequalities are important in the mathematical analysis of various
problems in machine learning for finding new efficient algorithms (Boucheron
et al., 2003). Probability inequalities play an important role in various proofs of
limit theorems. However, the additivity assumption in the proofs of these prob-
lems seems to be illogical in many uncertain phenomena (Maccheroni and Mari-
nacci, 2005). The aim of this paper is to generalize some probability inequalities of
random variables for any monotone measures using the Choquet-like expectation.

The rest of the paper is organized as follows. In the next section, we give some
basic concepts that will be used in this paper. In Section 2, we present generaliza-
tions of some probability inequalities, including Hölder’s inequality, Lyapunov’s
inequality, Minkowski’s inequality, concentration inequalities and Fatou’s lemma
based on a monotone measure. Generalizations of convergence of sequences of
random variables are given in Section 3.

For a fixed measurable space (�,F), that is, a nonempty set � equipped with
a σ -algebra F , recall that a random variable X :� →R is called F -measurable if,
for each B ∈ B(R), the σ -algebra of Borel subsets of R, the preimage X−1(B) is
an element of F .

1.1 Definitions and fundamental properties

Definition 1.1. A monotone measure μ on a measurable space (�,F) is a set
function μ :F → [0,∞] satisfying:

(i) μ(∅) = 0,
(ii) μ(�) > 0,

(iii) μ(A) ≤ μ(B) whenever A ⊆ B . The triple (�,F,μ) is also called a mono-
tone measure space.

A monotone measure μ is called real if ‖μ‖ = μ(�) < ∞ and μ is said to be
an additive measure if μ(A∪B) = μ(A)+μ(B), whenever A∩B =∅. We call a
monotone measure μ :F → [0,1] a capacity, if μ(�) = 1 (Choquet, 1954). Note
that the monotone measure μ satisfying:

μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B)
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is also submodular (2-alternating) (Choquet, 1954). Such submodular measures
have interesting applications to probability and statistics. For example, in capaci-
ties, Huber and Strassen (1973) obtained that the submodular property is necessary
and sufficient for generalizing the Neyman–Pearson lemma to sets of probabilities.

A real monotone measure μ on F is continuous from below if μ(Bn) ↗ μ(B)

for all sequences Bn ∈ F , Bn ↗ B . μ is continuous from above if μ(Bn) ↘ μ(B)

for all sequences Bn ∈ F , Bn ↘ B . A monotone measure being continuous both
from below and from above is called continuous. In particular, a real mono-
tone measure μ is order-continuous if limn→∞ μ(An) = 0 whenever An ↘ ∅.
Throughout this paper, IA denotes the indicator function of the set A.

If υ :F → [0,∞] is a submodular continuous measure, then the triple (�,F, υ)

is also called a submodular continuous (SC-) measure space.
Given the monotone space (�,F,μ), we shall denote by ω any element of �

and we put {X ≥ t} = {ω :X(ω) ≥ t} for any t > 0. The Choquet expectation of X

over A ∈ F w.r.t. the real monotone measure μ is defined as

E
μ
C[XIA] =

∫ ∞
0

μ
(
A ∩ {X ≥ t})dt −

∫ 0

−∞
[‖μ‖ − μ

(
A ∩ {X ≥ t})]dt. (1.1)

In particular, if A = �, then

E
μ
C[X] =

∫ ∞
0

μ
({X ≥ t})dt −

∫ 0

−∞
[‖μ‖ − μ

({X ≥ t})]dt.

Note that for nonnegative X, the Choquet expectation of X over A ∈ F is defined
as

E
μ
C[XIA] =

∫ ∞
0

μ
(
A ∩ {X ≥ t})dt,

which works for any monotone measure μ.
A Choquet-like expectation (Mesiar, 1995) may be based on pseudo-addition ⊕

and pseudo-multiplication ⊗ defined as follows.

Definition 1.2 (Mesiar, 1995). An operation ⊕ : [0,∞]2 → [0,∞] is called a
pseudo-addition if the following properties are satisfied:

(P1) a ⊕ 0 = 0 ⊕ a = a (neutral element);
(P2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity);
(P3) a ≤ c and b ≤ d imply that a ⊕ b ≤ c ⊕ d (monotonicity);
(P4) an → a and bn → b imply that an ⊕ bn → a ⊕ b (continuity).

Definition 1.3 (Mesiar, 1995). Let ⊕ be a given pseudo-addition on [0,∞]. An-
other binary operation ⊗ on [0,∞] is said to be a pseudo-multiplication corre-
sponding to ⊕ if the following properties are satisfied:

(M1) a ⊗ (x ⊕ y) = (a ⊗ x) ⊕ (a ⊗ y);
(M2) a ≤ b implies (a ⊗ x) ≤ (b ⊗ x) and (x ⊗ a) ≤ (x ⊗ b);
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(M3) a ⊗ x = 0 ⇔ a = 0 or x = 0;
(M4) ∃e ∈ (0,∞] such that e⊗x = x ⊗ e = x for any x ∈ [0,∞] (i.e., there exists

the neutral element e);
(M5) an → a ∈ (0,∞) and xn → x imply (an ⊗ xn) → (a ⊗ x) and ∞ ⊗ x =

lima→∞(a ⊗ x);
(M6) a ⊗ x = x ⊗ a;
(M7) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).

As it is shown by Mesiar (1995), if ⊗ is a pseudo-multiplication correspond-
ing to a given pseudo-addition ⊕ fulfilling axioms (M1)–(M7) and if its identity
element e is not an idempotent of ⊕, then there is a unique continuous strictly
increasing function g : [0,∞] → [0,∞] with g(0) = 0 and g(∞) = ∞, such that
g(e) = 1 and

a ⊕ b = g−1(
g(a) + g(b)

) ⊕ is called a g-addition,

a ⊗ b = g−1(
g(a) · g(b)

) � is called a g-multiplication.

On the other hand, if the identity element e of the pseudo-multiplication is also an
idempotent of ⊕ (i.e., e ⊕ e = e), then ⊕ = ∨ (= sup, i.e., the logical addition).

For x ∈ [0,∞] and p ∈ (0,∞), we will introduce the pseudo-power x
(p)
⊗

as follows: If p = n is a natural number, then x
(n)
⊗ = x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

n-times

. If p

is not a natural number, then the corresponding power is defined by x
(p)
⊗ =

sup{y(m)
⊗ |y(n)

⊗ ≤ x, where m,n are natural numbers such that m
n

≤ p}. Evidently,

if x ⊗ y = g−1(g(x) · g(y)), then x
(p)
⊗ = g−1(gp(x)). If ⊕ is a pseudo-addition

with ⊕ ≥ + (the usual addition) and ⊗ is a corresponding pseudo-multiplication
with ⊗ ≥ · (the usual multiplication), we call such a pair of (⊕,⊗) a magnifying
pair of pseudo-arithmetic operations. Clearly, ⊕ ≥ + means that g(c) + g(d) ≥
g(c + d) for any c, d , that is, that g is subadditive. Similarly, ⊗ ≥ · means that
g(c)g(d) ≥ g(cd), that is, that g is submultiplicative. Accordingly, the function
h : [0,∞] → [0,∞] given by h(x) = log(g(ex)) satisfies

h(x) + h(y) = log
(
g
(
ex) · g(

ey)) ≥ log
(
g
(
exey)) = h(x + y),

that is, h is subadditive. A typical example of such a generator is g(x) = xp with
p ∈ (0,1], that is, a ⊕ b = (ap + bp)1/p and ⊗ is the usual multiplication.

There are two classes of Choquet-like integrals. The first we call the Choquet-
like expectation, based on a g-addition and g-multiplicatio. The second we call the
S

⊗
μ integral, based on sup and a corresponding pseudo multiplication.

Definition 1.4. Let (�,F) be a measurable space and μ :F → [0,∞] be a mono-
tone measure. Let ⊕ and ⊗ be generated by a generator g. The Choquet-like expec-
tation of a nonnegative measurable function X over A ∈ F w.r.t. the real monotone
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measure μ can be represented as

E
μ
Cl,g[XIA] = g−1(

E
g(μ)
C

[
g(X)IA

]) = g−1
(∫ ∞

0
gμ

(
A ∩ {

g(X) ≥ t
})

dt

)
.

In particular, if A = �, then

E
μ
Cl,g[X] = g−1(

E
g(μ)
C

[
g(X)

])
. (1.2)

We define ζ
p
Cl,g = {X|(Eμ

Cl,g[|X|(p)
⊗ ])(1/p)

⊗ < ∞} and ζ
p
C = {X|(Eμ

C[|X|p])1/p <

∞} for all p ≥ 1.

Definition 1.5 (Mesiar, 1995). Let ⊗ be a pseudo-multiplication corresponding
to sup and fulfilling (M1)–(M7). Then the S⊗

μ integral of a nonnegative measurable
function X w.r.t. the real monotone measure μ can be represented as

S
⊗
μ [X] = sup

a∈[0,∞]
(a ⊗ μ

({X ≥ a}).
Remark 1.6. Some nonadditive integrals such as the Sugeno integral (Sugeno,
1974), the Shilkret integral (Shilkret, 1971) and the seminormed integral (Suárez
García and Gil Álvarez, 1986) are special cases of S⊗

μ integral. The S
⊗
μ integral

is the Sugeno integral whenever ⊗ = min. If ⊗ is the standard product, then the
Shilkret integral can be recognized. Restricting now to the unit interval [0,1] we
shall consider the measurable function X :� → [0,1] with ‖μ‖ = 1. In this case,
we have the restriction of the pseudo-multiplication ⊗ to [0,1]2 (called a semicop-
ula � (Bassan and Spizzichino, 2005; Durante and Sempi, 2005)). The S⊗

μ integral
on the [0,1] scale related to the semicopula � was called the seminormed integral.
Recently, Agahi et al. and others proved some inequalities for the seminormed
integral which are in the second class of Choquet-like integrals, see Agahi et al.
(2012) and Ouyang and Mesiar (2009). Notice that in the present paper, we focus
on the first class of Choquet-like integrals, that is, Choquet-like expectation.

Definition 1.7 (Maccheroni and Marinacci, 2005). Random variables ξ and ζ

are called comonotonic if[
ξ(ω) − ξ

(
ω′)][ζ(ω) − ζ

(
ω′)] ≥ 0 ∀ω,ω′ ∈ �.

The following results summarize the basic properties of the Choquet-like ex-
pectation (Mesiar, 1995).

Proposition 1.8. The Choquet-like expectation (1.2) has the following properties:

(P1) X ≤ Y implies that Eμ
Cl,g[X] ≤ E

μ
Cl,g[Y ] (monotonicity);

(P2) E
μ
Cl,g[X ⊕ Y ] = E

μ
Cl,g[X] ⊕ E

μ
Cl,g[Y ] whenever X and Y are comonotonic

(comonotonic ⊕-additivity);
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(P3) E
μ
Cl,g[c ⊗ X] = c ⊗E

μ
Cl,g[Y ] for all c > 0 (⊗-homogeneity);

(P4) E
μ
Cl,g[X] is ⊕-additivity if and only if μ is ⊕-additive (coincidentity).

2 Some probability inequalities

The present section aims to provide some advanced type inequalities involving
Choquet-like expectation. In this section, we consider ⊕ and ⊗ to be generated
by g.

2.1 Key inequalities

2.1.1 Hölder’s inequality.

Theorem 2.1. Let X,Y be two nonnegative random variables. For the Choquet-
like expectation (1.2), the Hölder inequality

E
μ
Cl,g[X ⊗ Y ] ≤ (

E
μ
Cl,g

[
X

(p)
⊗

])(1/p)
⊗ ⊗ (

E
μ
Cl,g

[
Y

(q)
⊗

])(1/q)
⊗ (2.1)

holds if g(μ) is submodular and 1
p

+ 1
q

= 1 and p > 1.

Proof. Observe that

E
μ
Cl,g[X ⊗ Y ] = g−1(

E
g(μ)
C

[
g
(
g−1(

(g ◦ X)(g ◦ Y)
))])

(2.2)
= g−1(

E
g(μ)
C

[
(g ◦ X)(g ◦ Y)

])
.

From (2.2) and using the Hölder inequality for Choquet expectation (Mesiar et al.,
2010), we have

g−1(
E

g(μ)
C

[
(g ◦ X)(g ◦ Y)

])
≤ [

g−1((
E

g(μ)
C

[
(g ◦ X)p

])1/p × (
E

g(μ)
C

[
(g ◦ Y)q

])1/q)]
= [

g−1(
g
(
g−1((

E
g(μ)
C

[
(g ◦ X)p

])1/p)) × g
(
g−1((

E
g(μ)
C

[
(g ◦ Y)q

])1/q)))]
= g−1((

E
g(μ)
C (g ◦ X)p

)1/p) ⊗ g−1((
E

g(μ)
C (g ◦ Y)q

)1/q)
= [

g−1((
E

g(μ)
C

[
g
(
g−1(

(g ◦ X)p
))])1/p)

⊗ g−1((
E

g(μ)
C

[
g
(
g−1(

(g ◦ Y)q
))])1/q)]

= g−1((
E

g(μ)
C

[
g
(
X

(p)
⊗

)])1/p) ⊗ g−1((
E

g(μ)
C

[
g
(
Y

(q)
⊗

)])1/q)
= [

g−1((
g
(
g−1(

E
g(μ)
C

[
g
(
X

(p)
⊗

)])))1/p)
⊗ g−1((

g
(
g−1(

E
g(μ)
C

[
g
(
Y

(q)
⊗

)])))1/q)]
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= g−1((
g
(
E

μ
Cl,g

[
X

(p)
⊗

]))1/p) ⊗ g−1((
g
(
E

μ
Cl,g

[
Y

(q)
⊗

]))1/q)
= (

E
μ
Cl,g

[
X

(p)
⊗

])(1/p)
⊗ ⊗ (

E
μ
Cl,g

[
Y

(q)
⊗

])(1/q)
⊗ .

Hence, (2.1) is valid. This completes the proof. �

Corollary 2.2. Let X1,X2, . . . ,Xn be random variables. For the Choquet-like ex-
pectation (1.2), the Hölder inequality

E
μ
Cl,g

[
n⊗

i=1

|Xi |
]

≤
n⊗

i=1

(
E

μ
Cl,g

[|Xi |(pi)⊗
])(1/pi)

⊗

holds if g(μ) is submodular and
∑n

i=1
1
pi

= 1, pi > 1, n ≥ 2.

Theorem 2.3. Let X,Y be two comonotonic nonnegative random variables de-
fined on a real monotone measure space (�,F,μ). For the Choquet-like expecta-
tion (1.2), the Hölder inequality

E
μ
Cl,g[X ⊗ Y ] ≤ (

E
μ
Cl,g

[
X

(p)
⊗

])(1/p)
⊗ ⊗ (

E
μ
Cl,g

[
Y

(q)
⊗

])(1/q)
⊗

holds if 1
p

+ 1
q

= 1, p > 1.

Proof. Recall the Hölder inequality for Choquet expectation (Zhu and Ouyang,
2011) which asserts that if X,Y are comonotonic and nonnegative, then

E
g(μ)
C [XY ] ≤ (

E
g(μ)
C

[
Xp])1/p(

E
g(μ)
C

[
Yq])1/q

, (2.3)

where 1
p

+ 1
q

= 1, p > 1. From (2.2) and using (2.3), we complete the proof via a
similar argument as in the proof of Theorem 2.1. �

Corollary 2.4 (Lyapunov’s inequality). Let X be a nonnegative random vari-
able defined on a real monotone measure space (�,F,μ). For s ≥ r ≥ 1 and the
Choquet-like expectation (1.2), the following inequality(

E
μ
Cl,g

[
X

(r)
⊗

])(1/r)
⊗ ≤ (‖μ‖)((s−r)/rs)

⊗ ⊗ (
E

μ
Cl,g

[
X

(s)
⊗

])(1/s)
⊗ (2.4)

holds.

2.1.2 Minkowski’s inequality.

Theorem 2.5. Let X,Y be two nonnegative random variables. For s ≥ 1 and the
Choquet-like expectation (1.2), the Minkowski inequality(

E
μ
Cl,g

[
(X ⊕ Y)

(s)
⊗

])(1/s)
⊗ ≤ (

E
μ
Cl,g

[
X

(s)
⊗

])(1/s)
⊗ ⊕ (

E
μ
Cl,g

[
Y

(s)
⊗

])(1/s)
⊗ (2.5)

holds if g(μ) is submodular.
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Proof. Observe that(
E

μ
Cl,g

[
(X ⊕ Y)(s)

])(1/s)
⊗ = g−1((

E
g(μ)
C

[
g
(
(X ⊕ Y)

(s)
⊗

)])1/s)
= g−1((

E
g(μ)
C g

(
g−1((

g(X ⊕ Y)
)s)))1/s)

= g−1((
E

g(μ)
C

[(
(g ◦ X) + (g ◦ Y)

)s])1/s)
.

By using the Minkowski inequality for Choquet expectation (Mesiar et al., 2010),
we have

g−1((
E

g(μ)
C

[(
(g ◦ X) + (g ◦ Y)

)s])1/s)
≤ g−1((

E
g(μ)
C

[
(g ◦ X)s

])1/s + (
E

g(μ)
C

[
(g ◦ Y)s

])1/s)
= g−1(

g
(
g−1((

E
g(μ)
C

[
(g ◦ X)s

])1/s)) + g
(
g−1((

E
g(μ)
C

[
(g ◦ Y)s

])1/s)))
= g−1((

E
g(μ)
C

[
(g ◦ X)s

])1/s) ⊕ g−1((
E

g(μ)
C

[
(g ◦ Y)s

])1/s)
= [

g−1((
E

g(μ)
C

[
g
(
g−1(

(g ◦ X)s
))])1/s)

⊕ g−1((
E

g(μ)
C

[
g
(
g−1(

(g ◦ Y)s
))])1/s)]

= g−1((
E

g(μ)
C

[
g
(
X

(s)
⊗

)])1/s) ⊕ g−1((
E

g(μ)
C

[
g
(
Y

(s)
⊗

)])1/s)
= [

g−1((
g
(
g−1(

E
g(μ)
C

[
g
(
X

(s)
⊗

)])))1/s) ⊕ g−1((
g
(
g−1(

E
g(μ)
C

[
g
(
Y

(s)
⊗

)])))1/s)]
= g−1((

g
(
E

μ
Cl,g

[
X

(s)
⊗

]))1/s) ⊕ g−1((
g
(
E

μ
Cl,g

[
Y

(s)
⊗

]))1/s)
= (

E
μ
Cl,g

[
X

(s)
⊗

])(1/s)
⊗ ⊕ (

E
μ
Cl,g

[
Y

(s)
⊗

])(1/s)
⊗ .

Hence, (2.5) is valid. This completes the proof. �

Theorem 2.6. Let X,Y be two comonotonic nonnegative random variables de-
fined on a real monotone measure space (�,F,μ). For s ≥ 1 and the Choquet-like
expectation (1.2), the Minkowski inequality(

E
μ
Cl,g

[
(X ⊕ Y)

(s)
⊗

])(1/s)
⊗ ≤ (

E
μ
Cl,g

[
X

(s)
⊗

])(1/s)
⊗ ⊕ (

E
μ
Cl,g

[
Y

(s)
⊗

])(1/s)
⊗

holds.

Proof. Using the Minkowski inequality for Choquet expectation (Zhu and
Ouyang, 2011), we complete the proof via a similar argument as in the proof
of Theorem 2.5. �

2.1.3 Concentration inequalities.

Theorem 2.7 (Markov’s inequality). Let X be a nonnegative random variable
defined on a real monotone measure space (�,F,μ). For two arbitrary positive
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constants p,k and Choquet-like expectation (1.2), the Markov inequality

k
(p)
⊗ ⊗ μ

({
ω ∈ A :X(ω) ≥ k

}) ≤ E
μ
Cl,g

[
X

(p)
⊗ IA

]
(2.6)

holds for all A ∈ F .

Proof. It suffices to define A∗ = {ω ∈ A :X(ω) ≥ k}. Therefore,

E
μ
Cl,g

[
X

(p)
⊗ IA

] ≥ g−1(
E

g(μ)
C

[(
g(X)

)p
IA∗

]) ≥ g−1((
g(k)

)p
E

g(μ)
C [IA∗])

= g−1((
g(k)

)p
g
(
μ

(
A∗))) = k

(p)
⊗ ⊗ μ

(
A∗)

.

If � is a strictly monotonically increasing nonnegative-valued function and t is a
real number, then by using the Markov type inequality (2.6), we have

�(t) ⊗ μ(X ≥ t) ≤ E
μ
Cl,g

[
�(X)

]
.

Also, if X is an arbitrary random variable and t > 0, then

t
(2)
⊗ ⊗ μ

(∣∣X −E
μ
Cl,g[X]∣∣ ≥ t

) ≤ E
μ
Cl,g

[∣∣X −E
μ
Cl,g[X]∣∣(2)

⊗
]
,

which is a generalization of Chebyshev’s inequality. More generally, for any p > 0
we have

t
(p)
⊗ ⊗ μ

(∣∣X −E
μ
Cl,g[X]∣∣ ≥ t

) ≤ E
μ
Cl,g

[∣∣X −E
μ
Cl,g[X]∣∣(p)

⊗
]
.

A related idea is at the basis of Chernof’s bounding method. For an arbitrary posi-
tive number s and any t > 0,

est ⊗ μ(X ≥ t) ≤ E
μ
Cl,g

[
esX]

. �

Theorem 2.8. Let Y be a random variable with E
μ
C[Y ] = 0 and a ≤ Y ≤ b defined

on a real monotone measure space (�,F,μ). Then for s > 0

E
μ
C

[
esY ] ≤ ‖μ‖ exp

(
s2(b − a)2

8

)
. (2.7)

In particular, if μ is a probability measure, we get the classical Hoeffding type
inequality (Hoeffding, 1963).

Proof. Since esy is a convex function, then we have

esy ≤ y − a

b − a
esb + b − y

b − a
esa, for a ≤ y ≤ b.

Then

1

‖μ‖E
μ
C

[
esX] ≤ 1

‖μ‖E
μ
C

[
esb − esa

b − a
Y + besa − aesb

b − a

]
= besa − aesb

b − a
= eη(u),
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where η(u) = −θu + log(1 − θ + θeu), θ = −a
b−a

, u = s(b − a). So,

log
(

1

‖μ‖E
μ
C

[
esY ]) ≤ η(u) ≤ u2

8

by taking the Taylor series expansion of η(u) about 0. And the proof is com-
pleted. �

Theorem 2.9 (Hoeffding’s inequality). Let X be a random variable with
E

g(μ)
C [1

s
ln(g(esX))] = 0 and a ≤ 1

s
lng(esX) ≤ b defined on a real monotone mea-

sure space (�,F,μ). Then for s > 0

E
μ
Cl,g

[
esX] ≤ ‖μ‖ ⊗ g−1

(
exp

(
s2(b − a)2

8

))
.

Proof. Let Y = 1
s

ln(g(esX)). We apply Hoeffding’s inequality for Choquet ex-
pectation (2.7) and then we obtain

E
g(μ)
C

[
esY ] ≤ g

(‖μ‖)
exp

(
s2(b − a)2

8

)
.

Hence,

E
μ
Cl,g

[
esX]

= g−1(
E

g(μ)
C

[
g
(
esX)]) = g−1(

E
g(μ)
C

[
eln(g(esX))]) = g−1(

E
g(μ)
C

[
esY ])

≤ g−1
(
g
(‖μ‖)

exp
(

s2(b − a)2

8

))
= ‖μ‖ ⊗ g−1

(
exp

(
s2(b − a)2

8

))
. �

2.1.4 Fatou’s lemma.

Theorem 2.10. Let {Xn} be a sequence of nonnegative random variables. For
Choquet-like expectation (1.2), the Fatou lemma

E
μ
Cl,g

[
lim inf
n→∞ Xn

]
≤ lim inf

n→∞ E
μ
Cl,g[Xn]

holds if g(μ) is continuous from below and E
μ
Cl,g[limn→∞ infXn] < ∞.

Proof. Recall the Monotone convergence theorem for Choquet expectation
(Denneberg, 1994) which asserts that for an increasing sequence of nonnegative
random variables {Xn},

lim
n→∞E

g(μ)
C [Xn] = E

g(μ)
C

[
lim

n→∞Xn

]
, (2.8)

where g(μ) is continuous from below. Let X denote the limit inferior of the Xn

and Yk = infn≥k Xn. Then, the sequence Y1, Y2, . . . is monotonically increasing
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and converges pointwise to X. Now from the monotonicity of Choquet-like expec-
tation, we have

E
μ
Cl,g[Yk] ≤ inf

n≥k
E

μ
Cl,g[Xn]. (2.9)

So, (2.8) and (2.9) imply that

E
μ
Cl,g

[
lim inf
n→∞ Xn

]
= E

μ
Cl,g[X] = g−1

(
E

g(μ)
C

[
g
(

lim
k→∞Yk

)])
= g−1

(
E

g(μ)
C

[
lim

k→∞g(Yk)
])

= g−1
(

lim
k→∞E

g(μ)
C

[
g(Yk)

])
= lim

k→∞g−1(
E

g(μ)
C

[
g(Yk)

]) = lim
k→∞E

μ
Cl,g[Yk]

≤ lim
k→∞ inf

n≥k
E

μ
Cl,g[Xn] = lim inf

n→∞ E
μ
Cl,g[Xn]. �

3 Convergence of sequences of random variables

Below we consider a sequence of random variables {Xn :n ∈ N} be a sequence of
random variables defined on a real monotone measure space (�,F,μ).

3.1 Modes of convergence

Definition 3.1. (I) Let ⊗ be generated by a generator g. We say that {Xn} con-

verges to X in L
p
Cl,g and write Xn

L
p
Cl,g−→ X if

E
μ
Cl,g

[(|Xn − X|)(p)
⊗

] → 0 as n → ∞.

In particular, if g = i (the identity mapping), then we say that {Xn} converges in

L
p
C to X and write Xn

L
p
C−→ X.

(II) We say that {Xn} converges to X in μ and write Xn
μ−→ X if for every

ε > 0,

μ
[|Xn − X| > ε

] → 0 as n → ∞.

(III) We say that {Xn} is μ-almost convergent to X and write Xn
μ-a.e.−→ X if there

exists a subset N ⊂ � such that μ(N) = 0 and

Xn(ω) → X(ω) as n → ∞
for all ω ∈ � \ N .
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3.2 Relationships among the modes

Theorem 3.2. Suppose that X,X1,X2, . . . belong to ζ
p
Cl,g . Then

(a) If 1 ≤ q ≤ p and Xn

L
p
Cl,g−→ X, then Xn

L
q
Cl,g−→ X.

(b) If Xn

L
p
Cl,g−→ X, then Xn

μ−→ X.

Proof. (a) Using Lyapunov’s inequality (2.4), we have:(
E

μ
Cl,g

[(|Xn − X|)(q)
⊗

])(1/q)
⊗

≤ (‖μ‖)((p−q)/qp)
⊗ ⊗ (

E
μ
Cl,g

[(|Xn − X|)(p)
⊗

])(1/p)
⊗ → 0 as n → ∞.

(b) Using Markov’s inequality (2.6), then for each ε > 0:

ε
(p)
⊗ ⊗ μ

(|Xn − X| > ε
) ≤ E

μ
Cl,g

[|Xn − X|(p)
⊗

] → 0 as n → ∞.

Therefore, Definition 1.3(M3) implies that μ(|Xn − X| > ε) → 0. This completes
the proof. �

Theorem 3.3. Let ⊕,⊗ be generated by a subadditive generator g. Suppose that

g(μ) is submodular and Xn,Yn,X,Y ∈ ζ
p
Cl,g for each n. If Xn

L
p
Cl,g−→ X and Yn

L
p
Cl,g−→

Y , then Xn + Yn

L
p
Cl,g−→ X + Y .

Proof. Using Minkowski’s inequality, we have:(
E

μ
Cl,g

[(∣∣Xn + Yn − (X + Y)
∣∣)(p)

⊗
])(1/p)

⊗

≤ g−1((
E

g(μ)
C

[(
g
(|Xn − X|) + g

(|Yn − Y |))p])1/p)
≤ g−1((

E
g(μ)
C

[(
g
(|Xn − X|))p])1/p + (

E
g(μ)
C

[(
g
(|Yn − Y |))p])1/p)

= (
E

υ
Cl,g

[(|Xn − X|)(p)
⊗

])(1/p)
⊗ ⊕ (

E
υ
Cl,g

[(|Yn − Y |)(p)
⊗

])(1/p)
⊗

→ 0 as n → ∞.

This completes the proof. �

Theorem 3.4. Let (⊕,⊗) be a magnifying pair of pseudo-arithmetic operations
generated by a generator g. Suppose that g(μ) is submodular and Xn,Yn,X,Y ∈
ζ

p
Cl,g for each n.

(a) If Xn

L
p
Cl,g−→ X and Yn

L
p
Cl,g−→ Y , then XnYn

L1
Cl,g−→ XY .

(b) If Xn
μ−→ X and g is uniformly bounded, then Xn

L
p
Cl,g−→ X.
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Proof. (a) Using Minkowski’s inequality (2.5) and Hölder’s inequality (2.1), we
have:

E
υ
Cl,g

[|XnYn − XY |]
= E

υ
Cl,g

[∣∣(XnYn − XnY) + (XnY − XY)
∣∣]

≤ (
E

υ
Cl,g

[|Xn| ⊗ |Yn − Y |]) ⊕ (
E

υ
Cl,g

[(|Y | ⊗ |Xn − X|)])
≤ [((

E
υ
Cl,g

[(|Xn|)(q)
⊗

])(1/q)
⊗ ⊗ (

E
υ
Cl,g

[(|Yn − Y |)(p)
⊗

])(1/p)
⊗

)
⊕ ((

E
υ
Cl,g

[(|Y |)(q)
⊗

])(1/q)
⊗ ⊗ (

E
υ
Cl,g

[(|Xn − X|)(p)
⊗

])(1/p)
⊗

)]
→ 0 as n → ∞.

(b) For each ε > 0:

E
μ
Cl,g

[(|Xn − X|)(p)
⊗

]
= g−1(

E
g(μ)
C

[(
g
(|Xn − X|))p(I[|Xn−X|≤ε] + I[|Xn−X|>ε])

])
≤ g−1(

E
g(μ)
C

[(
g
(|Xn − X|))pI[|Xn−X|≤ε]

]
+E

g(μ)
C

[(
g
(|Xn − X|))pI[|Xn−X|>ε]

])
≤ g−1((

g(ε)
)p

g
(‖μ‖) + Mpg

(
μ

(|Xn − X| > ε
)))

≤ (
ε
(p)
⊗ ⊗ ‖μ‖) ⊕ (

g−1(
Mp) ⊗ μ

(|Xn − X| > ε
)) → 0 as n → ∞.

This completes the proof. �

Note 3.5. Notice that if both ⊗ and ⊕ are generated by a generator g, the semiring
([0,∞],⊕,⊗) is isomorphic with the classical semiring ([0,∞],+, ·), and thus
some properties valid for standard + and · based integrals such as the Choquet ex-
pectation can be deduced directly (for example, Hölder inequality in Theorem 2.1).
However, this is not the case of all results (see, Theorem 3.4 where we need the
pair (⊕,⊗) to be magnifying). So, in several cases we need some additional con-
straints not automatically present by a general semiring.

3.3 Uniform integrability

Let {Xn :n ∈ N} be a sequence of random variables defined on a real monotone
measure space (�,F,μ).

Definition 3.6. The sequence {Xn} is g-uniformly integrable if Xn ∈ ζ 1
Cl,g for

each n and if

lim
b→∞ sup

n
E

μ
Cl,g

[|Xn|I[|Xn|>b]
] = 0. (3.1)

In particular, if g = i (the identity mapping), then we say that {Xn} is uniformly
integrable.
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Proposition 3.7. If g(μ) is submodular, then the sequence {Xn} is g-uniformly
integrable if and only if

(I) supnE
μ
Cl,g[|Xn|] < ∞,

(II) ∀ε > 0, ∃δ > 0 s.t. supnE
μ
Cl,g[|Xn|I[A]] < ε if A ∈ F , μ(A) < δ.

Proof. Let the sequence {Xn} be g-uniformly integrable. Then, for an ε > 0, there
is a finite b > 0 such that Eμ

Cl,g(|Xn|I[|Xn|>b]) < ε. Hence,

E
μ
Cl,g

[|Xn|] = g−1(
E

g(μ)
C

[
g
(|Xn|)]) = g−1(

E
g(μ)
C

[
g
(|Xn|)(I[|Xn|>b] + I[|Xn|≤b])

])
= g−1(

E
g(μ)
C

[
g
(|Xn|)I[|Xn|>b] + g

(|Xn|)I[|Xn|≤b]
])

≤ g−1(
E

g(μ)
C

[
g
(|Xn|)I[|Xn|>b]

] +E
g(μ)
C

[
g
(|Xn|)I[|Xn|≤b]

])
≤ g−1(

E
g(μ)
C

[
g
(|Xn|)I[|Xn|>b]

] + g(b)E
g(μ)
C [I[|Xn|≤b]])

≤ g−1(
E

g(μ)
C

[
g
(|Xn|)I[|Xn|>b]

] + g(b)g
(‖μ‖))

≤ g−1(
g
(
E

μ
Cl,g

(|Xn|I[|Xn|>b]
)) + g(b)g

(‖μ‖))
≤ g−1(

g(ε) + g(b)g(1)g
(‖μ‖))

< ∞.

Therefore, supnE
μ
Cl,g[|Xn|] < ∞.

(II) Let ε > 0. Take bε ∈ (0,∞) such that supnE
μ
Cl,g[|Xn|I[|Xn|>b]] <

g−1(
g(ε)

2 ), ∀b > bε . Let δε = g−1(
g(ε)

2g(bε)
). If μ(A) < δε for any A ∈ F , then we

have

sup
n

E
μ
Cl,g

[|Xn|I[A]
]

= sup
n

g−1(
E

g(μ)
C

[
g
(|Xn|)I[A]

])
≤ sup

n
g−1(

E
g(μ)
C

[
g
(|Xn|)I[A∩{|Xn|>bε}] + g

(|Xn|)I[A∩{|Xn|≤bε}]
])

≤ sup
n

g−1(
E

g(μ)
C

[
g
(|Xn|)I[A∩{|Xn|>bε}]

] +E
g(μ)
C

[
g
(|Xn|)I[A∩{|Xn|≤bε}]

])
≤ sup

n
g−1(

E
g(μ)
C

[
g
(|Xn|)I[|Xn|>bε]

] +E
g(μ)
C

[
g
(|Xn|)I[A∩{|Xn|≤bε}]

])
= sup

n
g−1(

g
(
E

μ
Cl,g

[(|Xn|I[|Xn|>b]
)]) + g(bε)E

g(μ)
C [I[A]])

≤ g−1
(

g(ε)

2
+ g(bε)g

(
μ(A)

)) ≤ g−1
(

g(ε)

2
+ g(bε)g(δε)

)

≤ g−1
(

g(ε)

2
+ g(ε)

2

)
= ε.
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Conversely, if supnE
μ
Cl,g[|Xn|] ≤ M < ∞, then by using Markov’s inequality (2.6)

and part (I), we have for all b > 0,

μ(An) = μ
({|Xn| > b

}) ≤ g−1
(g(E

μ
Cl,g[|Xn|])
g(b)

)
≤ g−1

(
g(M)

g(b)

)
.

Clearly, limb→∞ μ({|Xn| > b}) = 0. Consider a δ ≥ g−1(
g(M)
g(b)

). Then by the fact

of μ(An) < δ and part (II), we have supnE
μ
Cl,g(|Xn|I[An]) < ε and the proof is

completed. �

Corollary 3.8. If μ is submodular, then the sequence {Xn} is uniformly integrable
if and only if

(I) supnE
μ
C[|Xn|] < ∞,

(II) ∀ε > 0, ∃δ > 0 s.t. supnE
μ
C[|Xn| · I[A]] < ε if A ∈ F , μ(A) < δ.

Theorem 3.9. Let ⊕,⊗ be generated by a submultiplicative generator g. If g(μ)

is submodular and {Xn} and {Yn} are g-uniformly integrable, then {Xn + Yn} is
also g-uniformly integrable.

Proof. By using the Minkowski inequality (2.5), we have

E
μ
Cl,g

[|Xn + Yn|I[|Xn+Yn|>2b]
]

= g−1(
E

g(μ)
C

[
g
(|Xn + Yn|)I[|Xn+Yn|>2b]

])
≤ g−1(

E
g(μ)
C

[
g
(
2 max

{|Xn|, |Yn|})I[2 max{|Xn|,|Yn|}>2b]
])

= g−1(
E

g(μ)
C

[
g
(
2 max

{|Xn|, |Yn|})(I[{max{|Xn|,|Yn|}>b}∩{|Xn|>|Yn|}]
+ I[{max{|Xn|,|Yn|}>b}∩{|Xn|≤|Yn|}])

])
= g−1(

E
g(μ)
C

[
g
(
2 max

{|Xn|, |Yn|})I[{max{|Xn|,|Yn|}>b}∩{|Xn|>|Yn|}]
+ g

(
2 max

{|Xn|, |Yn|})I[{max{|Xn|,|Yn|}>b}∩{|Xn|≤|Yn|}]
])

≤ g−1(
g(2)E

g(μ)
C

[
g
(|Xn|)I[{|Xn|>b}]

] + g(2)E
g(μ)
C

[
g
(|Yn|)I[{|Yn|>b}]

])
= g−1(

g(2)g
(
E

μ
Cl,g

[|Xn|I[|Xn|>b]
]) + g(2)g

(
E

μ
Cl,g

[|Xn|I[|Xn|>b]
]))

= g−1(
g(2)g

(
E

μ
Cl,g

[|Xn|I[|Xn|>b]
]) + g(2)g

(
E

μ
Cl,g

[|Xn|I[|Xn|>b]
]))

= g−1(
g
(
2 ⊗E

μ
Cl,g

[|Xn|I[|Xn|>b]
]) + g

(
2 ⊗E

μ
Cl,g

[|Xn|I[|Xn|>b]
]))

= (
2 ⊗E

μ
Cl,g

[|Yn|I[|Yn|>b]
]) ⊕ (

2 ⊗E
μ
Cl,g

[|Xn|I[|Xn|>b]
])

.

Then limb→∞ supnE
μ
Cl,g[|Xn + Yn|I[|Xn+Yn|>2b]] = 0 follows from the g-uniform

integrability of {Xn} and {Yn} and the continuity of ⊗, ⊕. Therefore, {Xn +Yn}∞n=1
is also g-uniformly integrable and the proof is completed. �
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Theorem 3.10. Let ⊕,⊗ be generated by a submultiplicative generator g. If g(μ)

is submodular and {|Xn|(p)
⊗ } and {|Yn|(q)

⊗ } ( 1
p

+ 1
q

= 1, p ≥ 1) are g-uniformly
integrable, then {XnYn :n ∈N} is also g-uniformly integrable.

Proof. By using the Hölder inequality, we have

E
μ
Cl,g

[|XnYn|I[|XnYn|>b]
]

≤ g−1(
E

g(μ)
C

[
g
(|XnYn|)(I[|Yn|>√

b] + I[|Xn|>√
b])

])
= g−1(

E
g(μ)
C

[
g
(|XnYn|)I[|Yn|>√

b] + g
(|XnYn|)I[|Xn|>√

b]
])

≤ g−1(
E

g(μ)
C

[
g
(|Xn|)g(|Yn|)I[|Yn|>√

b]
]

+E
g(μ)
C

[
g
(|Yn|)g(|Xn|)I[|Xn|>√

b]
])

≤ g−1((
E

g(μ)
C

[(
g
(|Xn|))p])1/p(

E
g(μ)
C

[(
g
(|Yn|)I[|Yn|>√

b]
)q])1/q

+ (
E

g(μ)
C

[(
g
(|Yn|))q])1/q(

E
g(μ)
C

[(
g
(|Xn|)I[|Xn|>√

b]
)p])1/p)

= g−1((
E

g(μ)
C

[(
g
(|Xn|))p])1/p(

E
g(μ)
C

[(
g
(|Yn|))qI[|Yn|>√

b]
])1/q

+ (
E

g(μ)
C

[(
g
(|Yn|))q])1/q(

E
g(μ)
C

[(
g
(|Xn|))pI[|Xn|>√

b]
])1/p)

= [((
E

μ
Cl,g

[|Xn|(p)
⊗

])(1/p)
⊗ ⊗ (

E
μ
Cl,g

[(|Yn|)(q)
⊗ I[|Yn|>√

b]
])(1/q)

⊗
)

⊕ ((
E

μ
Cl,g

[|Yn|(q)
⊗

])(1/q)
⊗ ⊗ (

E
μ
Cl,g

[(|Xn|)(p)
⊗ I[|Xn|>√

b]
])(1/p)

⊗
)]

.

Then limb→∞ supnE
μ
Cl,g[|XnYn|I[|XnYn|>b]] = 0 follows from the uniform inte-

grability of {|Xn|(p)
⊗ } and {|Yn|(q)

⊗ } and the continuity of ⊗, ⊕. And the proof is
completed. �

The following theorem is a sufficient condition for uniform integrability.

Theorem 3.11. If supnE
μ
Cl,g[|Xn|(1+δ)

⊗ ] < ∞ for some δ > 0, then {Xn} is g-
uniformly integrable.

Proof. If supnE
μ
Cl,g[|Xn|(1+δ)

⊗ ] ≤ M < ∞ for some δ > 0, then we have,

E
μ
Cl,g

[|Xn|I[|Xn|>b]
]

= g−1(
E

g(μ)
C

[
g
(|Xn|)I[|Xn|>b]

])
≤ E

g(μ)
C

[
g
(|Xn|)I[|Xn|>b]

gδ(|Xn|)
gδ(b)

]
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≤ 1

gδ(b)
E

g(μ)
C

[
gδ+1(|Xn|)] = 1

gδ(b)
E

g(μ)
C

[
g
(
g−1(

gδ+1(|Xn|)))]

= 1

gδ(b)
g
(
g−1(

E
g(μ)
C

[
g
(|Xn|(1+δ)

⊗
)])) ≤ g(1)

gδ(b)
g(M).

So, limb→∞ supnE
μ
Cl,g[|Xn| ⊗ I[|Xn|>b]] = limb→∞ g(1)

gδ(b)
g(M) = 0. �

Theorem 3.12. Let ⊕,⊗ be generated by a subadditive generator g. Suppose
that g(μ) is submodular and X,Xn ∈ ζ r

Cl,g for each n. Then the following are
equivalent:

(a) Xn
μ−→ X and {Xn} is g-uniformly integrable.

(b) Xn

L1
Cl,g−→ X.

Proof. (a) ⇒ (b) For any ε > 0:

E
μ
Cl,g

[|Xn − X|]
= g−1(

E
g(μ)
C

[
g
(|Xn − X|)])

= g−1(
E

g(μ)
C

[
g
(|Xn − X|)(I[|Xn−X|>ε] + I[|Xn−X|≤ε])

])
= g−1(

E
g(μ)
C

[
g
(|Xn − X|)I[|Xn−X|>ε] + g

(|Xn − X|)I[|Xn−X|≤ε]
])

≤ g−1(
E

g(μ)
C

[
g
(|Xn − X|)I[|Xn−X|>ε]

] +E
g(μ)
C

[
g
(|Xn − X|)I[|Xn−X|≤ε]

])
≤ g−1(

E
g(μ)
C

[
g
(|Xn − X|)I[|Xn−X|>ε]

] + g(ε)E
g(μ)
C [I[|Xn−X|≤ε]])

≤ g−1(
E

g(μ)
C

[
g
(|Xn|)I[|Xn−X|>ε]

]
+E

g(μ)
C

[
g
(|X|)I[|Xn−X|>ε]

] + g(ε)g
(‖μ‖))

= g−1(
g
(
E

μ
Cl,g

(|Xn|I[|Xn−X|>ε]
))

+ g
(
E

μ
Cl,g

(|X|I[|Xn−X|>ε]
)) + g

(
ε ⊗ ‖μ‖))

= [
E

μ
Cl,g

(|Xn|I[|Xn−X|>ε]
)] ⊕ [

E
μ
Cl,g

(|X|I[|Xn−X|>ε]
)] ⊕ (

ε ⊗ ‖μ‖)
.

By using Proposition 3.7, the first term converges to zero because μ(|Xn − X| >

ε) → 0. The second term converges to zero because X ∈ L1
Cl,g , since this means

{X} is g-uniformly integrable.

(b) ⇒ (a): Xn
μ−→ X immediately holds from the Theorem 3.2 (part (b)). Given

ε > 0 choose N such that Eμ
Cl,g[|Xn − X|] < g−1(

g(ε)
2 ) for n ≥ N . For a fixed N

choose δ > 0 such that μ(A) < δ, supnE
μ
Cl,g[|Xn|I[A]] < δ and E

μ
Cl,g[|X|I[A]] < δ.

Then if μ(A) < δ and n is large enough

sup
n

E
μ
Cl,g

[|Xn|I[A]
] ≤ sup

n

([
E

μ
Cl,g

[|Xn − X|I[A]
] ⊕E

μ
Cl,g

[|X|I[A]
]])

< ε.
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Furthermore, supnE
μ
Cl,g[|Xn|] < ∞. Therefore, the proof is completed by Propo-

sition 3.7. �

Acknowledgments

The authors are very grateful to the anonymous reviewers for their insightful and
constructive comments and suggestions that have led to an improved version of
this paper. The third author was supported by Grant VEGA 1/0171/12.

References

Agahi, H., Eslami, E., Mohammadpour, A., Vaezpour, S. M. and Yaghoobi, M. A. (2012). On non-
additive probabilistic inequalities of Hölder-type. Results Math. 61, 179–194. MR2885547

Bassan, B. and Spizzichino, F. (2005). Relations among univariate aging, bivariate aging and depen-
dence for exchangeable lifetimes. J. Multivariate Anal. 93, 313–339. MR2162641

Boucheron, S., Lugosi, G. and Massart, P. (2003). Concentration inequalities using the entropy
method. Ann. Probab. 31, 1583–1614. MR1989444

Choquet, G. (1954). Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295. MR0080760
Denneberg, D. (1994). Non-additive Measure and Integral. Dordrecht: Kluwer Aca-

demic. MR1320048
Durante, F. and Sempi, C. (2005). Semicopulae. Kybernetika (Prague) 41, 315–328. MR2181421
Finner, H. (1992). A generalization of Hölder’s inequality and some probability inequalities. Ann.

Probab. 20, 1893–1901. MR1188047
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.

Assoc. 58, 13–30. MR0144363
Huber, P. J. and Strassen, V. (1973). Minimax tests and the Neyman–Pearson theorem for capacities.

Ann. Statist. 1, 251–263. MR0356306
Huber, P. J. and Strassen, V. (1974). Correction to Minimax tests and Neyman Pearson theorem for

capacities. Ann. Statist. 2, 223–224. MR0362587
Maccheroni, F. and Marinacci, M. (2005). A strong law of large numbers for capacities. Ann. Probab.

33, 1171–1178. MR2135316
Maslov, V. P. and Samborskij, S. N. (1992). Idempotent Analysis. Providence: American Mathemat-

ical Society. MR1203781
Matkowski, J. (1996). On a characterization of Lp-norm and a converse of Minkowski’s inequality.

Hiroshima Math. J. 26, 277–287. MR1400540
Mesiar, R. (1995). Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488. MR1345050
Mesiar, R., Li, J. and Pap, E. (2010). The Choquet integral as Lebesgue integral and related inequal-

ities. Kybernetika (Prague) 46, 1098–1107. MR2797430
Ouyang, Y. and Mesiar, R. (2009). On the Chebyshev type inequality for seminormed fuzzy integral.

Appl. Math. Lett. 22, 1810–1815. MR2558545
Pap, E. (2002). Pseudo-additive measures and their applications. In Handbook of Measure Theory,

Vol. II (E. Pap, ed.) 1403–1465. Amsterdam: Elsevier. MR1954645
Pap, E. (2005). Applications of the generated pseudo-analysis to nonlinear partial differential equa-

tions. Contemp. Math. 377, 239–259. MR2149008
Pap, E. and Vivona, D. (2000). Non-commutative and non-associative pseudo-analysis and

its applications on nonlinear partial differential equations. J. Math. Anal. Appl. 246, 390–
408. MR1761938

http://www.ams.org/mathscinet-getitem?mr=2885547
http://www.ams.org/mathscinet-getitem?mr=2162641
http://www.ams.org/mathscinet-getitem?mr=1989444
http://www.ams.org/mathscinet-getitem?mr=0080760
http://www.ams.org/mathscinet-getitem?mr=1320048
http://www.ams.org/mathscinet-getitem?mr=2181421
http://www.ams.org/mathscinet-getitem?mr=1188047
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=0356306
http://www.ams.org/mathscinet-getitem?mr=0362587
http://www.ams.org/mathscinet-getitem?mr=2135316
http://www.ams.org/mathscinet-getitem?mr=1203781
http://www.ams.org/mathscinet-getitem?mr=1400540
http://www.ams.org/mathscinet-getitem?mr=1345050
http://www.ams.org/mathscinet-getitem?mr=2797430
http://www.ams.org/mathscinet-getitem?mr=2558545
http://www.ams.org/mathscinet-getitem?mr=1954645
http://www.ams.org/mathscinet-getitem?mr=2149008
http://www.ams.org/mathscinet-getitem?mr=1761938


896 H. Agahi, A. Mohammadpour and R. Mesiar

Shilkret, N. (1971). Maxitive measure and integration. Indag. Math. (N.S.) 8, 109–116. MR0288225
Suárez García, F. and Gil Álvarez, P. (1986). Two families of fuzzy integrals. Fuzzy Sets and Systems

18, 67–81. MR0825620
Sugeno, M. (1974). Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of

Technology.
Wasserman, L. and Kadane, J. (1990). Bayes’ theorem for Choquet capacities. Ann. Statist. 18, 1328–

1339. MR1062711
Zhu, L. and Ouyang, Y. (2011). Hölder inequality for Choquet integral and its applications. Mohu

Xitong yu Shuxue 25, 146–151. MR2932755

H. Agahi
A. Mohammadpour
Department of Statistics
Faculty of Mathematics and Computer Science
Amirkabir University of Technology
424 Hafez Ave.
Tehran 15914
Iran
E-mail: h_agahi@aut.ac.ir

adel@aut.ac.ir

R. Mesiar
Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering
Slovak University of Technology
SK-81368 Bratislava
Slovakia
and
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Pod vodárenskou věži 4
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