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Abstract Cauchy-Schwarz’s inequality is one of the most
important inequalities in probability, measure theory and
analysis. The problem of finding a sharp inequality of
Cauchy–Schwarz type for Sugeno integral without the
comonotonicity condition based on the multiplication oper-
ator has led to a challenging and an interesting subject
for researchers. In this paper, we give a Cauchy–Schwarz’s
inequality without the comonotonicity condition based on
pseudo-analysis for two classes of Choquet-like integrals as
generalizations of Choquet integral and Sugeno integral. In
the first class, pseudo-operations are defined by a continu-
ous strictly increasing function g. Another class concerns
the Choquet-like integrals based on the operator “sup” and a
pseudo-multiplication⊗. When working on the second class
of Choquet-like integrals, our results give a new version of
Cauchy–Schwarz’s inequality for Sugeno integral without
the comonotonicity condition based on the multiplication
operator.

Communicated by L. Spada.

H. Agahi (B)
Department of Mathematics, Faculty of Basic Sciences,
Babol University of Technology, Babol, Iran
e-mail: h_agahi@nit.ac.ir

R. Mesiar
Department of Mathematics and Descriptive Geometry,
Faculty of Civil Engineering, Slovak University of Technology,
81368 Bratislava, Slovakia
e-mail: mesiar@math.sk

R. Mesiar
Institute of Information Theory and Automation, Academy of Sciences
of the Czech Republic, Pod vodárenskou věži 4, 182 08 Praha 8,
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1 Introduction

Recently, much research has been done on the connection
of the inequalities and the nonadditive integrals such as the
Sugeno integral and the Choquet integral (Agahi et al. 2010,
2013; Caballero and Sadarangani 2010; Wu et al. 2010).
These studies are often based on the concept of comonotonic-
ity. For example, Caballero and Sadarangani (2010) obtained
the Cauchy–Schwarz inequality for the Sugeno integral.
However, the lack of comonotonicity condition inmanyprob-
lems in statistics, probability and engineering is a disadvan-
tage of these results. On the other hands, many classical
inequalities are free from this condition.

Recall that two functions X,Y : � → R are said to be
comonotone if and only if
(
X (ω1) − X (ω2)

)(
Y (ω1) − Y (ω2)

)
� 0

for each couple of elements ω1, ω2 ∈ �. First, let us look
at the right side of inequality (1.1). The authors found that
the special operator ∨ should be used instead of the multi-
plication operator. Note that some of the next notions will be
properly defined later in Sect. 2.

Theorem 1.1 (Caballero andSadarangani 2010, Theorem1)
(Cauchy–Schwarz’s inequality) Let X,Y : � → [0,∞) be
two comonotone functions and μ a real monotone measure
such that Suμ [XY ] ≤ 1. Then the inequality

Suμ [XY ] ≤
√(

Suμ[X2]
)

∨
(
Suμ[Y 2]

)
(1.1)

holds.
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Recently,Wuet al. (2010) studied aHölder-type inequality
for Sugeno integral based on the comonotonicity condition
and a binary operator �. We see that in general, we cannot
put the multiplication operator instead of �.

Theorem 1.2 (Hölder’s inequality) Let X,Y : � → [0, 1]
be two comonotone functions and μ a monotone probability.
Let � : [0, 1]2 → [0, 1] be continuous and non-decreasing in
both arguments and bounded from below by maximum. Then
the inequality

Suμ [X � Y ] ≤
(
Suμ

[
X p] ) 1

p
�

(
Suμ

[
Yq] ) 1

q
(1.2)

holds for all p, q ∈ [1,∞).

Therefore, finding a Cauchy–Schwarz’s inequality (or
a Hölder’s inequality) for Sugeno integral without the
comonotonicity condition based on the multiplication oper-
ator is both a challenging and an interesting subject.

In 1995,Mesiar (1995) introduced twoclasses ofChoquet-
like integrals as generalizations of Choquet integral (expecta-
tion) and Sugeno integral. The first class is called “Choquet-
like expectation” which generalizes the Choquet expectation
(see Definition 2.6) and the second class is an extension of
Sugeno integral (see Definition 2.8). In this paper, we give
a Cauchy–Schwarz’s inequality without the comonotonicity
condition for two classes of Choquet-like integrals. Notice
that when working on the second class of Choquet-like inte-
grals, one of our results (Theorem 3.3) gives us a new version
of Cauchy–Schwarz’s inequality for Sugeno integral with-
out the comonotonicity condition based on themultiplication
operator.

The paper is organized as follows: Sect. 2 recalls the con-
cepts of Choquet-like integrals while Sect. 3 presents our
main results. Finally, some concluding remarks are added.

2 Preliminaries

To prove our results, we shall first recall some basic defin-
itions and previous results. For details, we refer to Mesiar
(1995) [see also Sheng et al. (2011)].

Definition 2.1 (Sugeno and Murofushi 1987) An operation
⊕: [0,∞]2 → [0,∞] is called a pseudo-addition if the fol-
lowing properties are satisfied:

(P1) a ⊕ 0 = 0 ⊕ a = a (neutral element);
(P2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity);
(P3) a ≤ c and b ≤ d imply that a ⊕ b ≤ c ⊕ d (monotonic-

ity);
(P4) an → a and bn → b imply that an ⊕ bn → a ⊕ b

(continuity).

Definition 2.2 (Mesiar 1995; Sugeno and Murofushi 1987)
Let ⊕ be a given pseudo-addition on [0,∞]. Another binary
operation ⊗ on [0,∞] is said to be a pseudo-multiplication
corresponding to ⊕ if the following properties are satisfied:

(M1) a ⊗ (x ⊕ y) = (a ⊗ x) ⊕ (a ⊗ y) (left distributivity);
(M2) a ≤ b implies (a⊗ x) ≤ (b⊗ x) and (x⊗a) ≤ (x⊗b)

(monotonicity);
(M3) a ⊗ x = 0 ⇔ a = 0 or x = 0 (absorbing element and

no zero divisors);
(M4) ∃ e ∈ (0,∞] (i.e., there exist the neutral element e)

such that e ⊗ x = x ⊗ e = x for any x ∈ [0,∞]
(neutral element);

(M5) an → a ∈ (0,∞) and xn → x imply (an ⊗ xn) →
(a ⊗ x) and ∞ ⊗ x = lima→∞(a ⊗ x) (continuity);

(M6) a ⊗ x = x ⊗ a (commutativity);
(M7) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (associativity).

Theorem 2.3 (Mesiar 1995) Let ⊗ be a pseudo-multiplica-
tion corresponding to a given pseudo-addition ⊕ fulfilling
axioms (M1)–(M7).

(I) If its identity element e is not an idempotent of ⊕, then
there is a unique continuous strictly increasing function
g : [0,∞] → [0,∞] with g(0) = 0 and g(∞) = ∞,
such that g(e) = 1 and

a ⊕ b = g−1(g(a) + g(b)
) ⊕ is called a g-addition,

a ⊗ b = g−1(g(a) · g(b))⊗is called a g-multiplication.

(II) If the identity element e of the pseudo-multiplication is
also an idempotent of ⊕ (i.e., e ⊕ e = e), then ⊕ = ∨
(= sup, i.e., the logical addition).

For x ∈ [0,∞] and p ∈ (0,∞), we will introduce the
pseudo-power x (p)

⊗ as follows: If p = n is a natural number,

then x (n)
⊗ = x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

n−times

. If p is not a natural num-

ber, then the corresponding power is defined by x (p)
⊗ =

sup
{
y(m)
⊗ |y(n)

⊗ ≤ x, where m, n are natural numbers such

that mn ≤ p
}
. Evidently, if x ⊗ y = g−1

(
g(x) · g(y)), then

x (p)
⊗ = g−1

(
gp(x)

)
.

Definition 2.4 (Klement et al. 2010) A monotone measure
μ on a measurable space (�,F) is a set function μ : F →
[0,∞] satisfying

(i) μ (∅) = 0;
(ii) μ(�) > 0;
(iii) μ(A) ≤ μ(B) whenever A ⊆ B;
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moreover, μ is called real if ||μ|| = μ (�) < ∞.The triple
(�,F , μ) is also called a monotone measure spaceif μ is a
monotone measure on F .

We call μ a monotone probability, if ||μ|| = 1. When μ

is a monotone probability, the triple (�,F , μ) is called a
monotone probability space.

Definition 2.5 Let (�,F , μ) be a monotone measure space
and X : � → [0,∞) be an F−measurable function.
The Choquet expectation of X over A ∈ F w.r.t. the real
monotone measure μ is defined by Choquet (1954), Mesiar
(1995)

E
μ
C [XIA] =

∫ ∞

0
μ

(
A ∩ {X ≥ t}

)
dt. (2.1)

where the integral on the right-hand side is the (improper)
Riemann integral. In particular, if A = �, then

E
μ
C [X ] =

∫ ∞

0
μ

(
{X ≥ t}

)
dt.

Mesiar (1995) has shown that there are two classes of
Choquet-like integral: the Choquet-like integral (denoted by
E

μ
Cl,g) based on a g-addition and a g-multiplication and

the Choquet-like integral based on ∨ and a corresponding
pseudo-multiplication ⊗.

Definition 2.6 (Mesiar 1995) Let (�,F) be a measurable
space and μ : F → [0,∞] be a monotone measure. Let
⊕ and ⊗ be generated by a generator g. The Choquet-like
expectation of a non-negative measurable function X over
A ∈ F w.r.t. the real monotonemeasureμ can be represented
as

E
μ
Cl,g [XIA] = g−1

(
E
g(μ)
C [g (X) IA]

)

= g−1
(∫ ∞

0
gμ (A ∩ {g (X) ≥ t}) dt

)
.

In particular, if A = �, then

E
μ
Cl,g [X ] = g−1

(
E
g(μ)
C [g (X)]

)
. (2.2)

Remark 2.7 Notice that we sometimes call this kind of
Choquet-like integral a g-Choquet integral (g−C−integral
for short). It is plain that the g−C− integral is the original
Choquet integral (expectation) whenever g = i (the identity
mapping).

Definition 2.8 (Mesiar 1995) Let ⊗ be a pseudo-multi-
plication corresponding to∨ and fulfilling (M1)–(M7). Then
the Choquet-like integral (so-called S

⊗
μ integral) of a mea-

surable function X : � → [0,∞) w.r.t. a real monotone
measure μ can be represented as

S
⊗
μ [X ] = sup

a∈[0,∞]

(
a ⊗ μ({X ≥ a}

)
. (2.3)

It is plain that the S⊗
μ integral is the Sugeno integral (denoted

by Suμ[.]) whenever ⊗ = ∧ (Wang and Klir 2008). If ⊗
is the standard product, then we have the Shilkret integral
(Shilkret 1971) (denoted by Shμ[.]). During this paper, we
always consider the existence of all S⊗

μ [.].
Remark 2.9 Though the second class of Choquet-like inte-
grals introduced in Mesiar (1995) deals with pseudo-
multiplications ⊗ satisfying (M1)–(M7) when ⊕ = ∨
(then left-distributivity is just the monotonicity in the sec-
ond coordinate), formula (2.3) can be applied considering
any increasing function ⊗: [0,∞]2 → [0,∞] as a pseudo-
multiplication. When working on [0, 1] (i.e., considering
function with range contained in [0, 1] only—they can be
seen as membership functions of fuzzy events, and consid-
ering monotone probabilities), we mostly deal with e = 1.
Thenwehave to dealwith⊗ = �only,where� is a semicop-
ula (t-seminorm), i.e., a binary operation� : [0, 1]2 → [0, 1]
which is non-decreasing in both components and has 1 as
neutral element. Then ⊗ = � satisfies a ⊗ b ≤ min(a, b)
for all (a, b) ∈ [0, 1]2, see Durante and Sempi (2005).

Definition 2.10 The S⊗
μ integral on the [0, 1] scale related to

the semicopula � w.r.t. the monotone probability μ is given
by

S
�
μ [X ] = sup

a∈[0,1]
(
a � μ({X ≥ a} )

. (2.4)

This type of integral was called seminormed integral in
Suárez García and Gil Álvarez (1986).

Remark 2.11 For a fixed strict t-norm T (Klement et al.
2000), the correspondingSTμ integral is the so-calledSugeno–
Weber integral (Weber 1986). If � is the standard product,
then the original Shilkret integral (Shilkret 1971) can be
recognized. Notice that the original Sugeno integral which
was introduced by Sugeno (1974) in 1974 is a special semi-
normed integral when � = min .

The following Lemma helps us to reach the main results.

Lemma 2.12 Let β ∈ (0,∞). Let X be a non-negative mea-
surable function. If ⊗ is a pseudo-multiplication satisfying

(a ⊗ b) ≤ 1

β

(
βa ⊗ b

)
(2.5)

then for the S⊗
μ integral (2.3), the inequality

S
⊗
μ [βX ] � βS⊗

μ [X ]

holds.

Proof Let S⊗
μ [X ] = q. Then for any ε > 0, there exist qε

such that M = μ
( {X ≥ qε}

)
, where (qε ⊗ M) � q − ε. So,

by (2.5), we have
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S
⊗
μ [βX ] = sup

a∈[0,∞]

(
a ⊗ μ ({βX ≥ a})

)

� βqε ⊗ μ
(

{βX ≥ βqε}
)

� β (qε ⊗ M) � β (q − ε) .

Whence S⊗
μ [βX ] ≥ β (q − ε) follows from the arbitrariness

of ε. This completes the Proof. ��
Notice that if ⊗ is minimum (i.e., for Sugeno integral) in

Lemma 2.12, then the following result holds.

Corollary 2.13 Let X be a non-negative measurable func-
tion. Then the inequality

Suμ [βX ] � βSuμ [X ]

holds where 0 < β ≤ 1.

3 Cauchy–Schwarz’s inequality

In this section, we prove the Cauchy–Schwarz’s inequal-
ity for two classes of Choquet-like integrals. Theorem 3.1
gives us the Cauchy–Schwarz’s inequality for the first class
of Choquet-like integrals, i.e., for Choquet-like expectation.
Then, wewill prove the Cauchy–Schwarz’s inequality for the
second class in Theorem 3.3.

Theorem 3.1 (Cauchy–Schwarz’s inequality) Let X,Y be
two non-negative measurable functions and let the pseudo-
operations be generated by a generator g. If

mg
(
Y (ω)

)
≤ g

(
X (ω)

)
≤ Mg

(
Y (ω)

)
∀ω ∈ �,

where 0 < m ≤ M then, independently of a monotone mea-
sure μ, for the Choquet-like expectation given by (2.2), the
following inequalities

(
E

μ
Cl,g

[
X (2)

⊗
])(

1
2

)

⊗ ⊗
(
E

μ
Cl,g

[
Y (2)

⊗
])(

1
2

)

⊗
� K1 ⊗ E

μ
Cl,g [X ⊗ Y ] , (3.1)

(
E

μ
Cl,g

[
X (2)

⊗
])(

1
2

)

⊗ ⊗
(
E

μ
Cl,g

[
Y (2)

⊗
])(

1
2

)

⊗
≤ K2 ⊗ E

μ
Cl,g [X ⊗ Y ] (3.2)

hold where K1 = g−1
(√

m
M

)
and K2 = g−1

(√
M
m

)
.

Proof Wewill prove (3.1) and the other case is similar. Since
g
(
X (ω)

)
� mg

(
Y (ω)

)
, then

(
g
(
X (ω)

) )2 � m
(
g

(
X (ω)

)
g
(
Y (ω)

) )
,

and

(
E
g(μ)
C

[
(g (X))2

]) 1
2 �

√
m

(
E
g(μ)
C

[
g (X) g (Y )

]) 1
2
. (3.3)

Also, by M
(
g (Y (ω))

)
� g

(
X (ω)

)
, we have

(
g (Y (ω))

)2
� 1

M

(
g (X (ω)) g (Y (ω))

)
,

and then

(
E
g(μ)
C

[
(g (Y ))2

]) 1
2 �

√
1

M

(
E
g(μ)
C [(g (X) g (Y ))]

) 1
2
.

(3.4)

Therefore, (3.3) and (3.4) give us the following result:

(
E
g(μ)
C

[
(g (X))2

]) 1
2
(
E
g(μ)
C

[
(g (Y ))2

]) 1
2

�
√

m

M
E
g(μ)
C

[
g (X) g (Y )

]
. (3.5)

Let K1 = g−1
(√

m
M

)
. Now, observe that

K1 ⊗ E
μ
Cl,g

[
(X ⊗ Y )

]=g−1
(
g (K1) g

(
E

μ
Cl,g [(X ⊗ Y )]

))

= g−1
(√

m

M
E
g(μ)
C [g ((X ⊗ Y ))]

)

= g−1
(
g (K1)E

g(μ)
C [(g ◦ X) · (g ◦ Y )]

)
. (3.6)

Using (3.5) and (3.6), we have

g−1
(√

m

M

(
E
g(μ)
C

[
((g ◦ X) · (g ◦ Y ))

]))

� g−1
((

E
g(μ)
C

[
(g ◦ X)2

] ) 1
2 ·

(
E
g(μ)
C

[
(g ◦ Y )2

] ) 1
2
)

= g−1
([

g

(
g−1

((
E
g(μ)
C

[
(g ◦ X)2

]) 1
2
))

·g
(
g−1

((
E
g(μ)
C

[
(g ◦ Y )2

] ) 1
2
))])

= g−1

((
E
g(μ)
C

[
g

(
g−1

(
(g ◦ X)2

)) ]) 1
2
)

⊗ g−1

((
E
g(μ)
C

[
g

(
g−1

(
(g ◦ Y )2

)) ]) 1
2
)

= g−1
((

E
g(μ)
C

[
g(X (2)

⊗ )
] ) 1

2
)

⊗ g−1
((

E
g(μ)
C

[
g

(
Y (2)

⊗
) ] ) 1

2
)

= g−1
((

g
(
g−1

(
E
g(μ)
C

[
g

(
X (2)

⊗
) ] ))) 1

2
)

⊗g−1
((

g
(
g−1

(
E
g(μ)
C

[
g

(
Y (2)

⊗
) ] ))) 1

2
)

= g−1
((

g
(
E

μ
Cl,g

[
X (2)

⊗
])) 1

2
)

⊗ g−1
((

g
(
E

μ
Cl,g

[
Y (2)

⊗
])) 1

2
)

=
(
E

μ
Cl,g

[
X (2)

⊗
])(

1
2

)

⊗ ⊗
(
E

μ
Cl,g

[
Y (2)

⊗
])(

1
2

)

⊗ .

This completes the Proof. ��
Example 3.2 (i) Let g(x) = xα, α > 0. The correspond-

ing pseudo-operations are x ⊕ y = α
√
xα + yα and
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x⊗ y = xy. Then (3.1) and (3.2) reduce on the following
inequalities

K1
α

√
E

μα

C

[
(XY )α

] ≤ 2α
√
E

μα

C

[
X2α

] 2α
√
E

μα

C

[
Y 2α

]
,

K2
α

√
E

μα

C

[
(XY )α

]
� 2α

√
E

μα

C

[
X2α

] 2α
√
E

μα

C

[
Y 2α

]

where K1 = 2α
√

m
M and K2 = 2α

√
m
M .

(ii) Let g(x) = ln(x + 1). The corresponding pseudo-
operations are x ⊕ y = x + y + xy and x ⊗ y =
(x + 1)ln(y+1) − 1. Then (3.1) and (3.2) reduce on the
following inequalities

(K1 + 1)

(
E
ln(μ+1)
C [((ln(X+1))·(ln(Y+1))) ]

)

≤ e

(
E
ln(μ+1)
C

[
(ln(X+1))2

] ) 1
2 ·

(
E
ln(μ+1)
C

[
(ln(Y+1))2

] ) 1
2

,

(K2 + 1)

(
E
ln(μ+1)
C [((ln(X+1))·(ln(Y+1))) ]

)

� e

(
E
ln(μ+1)
C

[
(ln(X+1))2

] ) 1
2 ·

(
E
ln(μ+1)
C

[
(ln(Y+1))2

] ) 1
2

,

where K1 = e
√

m
M − 1 and K2 = e

√
M
m − 1.

Now we consider the second class of Choquet-like inte-
grals where is based on ∨ and a corresponding pseudo-
multiplication ⊗.

Theorem 3.3 (Cauchy–Schwarz’s inequality) Fix a real
monotone measure μ. Let X,Y be two non-negative mea-
surable functions such that

0 < t ≤ X (ω)

Y (ω)
≤ T,

for any ω ∈ �. If ⊗ is a pseudo-multiplication satisfying

(a ⊗ b) ≤ min

{‖μ‖
t

(
at

‖μ‖ ⊗ b

)
, T ‖μ‖

(
a

‖μ‖ T ⊗ b

)}

(3.7)

then for the S⊗
μ integral (2.3), the inequality

KS
⊗
μ [XY ] ≤

√
‖μ‖ S⊗

μ

[
1

‖μ‖ X
2

]√
‖μ‖ S⊗

μ

[
1

‖μ‖Y
2

]

holds where K =
√

t
T .

Proof Since t ≤ X(ω)
Y (ω)

, we have

t
(
X (ω) Y (ω)

)
≤

(
X (ω)

)2
.

Themonotonicity of S⊗
μ integral, and Lemma 2.12 imply that

√
S

⊗
μ

[
1

‖μ‖ X
2

]
�

√
S

⊗
μ

[
t

‖μ‖ XY
]

�
√

t

‖μ‖S
⊗
μ [XY ].

(3.8)

Also, since T � X(ω)
Y (ω)

we have

(
Y (ω)

)2� 1

T
X (ω) Y (ω) ,

and then,

√
S

⊗
μ

[
1

‖μ‖Y
2

]
�

√
S

⊗
μ

[
1

‖μ‖ T XY

]
�

√
1

‖μ‖ T S
⊗
μ [XY ].

(3.9)

By multiplying (3.8) and (3.9), we have

KS
⊗
μ [XY ] ≤

√
‖μ‖ S⊗

μ

[
1

‖μ‖ X
2

]√
‖μ‖ S⊗

μ

[
1

‖μ‖Y
2

]
.

��
Let ⊗ be the standard product (i.e., Shilkret integral) in

Theorem 3.3. Then the following result holds.

Corollary 3.4 Let X,Y be two non-negative measurable
functions such that

0 < t ≤ X (ω)

Y (ω)
≤ T,

for any ω ∈ �. The inequality

KShμ [XY ] ≤
√

‖μ‖ Shμ

[
1

‖μ‖ X
2

]√
‖μ‖ Shμ

[
1

‖μ‖Y
2

]

holds where K =
√

t
T .

Notice that if⊗ is minimum (i.e., for Sugeno integral) and
‖μ‖ � max

{ 1
T , t

}
in Theorem 3.3 then (3.7) holds readily.

Then the following result holds.

Corollary 3.5 Let X,Y be two non-negative measurable
functions such that

0 < t ≤ X (ω)

Y (ω)
≤ T,

for any ω ∈ �. Then, for any monotone measure μ such that
‖μ‖ � max

{ 1
T , t

}
, the inequality

KSuμ [XY ] ≤
√

‖μ‖ Suμ

[
1

‖μ‖ X
2

]√
‖μ‖ Suμ

[
1

‖μ‖Y
2

]

(3.10)

holds where K =
√

t
T and ‖μ‖ � max

{ 1
T , t

}
.
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The following example proves that the inequality of
Corollary 3.5 is sharp.

Example 3.6 Let � = [0, 2] , X (ω) = Y (ω) ≡ 1. Let
μ(A) = λ(A)whereλ is the Lebesguemeasure onR. Clearly
X (ω)
Y (ω)

= 1. Then t = T = 1. So, by Corollary 3.5, K = 1
and

Suμ [XY ] = 1, Suμ

[
X2

‖μ‖
]

= Suμ

[
Y 2

‖μ‖
]

= 1

2
.

Therefore,

KSuμ [XY ] = 1 =
√

‖μ‖ Suμ

[
1

‖μ‖ X
2

]

×
√

‖μ‖ Suμ

[
1

‖μ‖Y
2

]
.

Example 3.7 Let � = [0, 2] , X (ω) = 2eω,Y (ω) = e−ω.
Let μ(A) = λ(A) where λ is the Lebesgue measure on R.
Clearly t = 2 ≤ X (ω)

Y (ω)
= 2e2ω ≤ 2e4 = T . So, by Corollary

3.5, K = e−2 and

Suμ [XY ] = 2, Suμ

[
X2

2

]
= 2, Suμ

[
Y 2

2

]
= 0.2836.

Therefore,

0.27067 = KSuμ [XY ] ≤
√

‖μ‖ Suμ

[
1

‖μ‖ X
2

]

×
√

‖μ‖ Suμ

[
1

‖μ‖Y
2

]
= 1.5063.

Note 3.8 It is easy to see that

‖μ‖Suμ

[
1

‖μ‖ X
2
]

≤ (‖μ‖ ∨ 1) Suμ

[
X2

]
, (3.11)

‖μ‖ Suμ

[
1

‖μ‖Y
2
]

≤ (‖μ‖ ∨ 1) Suμ

[
Y 2

]
. (3.12)

Therefore, by (3.10), (3.11) and (3.12), we have

KSuμ [XY ] ≤
√

‖μ‖ Suμ

[
1

‖μ‖ X
2

]√
‖μ‖ Suμ

[
1

‖μ‖Y
2

]

≤ (‖μ‖ ∨ 1)
√
Suμ

[
X2

]
Suμ

[
Y 2

]
.

The following example shows that the condition ‖μ‖ �
max

{ 1
T , t

}
in Corollary 3.5 cannot be omitted.

Example 3.9 Let � = [0, 4] , X (ω) = 4,Y (ω) = 1
2 . Let

μ(A) = √
λ(A) where λ is the Lebesgue measure on R.

Clearly 3 ≤ X (ω)
Y (ω)

= 8 ≤ 9 for all ω. Put t = 3 and T = 9.

So, by Corollary 3.5, K =
√

t
T = 1

3

√
3. Then

Suμ [XY ] = 2, Suμ

[
X2

2

]
= 2, Suμ

[
Y 2

2

]
= 1

8
.

Therefore,

2

3

√
3 = KSuμ [XY ] >

√
‖μ‖ Suμ

[
1

‖μ‖ X
2

]

×
√

‖μ‖ Suμ

[
1

‖μ‖Y
2

]
= 1.

Notice that when working on [0, 1] in Theorem 3.3, then
⊗ = � is semicopula (t-seminorm) and the following result
holds.

Corollary 3.10 Let X,Y : � → [0, 1] be two non-negative
measurable functions such that

0 < t ≤ X (ω)

Y (ω)
≤ T,

for any ω ∈ �. If semicopula � satisfying

(a � b) ≤ min

{
1

t
(ta � b) , T

( a

T
� b

)}
(3.13)

for all a, b ∈ [0, 1] such that a ≤ min
{ 1
t , T

}
, then for the

S
�
μ integral ( 2.4), the inequality

KS
�
μ [XY ] ≤

√
S

�
μ

[
X2

]√
S

�
μ

[
Y 2

]

holds where K =
√

t
T .

Remark 3.11 If semicopula � is the standard product, then
an inequality for the original Shilkret integral is recaptured.

Let semicopula � be minimum (i.e., for the original
Sugeno integral). Then we have the following result:

Corollary 3.12 Let X,Y : � → [0, 1] be two non-negative
measurable functions such that

0 < t ≤ X (ω)

Y (ω)
≤ T,

for any ω ∈ �. Then the inequality

KSuμ [XY ] ≤
√
Suμ

[
X2

]√
Suμ

[
Y 2

]

holds where K =
√

t
T and 1 � max

{ 1
T , t

}
.

The following example shows that the condition (3.13) in
Corollary 3.10 cannot be omitted.

Example 3.13 Let � = [0, 1] , X (ω) = ω+1
2 ,Y (ω) =

1
2 . Let semicopula � be the Łukasiewicz t-norm TL (i.e.,
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TL (x, y) = max {(x + y − 1) , 0}) andμ(A) = λ(A)where
λ is the Lebesgue measure on R. Clearly 1 ≤ X (ω)

Y (ω)
=

ω + 1 ≤ 2. Put t = 1 and T = 2. So, by Corollary 3.10,
K = 1

2

√
2 and

S
TL
μ [XY ] =

∨
α∈[0,1]

TL (α, μ({XY ≥ α})

=
∨

a∈[0,1]
TL (α, 2 − 4α) =

∨
a∈[0,1]

(1 − 3α) = 1,

S
TL
μ

[
X2

]
=

∨
α∈[0,1]

TL
(
α,μ(

{
X2 ≥ α

})

=
∨

a∈[0,1]
TL

(
α, 2 − 2

√
α
)

=
∨

a∈[0,1]

(√
α − 1

)2 = 1,

S
TL
μ

[
Y 2

]
=

∨
α∈[0,1]

TL
(
α,μ(

{
Y 2 ≥ α

})

=
∨

a∈
[
0, 14

]
TL (α, 1) = 1

4
.

Therefore,

KS
TL
μ [XY ] = 1

2

√
2 >

1

2
=

√
S
TL
μ

[
X2

]√
S
TL
μ

[
Y 2

]
.

We can prove Hölder’s inequality for the second class of
Choquet-like integrals, i.e., for S⊗

μ integral.

Theorem 3.14 (Hölder’s inequality) Fix a real monotone
measure μ. Let X,Y be two non-negative measurable func-
tions such that

0 < t ≤
(
X (ω)

)p−1

Y (ω)
and 0 <

X (ω)(
Y (ω)

)q−1 ≤ T

for any ω ∈ �. If ⊗ is a pseudo-multiplication satisfying

(a ⊗ b) ≤ min

{‖μ‖
t

(
ta

‖μ‖ ⊗ b

)
, T ‖μ‖

(
a

‖μ‖ T ⊗ b

)}
,

then for the S⊗
μ integral (2.3), the inequality

CS
⊗
μ [XY ] ≤ p

√
‖μ‖ S⊗

μ

[
1

‖μ‖ X
p

]
q

√
‖μ‖ S⊗

μ

[
1

‖μ‖Y
q

]

holds where C = t
1
p

T
1
q
and 1

p + 1
q = 1.

Proof Since t ≤ (X(ω))p−1

Y (ω)
, we have

t (X (ω) Y (ω)) ≤ (X (ω))p .

The monotonicity of S⊗
μ integral, Lemma 2.12 imply that

p

√
S

⊗
μ

[
1

‖μ‖ X
p

]
� p

√
S

⊗
μ

[
t

‖μ‖ XY
]

� p

√
t

‖μ‖S
⊗
μ [XY ].

(3.14)

Also, since X(ω)

(Y (ω))q−1 ≤ T , we have

(
Y (ω)

)q � 1

T
X (ω) Y (ω) ,

and then,

q

√
S

⊗
μ

[
1

‖μ‖Y
q

]
� q

√
S

⊗
μ

[
1

‖μ‖ T XY

]
� q

√
1

‖μ‖ T S
⊗
μ [XY ].

(3.15)

By multiplying (3.14) and (3.15), we have

CS
⊗
μ [XY ] ≤ p

√
‖μ‖ S⊗

μ

[
1

‖μ‖ X
p

]
q

√
‖μ‖ S⊗

μ

[
1

‖μ‖Y
q

]
.

��
Corollary 3.15 Let X,Y be two non-negative measurable
functions such that

t ≤
(
X (ω)

)p−1

Y (ω)
and

X (ω)(
Y (ω)

)q−1 ≤ T

for any ω ∈ �. Then the inequality

CShμ [XY ] ≤ p

√
‖μ‖ Shμ

[
1

‖μ‖ X
p

]
q

√
‖μ‖ Shμ

[
1

‖μ‖Y
q

]

holds where C = t
1
p

T
1
q
and 1

p + 1
q =1.

Corollary 3.16 Let X,Y be two non-negative measurable
functions such that

0 < t ≤
(
X (ω)

)p−1

Y (ω)
and 0 <

X (ω)(
Y (ω)

)q−1 ≤ T

for any ω ∈ �. Then the inequality

CSuμ [XY ] ≤ p

√
‖μ‖ Suμ

[
1

‖μ‖ X
p

]
q

√
‖μ‖ Suμ

[
1

‖μ‖Y
q

]

≤ (‖μ‖ ∨ 1) p
√
Suμ [X p] q

√
Suμ [Yq ]

holds where C = t
1
p

T
1
q
, and ‖μ‖�max

{ 1
T , t

}
and 1

p + 1
q =1.
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Corollary 3.17 Let X,Y : � → [0, 1] be two non-negative
measurable functions such that

0 < t ≤
(
X (ω)

)p−1

Y (ω)
and 0 <

X (ω)(
Y (ω)

)q−1 ≤ T

for any ω ∈ �. Then for the S�
μ integral (2.4), the inequality

(a � b) ≤ min

{
1

t

(
ta � b

)
, T

( a
T

� b
)}

for all a, b ∈ [0, 1] such that a ≤ min
{ 1
t , T

}
, then for the

S
�
μ integral ( 2.4), the inequality

CS
�
μ [XY ] ≤ p

√
S

�
μ [X p] q

√
S

�
μ [Yq ]

holds where C = t
1
p

T
1
q
and 1

p + 1
q = 1.

4 Conclusions

We have shown a version of Cauchy–Schwarz’s inequal-
ity without the comonotonicity condition for two classes
of Choquet-like integrals. At first, two classes of Choquet-
like integrals were introduced. Then, we prepared extensions
of these inequalities from the Choquet expectation and the
Sugeno integral to the two classes of Choquet-like integrals.
Recently, Agahi and Mesiar (2014) proved a new version
of Minkowski’s inequality for Sugeno integral without the
comonotonicity condition.
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