
Information Sciences 301 (2015) 161–168
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Pseudo-fractional integral inequality of Chebyshev type
http://dx.doi.org/10.1016/j.ins.2014.12.056
0020-0255/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: h_agahi@nit.ac.ir (H. Agahi), mesiar@math.sk (R. Mesiar).
Hamzeh Agahi a,⇑, Azizollah Babakhani a, Radko Mesiar b,c

a Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol 47148-71167, Iran
b Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, SK-81368 Bratislava, Slovakia
c Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věži 4, 182 08 Praha 8, Czech Republic
a r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form 17 November 2014
Accepted 31 December 2014
Available online 9 January 2015

Keywords:
Pseudo-addition
Pseudo-multiplication
Pseudo-convolution
Pseudo-integral
Semiring
Chebyshev’s inequality
Fractional integral
a b s t r a c t

In this paper, we give a general version of Chebyshev type inequality for pseudo-convolu-
tion integral on a semiring ð½a; b�;�;�Þ. Our result is flexible enough to support both
pseudo-integral and convolution integral, (e.g., fractional integral), thus closing the series
of papers. It includes the corresponding results of Agahi et al. [1] as a special case. Finally,
some concluding remarks are drawn and some open problems for further investigations
are given.
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1. Introduction

Convolution integral plays an important role in several theoretical and applied fields. For instance, it is a useful tool in
differential equations, probability, statistics, computer vision, image and signal processing and electrical engineering
[3,5,6,8,12,21,26,27]. Let f and U be two real-valued functions on [0,1). The convolution of these functions is defined by [22]
U � fð Þ tð Þ ¼
Z t

0
U t � xð Þf xð Þdx
whenever the integral is defined. A main property of convolution integral is
U � fð Þ tð Þ ¼ f �Uð Þ tð Þ:
Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real numbers a semiring is defined
on a real interval a; b½ � � �1;1½ � with pseudo-addition � and with pseudo-multiplication �, see [16,25]. Note that the
pseudo-integrals have shown their usefulness in several applications, for example in the area of nonlinear partial differential
equations occurring in different applied fields, see [15] as well as the edited volume [10].

The pseudo-convolution of the functions was introduced in [18], by means of the corresponding pseudo-integral
[16,14,25]. The aim of this contribution is to give an inequality related to Chebyshev for pseudo-convolution integral (see
Fig. 1). This inequality is flexible enough to support both pseudo-integral and convolution integral. Recently, there were
obtained generalizations of the classical integral inequalities with respect to pseudo-integrals [1,20].
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The paper is organized as follows. In the next section, we briefly recall some preliminaries and summarization of some
previous known results. In Section 3, we will focus on an inequality related to Chebyshev for pseudo-convolution integral.
Finally, some concluding remarks are added.

2. Preliminaries

In this section, we recall some well known results of pseudo-operations, pseudo-analysis and pseudo-additive measures
and integrals. For the convenience of the reader, we provide in this section a summary of the mathematical notations and
definitions used in this paper (see [1,16,20]).

Let a; b½ � be a closed (in some cases can be considered semiclosed) subinterval of �1;1½ �. The full order on a; b½ � will be
denoted by �. A binary operation � on ½a; b� is pseudo-addition if it is commutative, non-decreasing (with respect to �), con-
tinuous, associative, and with a zero (neutral) element denoted by 0. Let a; b½ �þ ¼ fxjx 2 a; b½ �;0 � xg. A binary operation � on
½a; b� is pseudo-multiplication if it is commutative, positively non-decreasing, i.e., x � y implies x� z � y� z for all z 2 a; b½ �þ,
associative and with a unit element 1 2 a; b½ �, i.e., for each x 2 a; b½ �;1� x ¼ x. We assume also 0� x ¼ 0 and that � is distrib-
utive over �, i.e.,
x� ðy� zÞ ¼ ðx� yÞ � ðx� zÞ
The structure a; b½ �;�;�ð Þ is a semiring (see [7]).
Let X be a non-empty set. Let A be a r-algebra of subsets of a set X.

Definition 2.1 [18]. A set function m : A ! ½a; b�þ (or semiclosed interval) is a �-measure if there holds:

(i) m /ð Þ ¼ 0 (if � is not idempotent);
(ii) m is r-�-(decomposable) measure, i.e.
m
[1
i¼1

Ai

 !
¼a

1

i¼1
mðAiÞ

holds for any sequence fAigi2N of pairwise disjoint sets fromA. If� is idempotent operation condition (i) can be left out
and sets from sequence fAig do not have to be pairwise disjointed.
We shall consider the semiring ð½a; b�;�;�Þ for two important (with completely different behavior) cases. First class is
when pseudo-operations are generated by a monotone and continuous function g : ½a; b� ! ½0;1�, i.e., pseudo-operations
are given with
x� y ¼ g�1 g xð Þ þ g yð Þð Þ and x� y ¼ g�1 g xð Þg yð Þð Þ:
Then the pseudo-integral for a function f : ½c; d� ! ½a; b� reduces on the g-integral [16,17],
Z �

½c;d�
f � dm ¼ g�1

Z d

c
g f ðxÞð Þdx

 !
:

Fig. 1. Pseudo-convolution integral.
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Since the generator g is an increasing function, then f is said to be integrable if
R�
½c;d� f � dm <1. More on this structure as well

as on corresponding measures and integrals can be found in [16,17].
Recently, Agahi et al. [1] proved the Chebyshev type inequality for the first class of pseudo-integrals based on two

comonotone functions. Notice that two functions u;v : X ! R are said to be comonotone if and only if
ðuðxÞ � uðyÞÞðvðxÞ � vðyÞÞP 0 for each couple of elements x; y 2 X, and u and v are said to be countermonotone if for all
x; y 2 X; ðuðxÞ � uðyÞÞðvðxÞ � vðyÞÞ 6 0.

Theorem 2.2 (Chebyshev’s inequality for the first class of pseudo-integrals). Let u;v : ½0;1� ! ½a; b� be two measurable functions
and let a generator g : ½a; b� ! ½0;1Þ of the pseudo-addition � and the pseudo-multiplication � be an increasing function. If u and
v are comonotone, then the inequality
Z �

½0;1�
u� vð Þ � dm P

Z �

½0;1�
u� dm

 !
�

Z �

½0;1�
v � dm

 !
holds and the reverse inequality holds whenever u and v are countermonotone functions.
The second class of pseudo-integrals is when x� y ¼ supðx; yÞ and x� y ¼ g�1 g xð Þg yð Þð Þ, the pseudo-integral for a function

f : R! ½a; b� is given by
Z �

R

f xð Þ � dm ¼ sup
x2R

f ðxÞ � w xð Þð Þ;
where function w defines sup-measure m. Any sup-measure generated as essential supremum of a continuous density can be
obtained as a limit of pseudo-additive measures with respect to generated pseudo-addition [11].

We denote by l the usual Lebesgue measure on R. We have
mðAÞ ¼ ess sup
l

xjx 2 Að Þ ¼ supfajlðfxjx 2 A; x > agÞ > 0g:
Theorem 2.3 [11]. Let m be a sup-measure on ð½0;1�;Bð½0;1�ÞÞ, where B ½0;1�ð Þ is the Borel r-algebra on
½0;1�;mðAÞ ¼ esssupl w xð Þjx 2 Að Þ, and w : ½0;1� ! ½0;1� is a continuous density. Then for any pseudo-addition � with a
generator g there exists a family fmkg of �k-measure on ð½0;1Þ;BÞ, where �k is generated by gk (the function g of the power k),
k 2 ð0;1Þ, such that limk!1mk ¼ m.
Theorem 2.4 [11]. Let ð½0;1�; sup;�Þ be a semiring with � with a generator g, i.e.,we have x� y ¼ g�1ðgðxÞgðyÞÞ for every x; y
2 ½a; b�. Let m be the same as in Theorem 2.3. Then there exists a family fmkg of �k-measures, where �k is generated by
gk; k 2 ð0;1Þ such that for every continuous function f : ½0;1� ! ½0;1�
Z sup

f � dm ¼ lim
k!1

Z �k

f � dmk ¼ lim
k!1

gk
� ��1

Z
gk f xð Þð Þdx

� �
:

In [1], Agahi et al. proved the following result for the second class of pseudo-integral, when � ¼ sup, and
� ¼ g�1ðgðxÞgðyÞÞ.
Theorem 2.5 (Chebyshev’s inequality for the second class of pseudo-integrals). Let u;v : ½0;1� ! ½a; b� be two continuous
functions and � is represented by an increasing multiplicative generator g and m be the same as in Theorem 2.3. If u and v are
comonotone, then the inequality
Z sup

½0;1�
u� vð Þ � dm P

Z sup

½0;1�
u� dm

 !
�

Z sup

½0;1�
v � dm

 !
holds and the reverse inequality holds whenever u and v are countermonotone functions.
3. Main results

This section provides an inequality related to Chebyshev type for pseudo-convolution integral. Now, our results can be
stated as follows.

Theorem 3.1. Let b > a P 0. Let u;v ;h1;h2 : ½0;1Þ ! ½a; b� be integrable functions and let a generator g : ½a; b� ! ½0;1� of the
pseudo-addition � and the pseudo-multiplication � be an increasing function. If u and v are comonotone, then the inequality
h1 � uð Þ tð Þ � h2 � vð Þ tð Þ½ � � h1 � vð Þ tð Þ � h2 � uð Þ tð Þ½ � 6 h2 � 1ð Þ tð Þ � h1 � u� vð Þð Þ½ �
� h1 � 1ð Þ tð Þ � h2 � u� vð Þð Þ tð Þ½ � ð3:1Þ
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holds where the symbol hi � u; i ¼ 1;2 denote the g- convolution of hi and u that are defined by [18]
hi � uð Þ tð Þ ¼
Z �

½0;t�
hi t � xð Þ � u xð Þ½ � � dm; i ¼ 1;2
for all t 2 ½0;1Þ.
Proof. If u and v are comonotone, and g is an increasing function, then the composition g 	 u and g 	 v are also comonotone.
So, for all s P 0; p P 0, we have
g 	 uðsÞ � g 	 uðpÞð Þ g 	 vðsÞ � g 	 vðpÞð ÞP 0:
Then it is easy to see that
Z t

0
g 	 h2 t � pð Þð Þdp

� � Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þ g 	 vðsÞð Þds

� �

þ
Z t

0
g 	 h1 t � sð Þð Þds

� � Z t

0
g 	 h2 t � pð Þð Þ g 	 uðpÞð Þ g 	 vðpÞð Þdp

� �

P
Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þds

� � Z t

0
g 	 h2 t � pð Þð Þ g 	 vðpÞð Þdp

� �

þ
Z t

0
g 	 h1 t � sð Þð Þ g 	 vðsÞð Þds

� � Z t

0
g 	 h2 t � pð Þð Þ g 	 uðpÞð Þdp

� �
:

Since function g is an increasing function, then g�1 is also an increasing function and we have
g�1

R t
0 g 	 h2 t � pð Þð Þdp

� � R t
0 g 	 h1 t � sð Þð Þ g 	 uðsÞð Þ g 	 vðsÞð Þds

� �

þ
R t

0 g 	 h1 t � sð Þð Þds
� � R t

0 g 	 h2 t � pð Þð Þ g 	 uðpÞð Þ g 	 vðpÞð Þdp
� �

0
BB@

1
CCA

P g�1

R t
0 g 	 h1 t � sð Þð Þ g 	 uðsÞð Þds

� � R t
0 g 	 h2 t � pð Þð Þ g 	 vðpÞð Þdp

� �

þ
R t

0 g 	 h1 t � sð Þð Þ g 	 vðsÞð Þds
� � R t

0 g 	 h2 t � pð Þð Þ g 	 uðpÞð Þdp
� �

0
BB@

1
CCA:

ð3:2Þ
Hence
g�1
Z t

0
g 	 h2 t � pð Þdp

� �


Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þ g 	 vðsÞð Þds

� �� 	

¼ g�1 g g�1
Z t

0
g 	 h2 t � pð Þdp

� �� �

 g g�1

Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þ g 	 vðsÞð Þds

� �� �� 	

¼ g�1
Z t

0
g 	 h2 t � pð Þdp

� �
� g�1

Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þ g 	 vðsÞð Þds

� �

¼ g�1
Z t

0
g 	 h2 t � pð Þ 
 g 	 g�1 1ð Þdp

� �
� g�1

Z t

0
g 	 h1 t � sð Þð Þ 
 g uðsÞ � vðsÞð Þds

� �

¼ g�1
Z t

0
g 	 h2 t � pð Þ � g�1 1ð Þ
� �

dp
� �

� g�1
Z t

0
g 	 h1 t � sð Þ � uðsÞ � vðsÞð Þð Þds

� �

¼
Z �

½0;t�
h2 t � pð Þ � g�1 1ð Þ
� �

� dm

 !
�

Z �

½0;t�
h1 t � sð Þ � uðsÞ � vðsÞð Þð Þ � dm

 !

¼ h2 � 1ð Þ tð Þ � h1 � u� vð Þð Þ tð Þ: ð3:3Þ
Similarly,
g�1
Z t

0
g 	 h1 t � sð Þð Þds

� � Z t

0
g 	 h2 t � pð Þð Þ g 	 uðpÞð Þ g 	 vðpÞð Þdp

� �� 	
¼ h1 � 1ð Þ tð Þ � h2 � u� vð Þð Þ tð Þ: ð3:4Þ
In the other side we have:
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g�1
Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þds

� �


Z t

0
g 	 h2 t � pð Þð Þ g 	 vðpÞð Þdp

� �� 	

¼ g�1 g g�1
Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þds

� �� �

 g g�1

Z t

0
g 	 h2 t � pð Þð Þ g 	 vðpÞð Þdp

� �� �� 	

¼ g�1
Z t

0
g 	 h1 t � sð Þð Þ g 	 uðsÞð Þds

� �
� g�1

Z t

0
g 	 h2 t � pð Þð Þ g 	 vðpÞð Þdp

� �

¼ g�1
Z t

0
g 	 h1 t � sð Þ � uðsÞð Þds

� �
� g�1

Z t

0
g 	 h2 t � pð Þ � vðpÞð Þdp

� �

¼
Z �

½0;t�
h1 t � sð Þ � uðsÞð Þ � dm

 !
�

Z �

½0;t�
h2 t � pð Þ � vðpÞð Þ � dm

 !
¼ h1 � uð Þ tð Þ � h2 � vð Þ tð Þ: ð3:5Þ
Similarly,
g�1
Z t

0
g 	 h1 t � sð Þð Þ g 	 vðsÞð Þds

� �


Z t

0
g 	 h2 t � pð Þð Þ g 	 uðpÞð Þdp

� �� 	
¼ h1 � vð Þ tð Þ � h2 � uð Þ tð Þ: ð3:6Þ
Now, (3.2)–(3.5) and (3.6) imply that
g�1 g h2 � 1ð Þ tð Þ � h1 � u� vð Þð Þ tð Þ½ � þ g h1 � 1ð Þ tð Þ � h2 � u� vð Þð Þ tð Þ½ �ð Þ
P g�1 g h1 � uð Þ tð Þ � h2 � vð Þ tð Þ½ � þ g h1 � vð Þ tð Þ � h2 � uð Þ tð Þ½ �ð Þ:
I.e.,
h2 � 1ð Þ tð Þ � h1 � u� vð Þð Þ½ � � h1 � 1ð Þ tð Þ � h2 � u� vð Þð Þ tð Þ½ �P h1 � uð Þ tð Þ � h2 � vð Þ tð Þ½ � � h1 � vð Þ tð Þ � h2 � uð Þ tð Þ½ �;
which completes the proof. �
Remark 3.2. The reverse inequality (3.1) holds whenever u and v are countermonotone functions.
Let h1 ¼ h2 ¼ h in Theorem 3.1. Then we obtain the following result.

Corollary 3.3. Let b > a P 0. Let u;v ;h : ½0;1Þ ! ½a; b� be integrable functions and let a generator g : ½a; b� ! ½0;1� of the
pseudo-addition � and the pseudo-multiplication � be an increasing function. If u and v are comonotone, then the inequality
Z �

½0;t�
h t � xð Þ � u xð Þ½ � � dm

 !
�

Z �

½0;t�
h t � xð Þ � v xð Þ½ � � dm

 !

6

Z �

½0;t�
h t � xð Þ � u xð Þ � v xð Þð Þ½ � � dm

 !
�

Z �

½0;t�
h t � xð Þ � dm

 !
holds for all t 2 ½0;1Þ.
Corollary 3.4. Let u;v : ½0;1Þ ! ½a; b� be two integrable functions and let a generator g : ½a; b� ! ½0;1� of the pseudo-addition �
and the pseudo-multiplication � be an increasing function. If u and v are comonotone, then the inequality
Ja�;�u tð Þ � Ja�;�v tð Þ 6 K tð Þ � Ja�;� u� vð Þ tð Þ;
holds where K tð Þ ¼ g�1 ta
C aþ1ð Þ

� �
and the symbol Ja

�;�f denotes pseudo-fractional integrals of the order a > 0 that is defined by
Ja
�;�uðtÞ ¼

Z �

½0;t�
g�1 C að Þð Þ�1 t � xð Þa�1
� �

� u xð Þ
� �

� dm
for all t 2 ½0;1Þ. Here CðaÞ is the gamma function.
Proof. Let h t � xð Þ ¼ g�1 C að Þð Þ�1 t � xð Þa�1
� �

;a > 0 in Corollary 3.3, then we get the desired result. �

Example 3.5. Let gðxÞ ¼ xb for some b 2 ð0;1Þ. The corresponding pseudo-operations are x� y ¼ xb þ ybð Þ
1
b and x� y ¼ xy. If

u and v are comonotone, then it holds
1
C að Þ

Z t

0
t � xð Þa�1ub xð Þdx

� � Z t

0
t � xð Þa�1vb xð Þdx

� �
6

ta

C aþ 1ð Þ

Z t

0
t � xð Þa�1ub xð Þvb xð Þdx

� �
;

and the reverse inequality holds whenever u and v are countermonotone functions.
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Using Corollary 3.4 for a ¼ 1, we have [1, Theorem 3.3] on ½0; t�.

Corollary 3.6. Let u;v : ½0;1Þ ! ½a; b� be two integrable functions and let a generator g : ½a; b� ! ½0;1� of the pseudo-addition �
and the pseudo-multiplication � be an increasing function. If u and v are comonotone, then for all t 2 ½0;1Þ, the inequality
g�1 tð Þ �
Z �

½0;t�
u� vð Þ � dm P

Z �

½0;t�
u� dm

 !
�

Z �

½0;t�
v � dm

 !
holds.
Note 3.7. Under conditions of Theorem 3.1, inequality (3.1) holds where the symbol hi � u; i ¼ 1;2 are defined by [18]
hi � uð Þ tð Þ ¼
Z �

½1;t�
½hi

t
x

� �
� u xð Þ� � dm; i ¼ 1;2
for all t 2 ½1;1Þ.
Now we consider the second case, when � ¼ sup, and � ¼ g�1ðgðxÞgðyÞÞ.

Theorem 3.8. Let u; v;h1;h2 : ½0;1Þ ! ½a; b� be continuous functions and � is represented by an increasing multiplicative
generator g and m be the same as in Theorem 2.3. If u and v are comonotone, then the inequality
sup h1 �uð Þ tð Þ� h2 �vð Þ tð Þ½ �; h1 �vð Þ tð Þ� h2 �uð Þ tð Þ½ �ð Þ6 sup h2 �1ð Þ tð Þ� h1 � u�vð Þð Þ½ �; h1 �1ð Þ tð Þ� h2 � u�vð Þð Þ tð Þ½ �ð Þ ð3:7Þ
holds where
hi � uð Þ tð Þ ¼
Z sup

½0;t�
hi t � xð Þ � u xð Þ½ � � dm; i ¼ 1;2
for all t 2 ½0;1Þ.
Proof. Since u and v are comonotone functions, then proof is obtained immediately from Theorems 3.1 and 2.4. �
Remark 3.9. The reverse inequality (3.7) holds whenever u and v are countermonotone functions.
Let h1 ¼ h2 ¼ h in Theorem 3.8. Then we obtain the following result.

Corollary 3.10. Let u;v ;h : ½0;1Þ ! ½a; b� be continuous functions and � is represented by an increasing multiplicative generator
g and m be the same as in Theorem 2.3. If u and v are comonotone, then the inequality
Z sup

½0;t�
h t � xð Þ � u xð Þ½ � � dm

 !
�

Z sup

½0;t�
h t � xð Þ � v xð Þ½ � � dm

 !

6

Z sup

½0;t�
h t � xð Þ � u xð Þ � v xð Þð Þ½ � � dm

 !
�

Z sup

½0;t�
h t � xð Þ � dm

 !
holds for all t 2 ½0;1Þ.
Corollary 3.11. Let u;v : ½0;1Þ ! ½a; b� be two continuous functions and � is represented by an increasing multiplicative gener-
ator g and m be the same as in Theorem 2.3. If u and v are comonotone, then for all a > 0, the inequality
Jasup;� u tð Þ � Jasup;�v tð Þ 6 K tð Þ � Jasup;� u� vð Þ tð Þ;
holds where K tð Þ ¼ g�1 ta
C aþ1ð Þ

� �
and
Ja
sup;� uðtÞ ¼

Z sup

½0;t�
g�1 C að Þð Þ�1 t � xð Þa�1
� �

� u xð Þ
� �

� dm
for all t 2 ð0;1Þ.
Proof. Let h ¼ g�1 C að Þð Þ�1 t � xð Þa�1
� �

;a > 0 in Corollary 3.10, then we have the desired result. �

Example 3.12. Let gkðxÞ ¼ ekx and w xð Þ be from Theorem 2.3. Then
x�ky ¼ xþ y
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and
lim
k!1

1
k

ln ekx þ eky
� �� �

¼maxðx; yÞ:
If u and v are comonotone, then the inequality
sup
06x6t

1
k

ln
t � xð Þa�1

C að Þ

 !
þ u xð Þ þ w xð Þ

 !
þ sup

06x6t

1
k

ln
t � xð Þa�1

C að Þ

 !
þ v xð Þ þ w xð Þ

 !

6
1
k

ln
ta

C aþ 1ð Þ

� �
þ sup

06x6t

1
k

ln
t � xð Þa�1

C að Þ

 !
þ u xð Þ þ v xð Þ þ w xð Þ

 !
;

holds and the reverse inequality holds whenever u and v are countermonotone functions.
Using Corollary 3.11 for a ¼ 1, we have [1, Theorem 3.3] on ½0; t�.

Corollary 3.13. Let u;v : ½0;1Þ ! ½a; b� be two continuous functions and � is represented by an increasing multiplicative
generator g and m be the same as in Theorem 2.3. If u and v are comonotone, then for all t 2 ð0;1Þ, the inequality
g�1 tð Þ �
Z sup

½0;t�
u� vð Þ xð Þ � dm P

Z sup

½0;t�
u xð Þ � dm

 !
�

Z sup

½0;t�
v xð Þ � dm

 !
holds.
Note 3.14. Under conditions of Theorem 3.8, inequality (3.7) holds where
hi � uð Þ tð Þ ¼
Z sup

½1;t�
½hi

t
x

� �
� u xð Þ� � dm; i ¼ 1;2
for all t 2 ½1;1Þ.
Remark 3.15. We note that the third important case � ¼ sup and � ¼min has been studied in [4,9,13], where the pseudo-
convolution integral in such a case yield the Sugeno integral [24] when the considered measure is maxitive. Observe that the
results in the quoted references are valid also in the more general setting of monotone measures, i.e., for the standard Sugeno
integral.
Remark 3.16. Observe that generalizations of our convolutions results can be obtained when considering hðkðt; xÞÞ instead of
hðt � xÞ when defining a pseudo-convolution, where k is an appropriate 2-place function, for example kðt; xÞ ¼ t=x.
4. Concluding remarks

We have introduced a general version of Chebyshev type inequality for pseudo-convolution integral. This inequality is
flexible enough to support both pseudo-integral and convolution integral. In the case of generated pseudo-operations, we
recover the g-integral of Pap [16], which can be seen as a generalization of the Lebesgue integral. This type of integrals
was shown to be extremely useful in the advanced investigation and applications of nonlinear partial differential
equations [15], and just there our results concerning integral inequalities are expected to play an important role for
proving convergences, finding good estimations of solutions, etc., similar to that one of classical integral inequalities
in the domain of linear partial differential equations. For more details about possible applications of pseudo-convolutions
and related inequalities in the area of partial differential equations, we recommend the discussion on Bellman
differential equation for multicriteria decision problems in [19, Section 4.2], where our inequalities allow to estimate
the optimal solution.

For further investigations we propose to consider the following problems:

Open Problem: What can be told for the pseudo-convolution integral inequality of Chebyshev type (3.1) when set-valued
functions [23] are considered?
Open Problem: Is there a version of convolution integral when Choquet integral [2] is considered?
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