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Abstract. Semi-Markov decision processes can be considered as an extension of
discrete- and continuous-time Markov reward models. Unfortunately, traditional opti-
mality criteria as long-run average reward per time may be quite insufficient to charac-
terize the problem from the point of a decision maker. To this end it may be preferable
if not necessary to select more sophisticated criteria that also reflect variability-risk
features of the problem. Perhaps the best known approaches stem from the classical
work of Markowitz on mean-variance selection rules, i.e. we optimize the weighted
sum of average or total reward and its variance. Such approach has been already
studied for very special classes of semi-Markov decision processes, in particular, for
Markov decision processes in discrete- and continuous-time setting. In this note these
approaches are summarized and possible extensions to the wider class of semi-Markov
decision processes is discussed. Attention is mostly restricted to uncontrolled models
in which the chain is aperiodic and contains a single class of recurrent states. In this
case growth rate of total reward and the variance is again asymptotically linear in time
and is independent of the starting state.
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1 Introduction
The usual optimization criteria examined in the literature on stochastic dynamic programming, such as a total
discounted or mean (average) reward structures, may be quite insufficient to characterize robustness of the problem
from the point of a decision maker. To this end it may be preferable if not necessary to select more sophisticated
criteria that also reflect stability and variability-risk features of the problem. Hence robustness and risk control are
also important issues in practical applications. As well known one of the common and popular risk measure is the
variance which is often used to characterize the stability of the system. Perhaps the best known approaches stem
from the classical work of Markowitz (cf. [6]) on mean variance selection rules, i.e. we optimize the weighted
sum of average or total reward and its variance. Higher moments and variance of cumulative rewards in Markov
reward chains have been primarily studied for discrete time models. Research in this direction has been initiated
in Benito [1], Jaquette [4], Mandl [5] and Sobel [15].

In the paper Van Dijk and Sladký [14] results for the discrete-time case are extended to continuous-time Markov
reward chains. As the essential step is an expression for the variance of the undiscounted cumulative reward and
its asymptotic behavior. In this note, for the sake of simplicity, the presentation is restricted to the uncontrolled
case, the implication for the controlled case is only briefly be referred to. For additional results on the limiting
average variance for continuous-time models let us mention the paper by Prieto-Rumeau and Hernández-Lerma
[7] along with the monograph [2]. Similar results are also reported in Guo et al [3]. Since no transition rewards are
considered, the obtained formula for the limiting variance is a special case of more complicated results reported in
[14].

The article is structured as follows. Section 2 contains notations and summary of basic facts on discrete- and
continuous-time Markov reward chains and their extensions to semi-Markov reward processes. The heart of the
paper are sections 3 and 4. Second order optimality for Markov reward chains is discussed in Section 3, i.e.
formulas for total expected reward and for the corresponding variances of total reward are derived for discrete-
and continuous-time models. The analysis is limited to finite horizon case, however, the obtained results can be
also used for long run discounted (or transient) models. Extensions of presented results to semi-Markov reward
processes is contained in Section 4. Conclusions are made in Section 5.
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2 Notations and Preliminaries
Semi-Markov processes present an extension of Markov processes considered in discrete- and continuous-time
setting. Considering Markov models with rewards we can summarize the following facts.

In the discrete-time case, we consider Markov decision chain Xd = {Xn, n = 0, 1, . . .} with finite state space
I = {1, 2, . . . , N}, and finite set Ai = {1, 2, . . . ,Ki} of possible decisions (actions) in state i ∈ I. Supposing
that in state i ∈ I action a ∈ Ai is selected, then state j is reached in the next transition with a given probability
pij(a) and one-stage transition reward rij will be accrued to such transition.

In the continuous-time setting, the development of the considered Markov decision process Xc = {X(t), t ≥
0} (with finite state space I) over time is governed by the transition rates q(j|i, a), for i, j ∈ I, depending
on the selected action a ∈ Ai. For j ̸= i q(j|i, a) is the transition rate from state i into state j, q(i|i, a) =∑

j∈I,j ̸=i q(j|i, a) is the transition rate out of state i. Recall that on entering state i the process stays in state i for
a random time that is exponentially distributed with parameter q(i, a) = −q(i|i, a) and the next jump to state j
occurs with probability pij(a) = q(j|i, a)/q(i, a). As concerns reward rates, r(i) denotes the rate earned in state
i ∈ I, and r(i, j) is the transition rate accrued to a transition from state i to state j.

A (Markovian) policy controlling the decision process is given by either a sequence of decision at every time
point (discrete-time case) or as a piecewise constant right continuous function of time (continuous-time case). In
particular, for discrete-time models policy controlling the chain, π = (f0, f1, . . .), is identified by a sequence of
decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is
the decision (or action) taken at the nth transition if the chain Xd is in state i.

We denote by P (f) = [pij(fi)] the N × N transition matrix of the chain Xd. Obviously, the row sums
along with the spectral radius of P (f) are equal to one. Transition probability matrix P̃ (f) is called transient
if the spectral radius of P̃ (f) is less than unity, i.e. it at least some row sums of P̃ (f) are less than one. Then
limn→∞[P̃ (f)]n = 0. Observe that if P (f) is stochastic and α ∈ (0, 1) then P̃ (f) := αP (f) is transient, however,
if P̃ (f) is transient it may happen that some row sums may be even greater than unity.

Policy which takes at all times the same decision rule, i.e. π ∼ (f), is called stationary; P (f) is transition
probability matrix with elements pij(fi). Recall that the limiting matrix P ∗(f) = lim

m→∞
m−1

∑m−1
n=0 Pn(f) exists;

in case that the chain is aperiodic even P ∗(f) = lim
n→∞

(P (f))n. In particular, if P (f) is unichain (i.e. P (f)

contains a single class of recurrent states) the rows of P ∗(f), denoted p∗(fi), are identical. Obviously, ri(fi) =∑N
j=1 pij(fi)rij is the expected one-stage reward obtained in state i ∈ I and r(f) denotes the corresponding N -

dimensional column vector of one-stage rewards. Then v(f) := [P (f)]n · r(f) is the (column) vector of rewards
accrued after n transitions, its ith entry vi(f) denotes expectation of the reward if the process Xd starts in state i.

Similarly, for the continuous-time case policy controlling the chain, π = f(t), is a piecewise constant, right
continuous vector function where f(t) ∈ F ≡ A1 × . . . × AN , and fi(t) ∈ Ai is the decision (or action) taken
at time t if the process X(t) is in state i. Since π is piecewise constant, for each π we can identify the time points
0 < t1 < t2 . . . < ti < . . . at which the policy switches; we denote by f i ∈ F the decision rule taken in the time
interval (ti−1, ti]. Policy which takes at all times the same decision rule, i.e. π ∼ (f), is called stationary.

Let for f ∈ F Q(f) = [qij(fi)] be an N ×N matrix whose ijth element qij(fi) = q(j|i, fi) for i ̸= j and for
the iith element we set qii(fi) = −q(i|i, fi) (recall that the row sums of a transition rate matrix Q(f) are equal
to null). The sojourn time of the considered process Xc in state i ∈ I is exponentially distributed with parameter
q(i|i, fi). Hence the expected value of the reward obtained in state i ∈ I equals ri(fi) = [q(i|i, fi)]−1 r(i) +∑

j∈I,j ̸=i q(j|i, fi) r(i, j) and r(f) = [ri(f)] is the (column) vector of reward rates at time t. Recall that 0 is an
eigenvalue of Q(f), and the real part of any eigenvalue of Q(f) is non-positive. Similarly to discrete-time model
Q̃(f) is transient if the real part of any eigenvalue of Q(f) is negative.

The above two models can be unified and generalized by introducing semi-Markov reward processes. To this
end, we shall define semi-Markov reward processes as follows.

Consider a controlled semi-Markov reward process Y = {Y (t), t ≥ 0} with finite state space I = {1, 2, . . . , N}
along with the embedded Markov chain Xd = {Xn, n = 0, 1, . . .}. We assume that Xd is unichain for any sta-
tionary policy. The development of the process Y (t) over time is the following:

At time t = 0 if Y (0) = i the decision maker selects decision from a finite set Ai = {1, 2, . . . ,Ki} of possible
decisions (actions) in state i ∈ I. Then state j is reached in the next transition with a given probability pij(a)
after random time ηi(a). Let Fi(a, τ) be a non-lattice distribution function representing the conditional probability
P(ηi ≤ τ). We assume that for ℓ = 1, 2 and any i, j = 1, . . . , N , 0 < d

(ℓ)
i (a) =

∫∞
0

τ ℓ dFi(a, τ) < ∞.
Finally, one-stage transition reward r(i, j) > 0 will be accrued to such transition and reward rate r(i) per unit of
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time incurred in state i is earned.

A (Markovian) policy controlling the semi-Markov process Y , π = (f0, f1, . . .), is identified by a sequence
of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . ×AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai

is the decision (or action) taken at the nth transition if the embedded Markov chain Xd is in state i. Let πk be a
sequence of decision vectors starting at the k-th transition, hence π = (f0, f1, . . . fk−1, πk).

Let ξn be the cumulative random reward obtained in the n first transitions of the considered embedded Markov
chain Xd and ξ(t) denotes the (random) reward earned up to time t, i.e.

ξn =
n−1∑
k=0

[r(Xk) · ηXk,Xk+1
+ r(Xk, Xk+1)], ξ(t) :=

∫ t

0

r(Y (s))ds +

N(t)∑
k=0

r(Y (τ−k ), Y (τ+k ))

 (1)

with Y (s), denoting the state of the system at time s, Y (τ−k ) and Y (τ+k ) the state just prior and after the kth jump,
N(t) the number of jumps up to time t.

Obviously, discrete-time Markov reward chain is a very special case of semi-Markov reward process where all
holding times are non-random and equal to one, and one-stage rewards depend only on the labels of the consecutive
two states. Moreover, continuous-time Markov reward chains can be considered as a very specific case of semi-
Markov reward processes where holding times are exponentially distributed. In particular, considering continuous-
time Markov reward process with transition rates q(j|i, a), reward rates r(i) in state i and rewards per transition
r(i, j), the process can be treated as a semi-Markov process with transition probabilities pij(a) = q(j|i, a)/q(i, a)
and exponentially distributed holding times with parameter q(i, a).

It is well-known that the long-run average reward of the considered semi-Markov process Y can be calculated
using the embedded Markov chain Xd. In particular, if stationary policy π ∼ (f) is followed, on recalling that
Xd is unichain the limiting matrix P ∗(f) has identical rows, i.e. p∗j (f) is the jth entry of each row of P ∗(f).
Moreover, for the long run models also the fraction of time spent by the semi-Markov process Y in state i can
be easily calculated (see e.g. [8, 9]). Then the average reward per unit of time, say ḡ(f), generated by the semi-
Markov process Y is independent of the starting state and can be calculated as

ḡ(f) =
∑
j∈I

p̄∗j (f) ·rj(f), where p̄∗i (f) =
p∗i (f) · di(f)∑

j∈I p∗jℓ(f) · dj(f)
, rj(f) = dj(f) ·r(j)+

∑
ℓ∈I

pjℓ(fi) ·r(j, ℓ). (2)

Similarly it is possible to extend the presented discrete-time Markov reward chain model to a more general model
of semi-Markov reward processes. To this end, let ηi(a) be the random time spent in state i with expectation di(a)
if action a is chosen. Obviously, it suffices to add in each state i ∈ I to the one-stage rewards rij the following
term r(i) · ηi(a) representing additional reward earned during random stay of the process X in state i. Hence the
expected value and the second moment of the total reward earned in state i are r(i) ·d(1)i (a)+

∑
i∈I pij(a) · r(i, j)

and
∑

i∈I pij(a) · E [r(i) · ηi(a) + rij ]
2 respectively.

3 Second Order Optimality in Markov Reward Chains
Considering discrete-time models, let ξn(π) =

∑n−1
k=0 rXk,Xk+1

be the stream of rewards received in the n next
transitions of the considered Markov chain X if policy π = (fn) is followed. Supposing that X0 = i, on taking
expectation we get for the first and second moments of ξn(π)

v
(1)
i (π, n) := E π

i (ξn(π)) = E π
i

∑n−1
k=0 rXk,Xk+1

, v
(2)
i (π, n) := E π

i (ξn(π))
2 = E π

i (
∑n−1

k=0 rXk,Xk+1
)2.

If policy π ∼ (f) is stationary, the process Xd is time homogeneous and for m < n we write for the generated
random reward ξn = ξm + ξn−m (here we delete the symbol π and tacitly assume that P(Xm = j) and ξn−m

starts in state j). Hence [ξn]
2 = [ξm]2 + [ξn−m]2 + 2 · ξm · ξn−m. Then for n > m we can conclude that

E π
i [ξn] = E π

i [ξm] + E π
i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]

}
. (3)

E π
i [ξn]

2 = E π
i [ξm]2 + E π

i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]2

}
+ 2 · E π

i [ξm]
∑
j∈I

P(Xm = j) · E π
j [ξn−m]. (4)
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In particular, from (3), (4) we conclude for m = 1

v
(1)
i (f, n+ 1) = r

(1)
i (fi) +

∑
j∈I

pij(fi) · v(1)j (f, n) (5)

v
(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 ·

∑
j∈I

pij(fi) · rij · v(1)j (f, n) +
∑
j∈I

pij(fi) v
(2)
j (f, n) (6)

where r
(1)
i (fi) :=

∑
j∈I pij(fi) · rij , r

(2)
i (fi) := [

∑
j∈I pij(fi) · [rij ]2.

Since the variance σ
(2)
i (f, n) = v

(2)
i (f, n)− [v

(1)
i (f, n)]2 from (5),(6) we get

σ
(2)
i (f, n+ 1) = r

(2)
i (fi) +

∑
j∈I

pij(fi) · σ(2)
j (f, n) + 2

∑
j∈I

pij(fi) · rij · v(1)j (f, n)

−[v
(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · [v(1)j (f, n)]2 (7)

=
∑
j∈I

pij(fi) · [rij + v
(1)
j (f, n)]2 − [v

(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · σ(2)
j (f, n). (8)

Using matrix notations (cf. [12, 13]) equations (5),(6),(20) can be written as:

v(1)(f, n+ 1) = r(1)(f) + P (f) · v(1)(f, n) (9)

v(2)(f, n+ 1) = r(2)(f) + 2 · P (f) ◦R · v(1)(f, n) + P (f) · v(2)(f, n) (10)

σ(2)(f, n+ 1) = r(2)(f) + P (f) · σ(2)(f, n) + 2 · P (f) ◦R · v(1)(f, n)
−[v(1)(f, n+ 1)]2 + P (f) · [v(1)(f, n)]2 (11)

where R = [rij ] is an N×N -matrix, and r(2)(f) = [r
(2)
i (fi)], v

(2)(f, n) = [v
(2)
i (f, n)], v(1)(f, n) = [(v

(1)
i (f, n)],

σ(2)(f, n) = [σ
(2)
i (f, n)] are column vectors. The symbol ◦ is used for Hadamard (entrywise) product of matri-

ces. Observe that r(1)(f) = (P (f) ◦ R) · e, r(2)(f) = [P (f) ◦ (R ◦ R)] · e (e is reserved for unit column
vector).

Similarly, considering Markov reward chains in continuous time the expected reward vi(t, π) can be considered
as the first moment of the random variable ξ(t) if the starting state X(0) = i policy π = f(t) is followed.
Similarly, the corresponding second moment and variance are given by v

(2)
i (t, π) := E π

i [ξ(t)]
2, σ

(2)
i (t, π) :=

v
(2)
i (t, π)− [vi(t, π)]

2.

Considering stationary policy π ∼ (f), let ξ(t + ∆) = ξ(∆) + ξ(∆,t+∆) where ξ(∆,t+∆) is reserved for
the total (random) reward obtained in the time interval [∆, t + ∆). Then ξ(∆) + ξ(∆,t+∆) and [ξ(t + ∆)]2 =
[ξ(∆)]2 + [ξ(∆,t+∆)]2 + 2[ξ(∆)][ξ(∆,t+∆)] and hence

E π
i [ξ(t+∆)] = E π

i [ξ(∆)] + E π
i [ξ

(∆,t+∆)] (12)

E π
i [ξ(t+∆)]2 = E π

i [ξ(∆)]2 + E π
i [ξ

(∆,t+∆)]2 + 2 · E π
i [ξ(∆)][ξ(∆,t+∆)] (13)

Then, by using that P (∆, f) = I + ∆Q(f) + o(∆2) and that the probability for more than one transition in
time ∆ is of order ∆2, for ∆ tending to zero we obtain

dvi(t, f)

dt
= r(i) +

∑
j∈I,j ̸=i

qij(fi) · r(i, j) +
∑

j∈I,j ̸=i

qij(fi) · [vj(t, f)− vi(t, f)]

= ri(fi) +
∑
j∈I

qij(fi) · vj(t, f) (14)

dv
(2)
i (t, f)

dt
= 2 · r(i) · vi(t, f) +

∑
j∈I,j ̸=i

qij(fi)
{
[r(i, j)]2 + 2 · r(i, j) · vj(t, f)

}
+
∑
j∈I

qij(fi) · v(2)j (t, f) (15)
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By σ
(2)
i (t, f) = v

(2)
i (t, f)− [vi(t, f)]

2 we thus obtain:

d

dt
σ
(2)
i (t, f) =

d

dt
v
(2)
i (t, f)− 2 · vi(t, f)

d

dt
vi(t, f)

= 2 · r(i) · vi(t, f) +
∑

j∈I,j ̸=i

qij(fi)
{
[r(i, j)]2 + 2 · r(i, j) · vj(t, f)

}
+
∑
j∈I

qij(fi) · v(2)j (t, f)

−2 · vi(t, f) · r(i)(fi) +
∑
j∈I

qij(fi) · vj(t, f) (16)

Using matrix notations equations (14),(15) can be written as:

d

dt
v(t, f) = r(f) +Q(f) · v(t, f), d

dt
v(2)(t, f) = r(2)(t, f) +Q(f) · v(2)(t, f). (17)

where r(f) = [ri(f)], r(2)(t, f) = [r
(2)
i (t, f)], v(t, f) = [vi(t, f)], v(2)(t, f) = [v

(2)
i (t, f)], are column vectors

with elements ri(fi) = r(i) +
∑

j∈I,j ̸=i qij(fi)r(i, j), r
(2)
i (t, f) = 2r(i)vi(t, f) +

∑
j∈I,j ̸=i qij(fi){[r(i, j)]2 +

2r(i, j)vj(t, f)}.

Similarly after some algebra (16) can be also written as

d

dt
σ(2)(t, f) = r(2σ)(t, f) +Q(f)σ(2)(t, f) where

σ(2)(t, f) = [σ
(2)
i (t, f)], r(2σ)(t, f) = [r

(2σ)
i (t, f)], r(2σ)i (t, f) =

∑
j∈I,j ̸=i qij(fi)[r(i, j) + vj(t, f)− vi(t, f)]

2

4 Mean Reward Variance and Semi-Markov Processes
In this section we extend reported results concerning Markov reward chains to semi-Markov processes. To this
end, we focus attention on the embedded Markov chain Xd and extend the corresponding formulas presented in
Section 3. In particular, we shall assume that if in state i ∈ I action a is selected and state j is then reached the
one-step (random) reward earned in state i, say ξi,j , is equal to r(i) · ηi(a) + r(i, j) and taking the expectation we
can conclude that E ξi,j = i

∑
j∈I pij(a) · r(i, j) + r(i) · d(1)i (a).

Unfortunately, E [ξi]
2 = [r(i)]2 · d(2)i (a) +

∑
j∈I pij(a){2r(i) · d(1)i (a) + [r(i, j)]2} and on using this way of

reasoning formulas (3)–(6) can be replaced by

v
(1)
i (f, n+ 1) = r

(1)
i (fi) +

∑
j∈I

pij(fi) · v(1)j (f, n) (18)

v
(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 ·

∑
j∈I

pij(fi) · [r(i, j) + r(i) · di(fi) · v(1)j (f, n)] +
∑
j∈I

pij(fi) · v(2)j (f, n)(19)

where r
(1)
i (fi) := r(i) · d(1)i (fi) +

∑
j∈I pij(fi) · r(i, j), r

(2)
i (fi) := [

∑
j∈I pij(fi) · [r(i, j)]2.

Since the variance σ
(2)
i (f, n) = v

(2)
i (f, n)− [v

(1)
i (f, n)]2 from (5),(6) we get

σ
(2)
i (f, n+ 1) = r

(2)
i (fi) +

∑
j∈I

pij(fi) · σ(2)
j (f, n) + 2

∑
j∈I

pij(fi) · r(i, j) · v(1)j (f, n)

−[v
(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · [v(1)j (f, n)]2 (20)

=
∑
j∈I

pij(fi) · [rij + v
(1)
j (f, n)]2 − [v

(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · σ(2)
j (f, n). (21)

The long-run average variance (independent of the starting state) is

ḡ(f) =
∑
j∈I

p̄∗j (f) · r̄j(f), where p̄∗i (f) =
p∗i (f) · di(f)∑

j∈I p∗jℓ(f) · dj(f)
, r̄j(f) = dj(f) · r(j) +

∑
ℓ∈I

pjℓ(fi) · r(j, ℓ).
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5 Conclusions
Solving problem on stochastic dynamic programming the decision maker selects by standard policy or value itera-
tion methods the set of all optimal e.g. maximazing average reward. In the next step the decision maker selects in
the class of optimal policies policies according to the to second order optimality criterion.

In this note formula for calculating long-run average variance of unichain semi-Markov reward processes is
obtained. This also extend results concerning average variance for discrete- a continuous-time Markov reward
chains. In particular, solving problems on stochastic dynamic programming at first the decision maker find by
standard policy or value iteration methods the set of all optimal policies. In the next step the decision maker selects
in the class of optimal policies policies according to the to second order optimality criterion.
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