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Abstract. Stochastic cusp model is defined by stochastic differential equation
with cubic drift. Its stationary density belongs to the class of generalized
normal distributions, allows for skewness, different tail shapes and bimodality.
There are two stable equilibria in bimodality case and movement from one
equilibrium to another is interpreted as a crash. Qualitative properties of
the cusp model were employed to model crashes on financial markets, however,
practical applications of the model employed the stationary distribution, which
does not take into account the serial dependence between observations.

Because closed-form solution of the transition density is not known, one has to
use approximate technique to estimate transition density. This paper extends
approximate maximum likelihood method, which relies on the closed-form ex-
pansion of the transition density, to incorporate time-varying parameters of
the drift function to be driven by market fundamentals. A measure to predict
endogenous crashes of the model is proposed using transition density estimates.

Empirical example estimates Iceland Krona depreciation with respect to the
British Pound in the year 2001 using differential of interbank interest rates as
a market fundamental.
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1 Introduction

Stationary density of stochastic cusp model belongs to the class of generalized normal distributions.
Since it has four parameters, its flexible enough to allow for skewness, kurtosis and bimodality (Cobb
et al. [4]). Modes of stationary density correspond to the stable equilibria of differential equation with
cubic polynomial. In bimodality case there are two stable equilibria attracting the process and one
unstable one between them, which repulses the process and corresponds to the antimode of stationary
density. Movement from one stable equilibrium to another, which is defined by switching from one side of
unstable equilibrium to another, can be viewed as an intrinsic crash in the system. This potentially large
shift towards another stable equilibrium level is considerable advantage of the cusp model in describing
certain systems over traditionally used mean reverting linear models, which has just one stable attracting
equilibrium. Another advantage is a random walk behavior (under certain parametrization) in the middle
of the domain, which was found appropriate for interest rate modeling by Aı̈t-Sahalia [1].

However, complexity of cusp model brings some disadvantages. The major disadvantage lies in non-
existence of closed-form solution of the transition density. There are several different approaches to over-
come this obstacle: Euler approximation, simulation based methods, binomial approximations, numerical
solution of Kolmogorow equations, and Hermite expansions. The last method, proposed by Aı̈t-Sahalia
[2] and [3], gives unlike the other methods closed-form approximation of the transition density, that con-
verges to the true likelihood function. This methods allows to consistently estimate parameters of the
diffusion processes.
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CZ-182 08 Prague 8, Czech Republic
Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University Prague,
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Approach, which utilizes time-varying parameters, but only stationary density of stochastic cusp model
were theoretically derived by Creedy and Martin [5] and empirically tested by the same authors [6] for
the USD/GBP exchange rate. There were attempts to model currency crises by stationary cusp density
(e.g. [7], [10]), some of them neglecting serial dependence completely, some reflecting it in variability of
estimates. This paper contributes to overcome the issue of time dependence by extension of approximate
transition density method to include exogenous variables, which drive parameters of the model.

The rest of this paper is organized as follows. Section 2 recall a method, which approximates transition
density function. Estimation of stochastic cusp model with time-varying parameters and a measure to
access potential of crash is introduced in Section 3. Section 4 utilizes proposed methodology on real data
example of ISK/GBP exchange rate using daily data for the period from July 1, 1999 to December 31,
2004. Section 5 summarizes the results and concludes.

2 Approximate transition density function

Transition density of a general diffusion process

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dWt, (1)

does not have an analytical form. There are different techniques, how it can be approximated including
Euler approximation, simulation-based methods or a numerical solution of forward Kolmogorov equation
(see [8]). Aı̈t-Sahalia ([3]) proposed a method based on Hermite polynomials to derive closed-form
expansion for the transition density. Assume following assumptions :

1. The functions µ(x; θ) and σ(x; θ) are infinitely differentiable in x, and three times continuously
differentiable in θ, for all x ∈ DX = (−∞,∞) and θ ∈ Θ.

2. There exists a constant ζ such that σ(x; θ) > ζ > 0 for all x ∈ DX and θ ∈ Θ.

3. For all θ ∈ Θ, µ(x; θ) and its derivatives with respect to x and θ have at most polynomial growth
near the boundaries and

lim
x→±∞

−1

2

(
µ2(x; θ) +

∂µ(x; θ)

∂x

)
<∞,

and a transformation of original process X into a new process Y as

Y ≡ γ(X; θ) =

∫ X 1

σ(u; θ)
du.

By applying Itô’s Lemma, Y has unit diffusion

dYt = µY (Yt; θ)dt+ dWt,

where the drift is given by

µY (y; θ) =
µ(γ−1(y; θ); θ)

σ(γ−1(y; θ); θ)
− 1

2

∂σ(x; θ)

∂x
|x=γ−1(y;θ).

Than approximation of the log-transition density of y given initial values y0 and a time step ∆ is
given by:

l
(K)
Y (y|y0,∆; θ) = −1

2
log(2π∆)− C(−1)(y|y0; θ)

∆
+

K∑
k=0

C(k)(y|y0; θ)
∆k

k!
(2)

where K is order of expansion connected to the power of ∆ and coefficients C(k)(y|y0; θ) can be calculated

by substitution of proposed solution (2) into forward and backward Kolmogorov equations. Given l
(K)
Y ,

the expression for l
(K)
X is given by the Jacobian formula



l
(K)
X (x|x0,∆) = −1

2
log(2π∆σ2(x))− (γ(x)− γ(x0))2

2∆
+
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k=0
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∆k

k!
. (3)

3 Stochastic model cusp

The univariate stochastic cusp model can be characterized by nonlinear diffusion process for the variable
of interest

dXt =

(
α+ β

Xt − λ
σ

−
(
Xt − λ
σ

)3
)

1

2σ
dt+ σwdWt, (4)

where Wt is standard Brownian motion, σ > 0 and σw > 0. Stationary density can be expressed
analytically

fs(x; θ) = ηs(θ) exp

[
α
x− λ
σ

+
β

2

(
x− λ
σ

)2

− 1

4

(
x− λ
σ

)4
]
, (5)

where ηs(θ) is normalizing constant.

For identifying bimodality of the stationary probability density function (5) serves statistic called
Cardan’s discriminant

δC =
(α

2

)2
−
(
β

3

)3

. (6)

The parameters α (asymetry) and β (bifurcation) are invariant with respect to changes in λ (location)
and σ (scale), as is δC , and they have following approximate interpretations [4]. If δC ≥ 0 then α measures
skewness and β kurtosis, while δC < 0 then α indicates the relative height of the two modes and β their
relative separations.

3.1 Time-varying parameters

Following for example Creedy and Martin [6] or Fernandes [7], one can allow parameters α and β from
(4) to be time varying:

dxt =

(
α(ξt) + β(ξt)

xt − λ
σ

−
(
xt − λ
σ

)3
)

1

2σ
dt+ σwdWt, (7)

where ξt is a vector of market fundamentals that are strictly exogenous with respect to xt. Using
approximate transition density (3) log-likelihood of the observed values xi, ξi is given by:
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where ∆σ = ∆/σ2, αi = α0 + α1ξi, βi = β0 + β1ξi, zi = (xi/σw − λ)/σ and κji (c) =
∑j
k=0 ck z

k
i+1z

j−k
i .



By differentiation of log-likelihood (8) with respect to α0 and β0 and laying down to zero, one can
express these parameters wrt. other parameters

α̂0 =
2c013c

0
21 − c012c022 + 2β1(c122c

0
13 − c022c113) + α1(4c013c

1
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0
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, (9)
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where coefficients cij are as follows:
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Besides, one can express parameters α1 and β1 in a similar way to further reduce parameter space, which
means that only parameters λ, σ and σ2

w needs to be estimated numerically. Employing of the transition
density estimation allows to estimate variance of dWt in contrast with stationary density estimation.

3.2 Probability of crash

Denote probability of extreme event by

π(x|x0,∆; θ, c) =

∫ c

−∞
exp[ l(x|x0,∆; θ)]dx, (11)

which for c corresponding to the antimode of the stationary density in bimodality case represents pro-
bability of switching to lower stable equilibria from starting point x0 > c. If Cardan’s discriminant (6) is
lower then zero, than antimode ca can be calculated as:

ca = −2 sign(a)

√
b

3
cos

(
1

3
arctan

(
2

abs(a)

√
−a

2

4
+
b3

27

)
+ arctan

(√
3
))

. (12)

In general, π(x|x0,∆; θ, c) can be used with an arbitrary c, when it represents standard risk measure
approach. It measures large changes in unimodality case as well, however they occur exclusively due to
the stochasticity of the process.

4 Empirical example

Following [10] and [7], the example for illustration of proposed methodology involves daily observed
exchange rate between Icelandic Krona and British Pound in the period from July 1, 1999 to December
31, 2004, where as a market fundamental is used differential of one month interbank interest rate of the
corresponding country1. The basic statistical characteristic is presented in Table 1. The interest rate
differential is a commonly used macroeconomic indicator of the soundness of the banking sector as high
interest rate differentials often precede increases in nonperforming loans (see [9]).

Keeping the modeled quantities as usual (e.g. [6], [10]), we will use the logarithm of the exchange
rate xt and logarithm of the interest rate differential ξt, where variable parameters of drift (7) are

1Data from the Central Bank of Iceland and Bank of England.



ISK/GBP rI/rB

mean 128.97 1.0397

median 127.55 1.0421

std. dev. 9.94 0.0222

skewness 0.66 0.2694

kurtosis 2.71 1.8909

minimum 112.75 1.0076

maximum 156.3 1.0886

Table 1 Descriptive statistics of exchange rate and interest rate differential.

given by αt = α0 + α1ξt−1 and βt = β0 + β1ξt−1. Table 2 discloses the results of numerical maximum
likelihood estimation of the diffusion process. It reveals that the stationary and transition estimates of
parameters are similar, but the errors of estimates are remarkably higher for transition density estimation.
There are two possible explanation for that: firstly the non-normality of estimates, but this holds for
stationary density estimation as well, second explanation holds just for the transition model, where the
last observation of exchange rate explains substantial part of distribution of next observation. However,
Figure 1 shows, that the switching probability (11) indicated possibility of depreciation of the Krona in
the first quarter of 2001, before the real depreciation came. Except of that Figure 1 displays evolution
of Cardan’s discriminant calculated according to both stationary and transition estimates, together with
scaled exchange rate, interest rate differential and probability of adverse equilibria in a one-step ahead
forecast.

parameter stationary est. stat. std. error transition est. trans. std. error

α0 -0.529 0.054 -0.525 1.273

α1 0.615 0.042 1.047 0.933

β0 0.021 0.173 -0.054 1.562

β1 2.312 0.099 2.018 1.328

λ 0.046 0.025 0.031 0.268

σ 0.906 0.018 0.755 0.105

σw 1.207 0.023

Table 2 Estimation results for stationary and transition density.
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Figure 1 Stationary and transition evolution of Cardan’s discriminant, exchange rate, interest rate dif-
ferential and probability of adverse equilibria.



5 Conclusion

This paper extends approximate maximum likelihood approach to the transition density estimation by
time-varying parameters of the stochastic cusp model. It shows how to simplify the estimation and the
measure for indicating endogenous crash of the system is introduced.

To illustrate the performance of proposed methodology is used the example concerning Iceland Krona
and British Pound exchange rate with interest rate differential as a market fundamental. Comparison
with the stationary density approach reveals the behavior of the exchange rate close to the random walk,
but the measure of crash was able to indicate the Krona depreciation in advance.
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