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Abstract. Multimodal distributions are popular in many areas: biology
(fish and shark population), engineering (material collapse under pressure, sta-
bility of ships), psychology (attitude transitions), physics (freezing of water)
etc. There were a few attempts to utilize multimodal distributions in financial
mathematics as well (e.g. [2], [6], [5]).

Cobb et al. [4] described a class of multimodal distributions belonging to the ex-
ponential family, which has unique maximum likelihood estimators and showed
a connection to the stationary distribution of the stochastic cusp catastrophe
model. Moreover was shown, how to identify bimodality for given parameters
of the stochastic cusp model using the sign of Cardans discriminant.

A statistical test for bimodality of the stochastic cusp model using maximum
likelihood estimates is proposed in the paper as well as the necessary condition
for bimodality which can be used for simplified testing to reject bimodality. By
proposed methods is tested the bimodality of exchange rate between USD and
GBP in the periods within the years 1975 - 2014.
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1 Introduction

Stochastic cusp model has its name thanks to classification of singularities by Vladimir Arnold [1] within
deterministic models of catastrophe theory proposed by Rene Thom [9], where cusp model is the most
used one. Its deterministic version was popularized in the 1970s and in the 1980s was developed the
theory of the stochastic version by Lauren Cobb [3]. He also proposed the numerical maximum likelihood
method and methods of moments for estimation of parameters. There are other methods for estimation
of catastrophe models, however the paper will utilize the properties of maximum likelihood estimators
for the statistical testing.

The specification of the stochastic cusp model is such that the probability density function belongs to
the class of generalized exponential distributions. It is convenient that probability density function of the
stochastic cusp model accommodates variable skewness, kurtosis, and even bimodality. Bimodality of the
model is accessed by Cardan’s discriminant, which is negative, when the probability density function has
two modes. These properties as well as the existence of estimating methodology encouraged empirical
research especially in behavioural science and psychology. The distinct perception of agents in the
market was the motivation for the usage of stochastic cusp model in the financial mathematics (eg.
by Zeeman [10], Creedy and Martin [5] or Fernandes [6] ).

Despite the frequent usage of the stochastic cusp model the statistical test for negativeness of Cardan’s
discriminant, which implies bimodality, calculated from estimated parameters, was not proposed. This
paper tries to fill this gap by approximating the distribution of estimated Cardan’s discriminant using
delta method. The approximate distribution is than used to propose a statistical test, where the null
hypotheses is rejected, if there is enough statistical evidence against bimodality of the distribution.
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The rest of paper is organized as follows. Section 2.1 describes a cusp model and its connection
to the multimodal distributions, section 2.2 shows different approaches to estimate parameters and the
statistical test of bimodality is proposed in the Section 2.3. Section 3 utilizes the methodology for the real
data example of USD, GBP exchange rate and demonstrates different situations, where the bimodality
is rejected. Section 4 summarizes the results and concludes.

2 Cusp model

2.1 Connection to multimodal distributions

This section summarizes the connection of the stochastic cusp model to the exponential class of multi-
modal distributions. The standard parametrization of both approaches is shown as well as the transfor-
mation from one to another following Cobb et al. [4].

The generalized exponential family of distributions is characterized by probability density function

fk(x) = ξ(β) exp

[
∫ x

a

g(s)

v(s)
ds

]

, (1)

where g(x) =
∑k

i=0
βix

k is polynomial function of order k > 0 and function v(x) has one of the form:

typeN : v(x) = 1 −∞ < x < ∞
typeG : v(x) = x 0 < x < ∞
typeI : v(x) = x2 0 < x < ∞
typeB : v(x) = x(1− x) 0 < x < 1. (2)

Let (a, b) be an open interval, where v(x) is positive and ξ(β) is normalizing constant for
∫ b

a
fx(x)dx to

be unity.

Cusp model in polynomial parametrization is given by the polynomial:

g(x) = b0 + b1x+ b2x
2 + b3x

3, (3)

where b3 < 0 and v(x) = 1. Then the probability density function will be

fp(x) = ξp(b) exp

[

b0x+
b1
2
x2 +

b2
3
x3 +

b3
4
x4

]

, (4)

where ξp(b) is normalizing constant depending on parameters b0, b1, b2 and b3.

To get the probability density function of standard cusp model parametrization:

fc(z) = ξc(θ) exp

[

αz +
β

2
z2 − 1

4
z4
]

, (5)

where z = x−λ
σ , ξc(θ) is the normalizing constant and θ stands for parameters α, β, λ, σ, one needs to

utilize the following substitutions:

σ = (−b3)
−1/4,

λ = −b2/(3b3),

β = (b1 + b2λ)σ
2,

α = σg(λ). (6)
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The cusp distribution in both types of parametrization may also be characterized by nonlinear diffusion
processes. Let σ2(x) := v(x) and µ(x) := 1

2

(

g(x) + σ2(x)′
)

. Then fp(x) is the stationary density function
of a process xt that is driven by the stochastic differential equation:

dxt = µ(xt)dt+ σ(xt)dWt, (7)

where Wt is a standard Wiener process.

For identifying the bimodality (or unimodality) of the cusp probability density function (5), one needs
to calculate the Cardan’s discriminant

δC =
(α

2

)2

−
(

β

3

)3

, (8)

which is negative, when the probability density function is bimodal and positive in unimodality case.
The parameters α (asymetry) and β (bifurcation) are invariant with respect to changes in λ (location)
and σ (scale), as is δC , and they have following approximate interpretations. If δC ≥ 0 then α measures
skewness and β kurtosis and when δC < 0 then α indicates the relative height of the two modes and β
their relative separations.

2.2 Estimation of parameters

For the estimation of the polynomial parametrization (4) Cobb et al. [4] proposed a moment recursion
relations which connects k + 1 parameters to the first 2k moments of the probability density function.
However, these estimates can not be utilized for the testing of bimodality, but could serve after the
transformation (6) as a starting values for the numerical search for the maximum likelihood estimators

θ̂ of the cusp probability density function (5). By following the theory of exponential families (e.g.
Lehman [8]) we know that maximum likelihood estimators of the polynomial form exist, are unique can
be found for example by a Newton-Raphson search. Other possible way is to use an R-package called
”cusp” [7], which uses R build in function optim for maximizing the log likelihood of observed values.
The variance matrix of the MLE is estimated using the Hessian matrix of the log likelihood function.
Then the asymptotic distribution of the MLE is:

√
n
(

θ̂ − θ0

)

d→ N
(

0, I−1
)

, (9)

where I is the Fisher information matrix.

2.3 Formulation of the test

The necessary condition for Cardan’s discriminant to be negative is the positivity of parameter β. This

condition could be statistically tested at first using the MLE result β̂
d→ N(β0, σ̂

2

β), where σ̂2

β denotes

the estimate of β̂ variance from the Hessian matrix of the log likelihood function. The null hypothesis
would be H0 : β = 0 with the one sided alternative H1 : β < 0. Rejection of the null hypothesis implies
rejection of the negativity of Cardan’s discriminant, which means rejection of bimodality.

For the direct testing of bimodality serves the approximate distribution of Cardan’s discriminant δC
(10) derived using delta method from (9). The delta method yields

√
n
(

δ̂C − δ0

)

d→ N
(

0,∇h(θ)T I−1∇h(θ)
)

, (10)

where the function h(θ) =
(

α2/4− β3/27
)

transforms parameters of cusp probability density function
(5) into Cardan’s discriminant. This result allows to propose a statistical test for bimodality: we would
like to test H0 : δC = 0 against H1 : δC > 0. Similarly to testing only parameter β, the test statistics has
asymptotically normal distribution and rejecting of null hypothesis means the rejection of bimodality.
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3 Empirical testing of bimodality

1975-2014 1993 2003 2011

mean 1.699 1.502 1.635 1.603

median 1.639 1.497 1.624 1.607

std. dev. 0.235 0.036 0.052 0.030

skewness 0.859 -0.057 0.759 -0.379

kurtosis 3.914 2.680 2.983 2.207

minimum 1.042 1.418 1.550 1.534

maximum 2.455 1.593 1.668 1.627

Table 1 Descriptive statistics.

The performance of the statistical test will be illustrated using the exchange rate of USD and GBP,
which is inspired by article [5], which suggested using multiple equilibria model for exchange rate. The
data represents indicative middle market (mean of spot buying and selling) rates as observed by the
Bank’s Foreign Exchange Desk in the London interbank market around 4pm from the beginning of the
year 1974 till the end of 2014. The basic statistical characteristic are presented in Table 1.

1975-2014 1993 2003 2011

α̂ -1.760 0.353 -0.857 0.402

β̂ 0.108 -2.766 0.706 0.682

δ̂C 0.775 0.815 0.171 0.029

p-val δC 0.000 0.314 0.021 0.193

sd δ̂C 0.064 1.686 0.084 0.033

p-val β 0.916 0.087 0.988 0.988

sd β̂ 0.078 2.036 0.311 0.302

Table 2 Descriptive statistics.

The years 1993, 2003 and 2011 ( Figure 2, 3 and 4, histogram and estimated probability density func-
tion) were chosen for demonstrative purposes of statistical testing of bimodality proposed in section 2.3.
The results of the testing are summarized in Table 2, where p-val denotes p-value of corresponding test
(i.e. test of Cardan’s discriminant or parameter β alone). From the results we see, that we reject the
null hypothesis (bimodality) for the year 1993 due to test of parameter β (at the significance level 0.1)
and for the year 2003 due to the test of δC (at the significance level 0.05) as well as for the whole sample
period. The rejecting of bimodality in the year 1993 is caused by negative estimate of beta parameter.
On the other hand, in the year 2003 is Cardan’s discriminant made statistically higher than zero by the
estimate α̂ more distant from zero compared to the β. By the same reason we reject bimodality of the
whole sample period. Year 2011 demonstrates the lack of statistical evidence against bimodality, hence
we can not reject bimodality by any test.

4 Conclusion

In this paper is proposed the statistical test for bimodality of the stochastic cusp model using Cardan’s
discriminant and a simpler test builded on parameter beta and a necessary condition for bimodality,
which can be used for a rejection of the bimodality as well. In more formal words, tests allow to reject
null hypothesis of bimodality of the probability density function of the stochastic cusp model. The tests
were performed on the USD, GBP exchange rate in chosen years to demonstrate the abilities of the tests
to reject bimodality and different reasons for rejection of bimodality were pointed out. In general, these
test could be used for testing of bimodality, whenever the estimated parameters has multivariate normal
distribution as is the case of maximum likelihood estimation.
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Figure 1 Data 1975-2014 Figure 2 Data 1993

Figure 3 Data 2003 Figure 4 Data 2011
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