
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2019 Society for Industrial and Applied Mathematics
Vol. 79, No. 1, pp. 257–283

OPTIMIZATION OF A MULTIPHYSICS PROBLEM IN
SEMICONDUCTOR LASER DESIGN∗
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Abstract. A multimaterial topology optimization framework using phase fields is suggested for
the simultaneous optimization of mechanical and optical properties to be used in the development of
optoelectronic devices. The technique provides a means of determining the cross section of the mate-
rial alignments needed to create a sufficiently large strain profile within an optically active region of
a photonic device. Based on the physical aspects of the underlying device, a nonlinear multiphysics
model for the elastic and optical properties is proposed in the form of a linear elliptic partial differen-
tial equation (elasticity) coupled via the underlying topology to an eigenvalue problem of Helmholtz
type (optics). The differential sensitivity of the displacement and eigenfunctions with respect to the
changes in the underlying topology is investigated. After proving existence and optimality results,
numerical experiments leading to an optimal material distribution for maximizing the strain in a
Ge-on-Si microbridge are given. The presence of a net gain at low voltages for the optimal design is
demonstrated by solving the steady-state van Roosbroeck (drift-diffusion) system, which proves the
viability of the approach for the development of next-generation photonic devices.
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1. Introduction. The rapid miniaturization of microprocessors over the last
four decades has been matched by a notable increase in computational performance.
For the most part, these developments have followed Moore’s law, which predicts a bi-
ennial doubling of components per integrated circuit. Nevertheless, there are physical
limits to this trend and further improvements will require alternative and innovative
approaches. One promising solution is found in silicon photonics, which integrates
optical and electronic components into a single microchip. The ultimate goal here is
to use optical interconnects to provide faster data transfer both between and within
microchips in order to avoid the limitations of electrical wiring; cf., e.g., [25]. This
paper is inspired by the promising approach of using strained germanium (Ge) as the
optically active medium for an edge-emitting laser, which serves as the light source
for silicon photonics; cf. [59, 18, 58, 65].
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258 ADAM, HINTERMÜLLER, PESCHKA, AND SUROWIEC

Fig. 1. (left) A possible prototype strained photonic device exhibiting the microbridge geometry.
This configuration was determined in [1]. (right) Cross section of a Ge-on-Si microbridge with
material distribution and contacts.

We recall that inside a semiconductor, electrons are restricted to distinct energy
levels called energy bands seen as functions of the electron momentum p. Given the
electrochemical potential of the system, i.e., the Fermi level EF , the first band above
(below) EF with lowest (highest) energy is the conduction (valence) band. Letting Ec
be the minimum along the conduction band and Ev the maximum along the valence
band, we define the band gap by Eg = Ec−Ev. This is the minimal amount of energy
needed to move an electron from the valence band into the conduction band. If Ec
and Ev occur at the same point p?, then we have a direct band gap semiconductor
and otherwise an indirect band gap semiconductor. For example, both silicon (Si)
and Ge have indirect band gaps.

Direct band gap semiconductors can be used for light sources in optoelectronic
devices, since electrons may pass directly between valence and conduction bands at
the same momentum p? and potentially emit a photon. This emission is stimulated by
another incident photon. When in the process of moving from the conduction band
to the valence band an electron emits a photon, we speak of radiative recombination.
The newly generated photons travel inside the cavity, in our case a strip of Ge, as in
Figure 1 (left), until they are either emitted from the edge or absorbed after traveling
for a certain distance within the cavity, a process described by optical gain and losses.
The latter is strongly suppressed on its own for indirect band gap materials as the
difference in momenta needs to be overcome by a particle-like phenomenon (lattice
vibration) known as a phonon. Thus, stimulated emission is unlikely and it would
appear that both Si and Ge are unsuited to create an integrated light source.

However, the band structure of Ge can be significantly altered by introducing
impurities (dopants) to change the charge carrier concentration, i.e., so-called doping,
and even more so by using mechanical strains [24]. Due to the particular band-
structure of Ge, tensile strains of 1% to 2% are sufficient to turn Ge into a direct
band gap material and drastically enhance stimulated emission [24]. However, it
is believed that much lower strains are sufficient to build a functioning laser; see,
e.g., [20]. This is highly advantageous from a manufacturing perspective as Ge can
be manipulated similarly to Si using standard lithography techniques. For example,
the tensile strain can be induced by a silicon nitride (SiN) layer, whereas the photon
emission is stimulated via a current introduced through the contacting layers (Si-n,
Si-p) (cf. Figure 1 (right)); the silicon dioxide (SiO2) is merely a substrate.

Whereas an optimal doping profile, i.e., an optimal distribution of dopants, can
be determined by optimizing charge transport using nonlinear drift-diffusion models
[39, 51], an optimal material configuration, used to create tensile strain in the Ge,
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OPTIMIZATION OF A Ge-on-Si MICROBRIDGE 259

can be found by using techniques from topology optimization applied to linear elastic
materials [1].

Various engineering studies have focused on the production of Ge devices, where
the light emission is improved by maximizing the strain. This has led to a variety
of device designs including suspended bridges [58, 41] and discs [29]. Moreover, the
corresponding photoluminescence spectra of these empirical designs support the im-
provement of the optical properties. However, the manufacturability of these new
devices using standard fabrication processes is still active research; see, e.g., [20].
The feasibility of both optically [45] and electrically [18] pumped lasers based on a
tensile strained Ge layer has been demonstrated. However, these devices suffer from
considerable unwanted Joule heating and ultimately device failure.

The main culprit for this unwanted heating is the overlap of the optically active
area with the contacting layers [24]. Note that the optically active area is primarily
determined by the bulk of the support of the first fundamental mode (first eigenfunc-
tion) of the laser and would therefore be ideally confined inside the Ge.

The final essential component to ensuring that the Ge-on-Si semiconductor device
can serve as a light source is the so-called optical gain (g) of the laser, i.e., the ability
of the laser to amplify photons by stimulated emission. The gain depends on carrier
concentrations and photon energy. For an indirect band gap material such as Ge, the
rate of stimulated emission encoded in g is naturally very low and strongly depends
on the size of the direct band gap. We note that the smaller the gap, the less energy
needed to push electrons into the conduction bands. This allows the laser to operate
at lower temperatures and somewhat suppresses the loss mechanisms.

The main parameter influencing gain g is the band gap Eg, which itself is a
function of the strain e. To see the latter, we refer to [21, Chapter 4.5], where the
band energies Ec, Ev and band gap Eg are put into a relationship with strain via a
deformation potential D given by Eg(e) = Eg,0 + D : e(u), where Eg,0 is the band
gap of the undeformed crystal and e(u) the strain induced by a displacement u.

Since the strain distribution has a larger effect on the gain than the dopants, we
only consider the mechanical and optical device properties in the forward system of
the optimization problem. Nevertheless, the net gain, i.e., photon emission minus
losses, is the essential quantity to be maximized.

As a numerical proof-of-concept, we provide a study of the electronic properties of
the optimal device at the end of this paper. These results corroborate the observations
in the photonics literature, e.g., [24, 58], and thus justify our approach.

Furthermore, the improved strain leads to an improved gain only when the sup-
port of the first fundamental mode and large strain regions coincide, a goal we pre-
viously phrased as “overlap engineering” [52]. Summarizing these facts, we arrive at
the following.

Goal. Determine a device topology, which simultaneously ensures the support of
the first fundamental mode, i.e., the optical cavity, is confined inside the Ge and the
strain is maximized within the optical cavity.

Since the proposed device is static, it is possible to create a permanent strain
field only through the shape and topology of the device, where each of the materials
supplies a certain amount of strain following the manufacturing process. More specif-
ically, during the manufacturing process, the lattices of the heated components align.
However, the different thermal expansion coefficients of the various components re-
sult in residual forces along the contact boundaries as the materials “relax” into their
final shapes. This is particularly the case for SiN (stressor), Ge (cavity), and SiO2
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260 ADAM, HINTERMÜLLER, PESCHKA, AND SUROWIEC

(wafer). Therefore, we need to find an optimal composition and placement of the
various necessary materials in order to construct a Ge-on-Si laser.

Some ideas for optimal material configurations based on existing empirical, ex-
perimental, and analytical studies can be found, e.g., in [45, 18, 20, 52, 53]. We also
mention our recent related work [1], in which the optical cavity is assumed to be
fixed. The underlying modeling assumption in all of these studies is the usage of a
so-called “microbridge” geometry (cf. Figure 1), which can be created by standard
manufacturing techniques. As in [52, 1], we again focus on a cross section of an edge-
emitter as shown in Figure 1. In the longitudinal direction we assume translation
invariance, as indicated in Figure 1. We note here that multimaterial and multidisci-
plinary topology optimization approaches that take into consideration thermoelastic
or piezoelectric properties and their relation to the underlying topologies have been
considered in many works; see, e.g., [56, 57]. However, as we will see below in the
modeling section, these are fundamentally different applications with distinct goals.

The rest of the paper is organized as follows. In section 2, we motivate the usage
of a phase-field approach for the topology optimization. In section 3, we introduce
the underlying multiphysics model that appears in the topology optimization prob-
lem. In addition, we briefly detail the time-dependent drift-diffusion system, which
models the transport of electrons and holes in the device. Afterward, we introduce
the optimization framework in section 4, which includes a rigorous analysis of the
topology-to-eigenmode mapping in section 4.3. In section 5, we discuss the numerical
solution and necessary structural assumptions. Based on our theoretical results, we
provide numerical optimization results in section 6, which yield an optimal configura-
tion of materials in the microbridge. Using the optimal configuration, we demonstrate
the electronic and optical properties of such a design in section 6.5. We conclude with
section 7.

Finally, our notation is more or less standard for PDE-constrained and topology
optimization. Nevertheless, we refer the reader to the well-known monographs [3]
for Lebesgue and Sobolev spaces, [44, 62, 40] for PDE-constrained optimization, and
[34, 4, 11, 49] for a thorough treatment of topology optimization.

2. A phase-field approach for the design parameters. Throughout the
text, all functions are assumed to be defined on a fixed domain Ω, which represents
the cross section of the microbridge. It is assumed that Ω has a sufficiently smooth
boundary ∂Ω. Furthermore, {Ωi}Ni=1 denotes a material distribution, which partitions
the domain Ω. Ideally, the partition would be represented by distributed parameters
{ϕi}Ni=1, where ϕi serves as the characteristic function for Ωi. In such a case, we might
take ϕ := (ϕ1, . . . , ϕN ) ∈ BV (Ω; {0, 1}N ) (a vector of functions of bounded variation

(BV ) taking discrete values in {0, 1}) along with the condition that
∑N
i=1 ϕi = 1 for

almost every (a.e.) x ∈ Ω. In order to ensure that the sets Ωi := {ϕi = 1} have
finite (relative) perimeter P (Ωi,Ω), which is needed to rule out pathological designs
and facilitate the mathematical treatment, it suffices that the total variation term∑N
i=1 TV (ϕi,Ω) is finite. Here, we use the total variation of a function u : Ω→ R as

defined by

TV (u,Ω) = sup

{∫
Ω

u divψ dx : ψ ∈ C1
c (Ω;Rn), |ψ(x)|`∞ ≤ 1 a.e. x ∈ Ω

}
;

see, e.g., [6]. Note that by [6, Definition 3.35] P (Ωi,Ω) := TV (ϕi,Ω).
Finding {Ωi}Ni=1 that would provide a device satisfying our stated goals would

lead to a computationally intractable combinatorial problem. As a remedy, one could
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relax the integrality condition on each ϕi, as in [16], and attempt to regain the in-
tegrality through other means. Such an approach typically depends on structural
assumptions. As in [1, 13, 68, 17, 60], we use a phase-field approach in which we
have ϕ ∈ H1(Ω;RN ) ⊂ BV (Ω,RN ). Here, H1(Ω,RN ) is the space of all vector fields
in RN with components in the Sobolev space H1(Ω); see, e.g., [3]. We utilize this
convention throughout the text. Enforcing approximate integrality of ϕ can then be
achieved by considering the Ginzburg–Landau-type energy functional

(2.1) fGL(ϕ, ε) :=

∫
Ω

(
ε

2
∇ϕ:∇ϕ+

1

2ε
ϕ·(1−ϕ)

)
dx + iG(ϕ)

in the associated topology optimization problem. Here, the matrix product is un-
derstood as A : B =

∑
i

∑
j aijbij and iG is the usual indicator functional for the

well-known Gibbs simplex (a closed convex set)

(2.2) G :=
{
ϕ ∈ H1(Ω;RN ) | ϕ ≥ 0, ϕ1 + · · ·+ ϕN = 1, a.e. in Ω

}
,

i.e., iG(ϕ) = 0 if ϕ ∈ G and iG(ϕ) = +∞ otherwise. Note that the nonconvex
integrand 1

2εϕ·(1 − ϕ) attempts to force pure phases, whereas the first part in (2.1)
introduces H1-regularity of ϕ into the problem.

We note that as ε→ 0, fGL(·, ε) Γ-converges to a set functional that is related to

the term
∑N
i=1 TV (ϕi,Ω) with some modifications. This can be shown by modifying

and combining several arguments from [48] and [9]. A detailed discussion would go
beyond the scope of this paper.

3. The underlying multiphysics problem. In this section, we introduce the
underlying multiphysics (forward) problem as well as the drift-diffusion system, which
describes the electronic behavior of the device. The forward problem is a nonlinearly
coupled system of linear PDEs, which comprises two kinds of physics: elasticity and
optics. The elastic properties follow a standard model of linear elasticity that takes
into account eigenstrain and thermal prestress terms. This represents our mathemat-
ical description for the interfacial residual forces discussed in the introduction.

The model is dependent on the distributed material parameter ϕ, with compo-
nents ϕ1, . . . , ϕN or sometimes ϕSiN, ϕGe, ϕSiO2

, ϕair for emphasis on the actual
material components and their effects on the device. These distributed parameters
will act as the design/decision variables in our optimization framework. We focus on
optimizing the first/fundamental (eigen)mode of the device, since it has the largest
effect on the lasing properties of the Ge-on-Si microbridge. This is done by using
a Helmholtz equation, which depends on the material parameters ϕ. We provide
further physical and mathematical motivations for these models in the subsections
below. Finally, in contrast to a standard multiphysics problem, the coupling arises
here via the objective function and the fact that the material distribution appears in
(E(ϕ)) and (3.3) and represents an optimization variable.

3.1. Elasticity. Given ϕ ∈ G, we consider the following model of elasticity,
where the solution is a displacement mapping u : Ω→ R2:

(E(ϕ))
−div [C(ϕ)e(u)− F (ϕ)] = 0 in Ω,

u = 0 on ∂Ω.

Here, e(u) := 1
2 (∇u + ∇u>) is the symmetric strain of u, C(ϕ) is a fourth-order

tensor, and

(3.1) F (ϕ) := e0(ϕSiO2
− 1)C(ϕ)I2×2 − σ0ϕSiNI2×2
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262 ADAM, HINTERMÜLLER, PESCHKA, AND SUROWIEC

incorporates the effect of the eigenstrain e0 generated by thermal relaxation of Ge on
SiO2 and the (pre)stress σ0 generated by SiN as discussed in the introduction; I2×2

is the identity matrix on R2×2.
This modeling choice for F is aimed at driving the Ge lattice constant into a tensile

region as is needed to alter the band structure. We recall that the lattice constant of a
cubic crystal structure such as Ge is the length of a unit cell. For small uniform strains
from (E(ϕ)), this lattice constant can be defined by a(x) = abulk(1 + e(u)(x) − e0),
where abulk is the lattice constant of unstrained Ge and a(x) > abulk is desired; cf. [19].
The Dirichlet boundary condition implies that the device remains fixed on ∂Ω.

We invoke the following smoothness and ellipticity assumptions throughout.

Assumption A1. C is a Nemytskii/superposition operator (cf. [7]), induced by a

tensor-valued mapping Ĉ : RN → R2×2×2×2 such that for ϕ ∈ H1(Ω,RN ), C(ϕ)(x) =

Ĉ(ϕ(x)) a.e. on Ω. Moreover, it satisfies that
(i) there exist c2 > c1 > 0 such that for every φ ∈ RN and E1, E2 ∈ R2×2 \ {0}

we have

c1‖E1‖2R2×2 ≤ Ĉ(φ)E1 : E1, Ĉ(φ)E1 : E2 ≤ c2‖E1‖R2×2‖E2‖R2×2 ;

(ii) Ĉ is globally Lipschitz and continuously differentiable with globally Lipschitz
derivative.

Consequently, we have the following regularity and sensitivity result for the
topology-to-displacement map Su(ϕ). This is essential for the proof of existence of an
optimal solution and derivation of optimality conditions for the associated topology
optimization problem. In addition, it is needed for the development of gradient-based
numerical optimization methods.

Proposition 3.1 (cf. [1]). Let A1 hold. Then there exists p > 2 such that for
every ϕ ∈ H1(Ω,RN ) the unique solution u of (E(ϕ)) lies in W 1,p

0 (Ω,R2). Finally,
the solution mapping Su : H1(Ω,RN )→ W 1,p

0 (Ω,R2), which maps ϕ 7→ u, is contin-
uously Fréchet differentiable. The directional derivative of Su at ϕ in direction δϕ is
given by S′u(ϕ)δϕ = q, where q ∈ H1

0 (Ω,R2) is the weak solution of the sensitivity
equation

(3.2)

∫
Ω

C(ϕ)e(q) : e(v)dx = −
∫

Ω

[C′(ϕ)δϕ]e(u) : e(v)dx +

∫
Ω

F ′(ϕ)δϕ : e(v)dx

for all v ∈ H1
0 (Ω,R2).

Here, W 1,p
0 (Ω,R2) is the Sobolev space of two-dimensional vector fields with com-

ponents in W 1,p
0 (Ω). In addition, we note that p > 2 in Proposition 3.1 ensures via

the Sobolev embedding theorem that u is a continuous vector field over Ω. This is
useful in the existence proof below.

3.2. Optics. As stated above, we focus our attention on finding a topology that
confines the bulk of the support of the fundamental mode within the Ge. In this
sense, we assume that the governing optical behavior of the device can be modeled
by the following ϕ-dependent Helmholtz-type eigenvalue problem in (Θ, λ):

(3.3)
−∆Θ− g(ϕ)Θ = λΘ in Ω,

Θ = 0 on ∂Ω.

The quantity g(ϕ) is a topology-dependent term related to the gain of the laser. See
section 1 for more information concerning the role of gain in the overall optimization.
A full discussion this term can be found in [52].
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Here, we assume that the eigenfunction decays exponentially fast approaching
the boundary, so that the homogeneous Dirichlet boundary condition on the outer
boundary ∂Ω does not influence (Θ, λ) significantly. This is justified for certain g(ϕ)
and the eigenmode corresponding to the smallest eigenvalue, the latter often being
the most relevant mode for an edge-emitting laser. In particular, we may assume that
the properties of air and SiO2 are such that Θ is effectively zero on these parts of the
domain. This is why we focus our discussion primarily on λ1, the smallest eigenvalue
of −[∆ + g(ϕ)], and Θ1, the corresponding eigenfunction, with (Θ1,Θ1) = 1. Here
and below, (·, ·) represents the usual L2(Ω)-inner product given by (u, v) =

∫
Ω
u ·v dx.

This leads to the following problem:

(H(ϕ)) Find the first eigenvalue λ1 and

corresponding positive eigenfunction Θ1 of (3.3) with (Θ1,Θ1) = 1.

We henceforth drop the subscripts, whenever it is clear in context. Note that Ω needs
to be connected to ensure that λ1 has multiplicity one; see [35, Remark 1.2.4].

For this model, we make the following standing assumption throughout.

Assumption A2. g is a superposition operator induced by ĝ : RN → R such that
ĝ(ϕ(x)) = (g(ϕ))(x) a.e. on Ω. Moreover, |ĝ| is bounded by M , and ĝ is globally
Lipschitz with modulus L > 0 and continuously differentiable with globally Lipschitz
derivative.

We remark on several additional properties implied by A2. First, the smallest
eigenvalue in (H(ϕ)) has multiplicity one and the corresponding eigenfunction can be
chosen to be positive almost everywhere; see [31, Theorem 8.38] or [35, Theorem 1.2.5].
Assumption A2 also implies that g : Lp(Ω,RN ) → Lp(Ω) is globally Lipschitz with
modulus L and g : L2p(Ω,RN ) → Lp(Ω) is continuously differentiable with global
Lipschitz derivative for all p ∈ [1,∞]; see [32]. Moreover, ‖g(ϕ)‖L∞(Ω) ≤ M for all
ϕ ∈ H1(Ω,RN ).

Here, we emphasize that g(ϕ) is spatially dependent. Thus, the spectrum of
−[∆ +g(ϕ)] is not merely the shifted spectrum of the Laplacian. Nevertheless, |g(ϕ)|
is uniformly bounded, independently of ϕ. Consequently, we may take some fixed
c > M and consider the equivalent problem

(Hc)
−∆Θ + (c− g(ϕ))Θ = (c+ λ)Θ in Ω,

Θ = 0 on ∂Ω.

Indeed, the operators −[∆+g(ϕ)] and −[∆+(g(ϕ)−c)] have the same eigenfunctions
corresponding to the same eigenvalues shifted by c. Therefore, we may work with the
uniformly elliptic bounded linear operator −[∆+(g(ϕ)−c)], which allows us to apply
elliptic theory. We postpone the sensitivity analysis of the topology-to-eigenmode
mapping ϕ 7→ Θ, denoted by SΘ(ϕ), until after we state the optimization problem.

3.3. Electronics. As discussed in the introduction, the optimization procedure
needs to alter the electronic properties of Ge in order to ensure sufficient positive net
gain, preferably at the lowest possible currents. We emphasize here that the model
for the electronic behavior is not directly part of the optimization process. However,
we will verify the success of our approach at the end of the paper by simulating the
stationary carrier densities associated with an empirical design versus our optimal
design.
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The following drift-diffusion system forms the so-called van Roosbroeck system

−div (ε0εr∇φ) = q(Cdop + p− n),(3.4a)

ṅ− q−1div (jn) = −Rnet,(3.4b)

ṗ+ q−1div (jp) = −Rnet,(3.4c)

which was introduced for semiconductors in [63]; see also [47]. Here, φ is the electro-
static potential, ε0 is the vacuum permittivity and εr is the relative permittivity, n
and p are the concentration of electrons and holes, q is the elementary charge, and
Cdop is the doping profile. The electron and hole fluxes jn and jp are defined by

(3.5) jn = −qµnn∇φ+ qDn∇n, jp = −qµpp∇φ− qDp∇p,

where Dn, Dp denote the diffusion constant of electrons and holes and µn, µp are the
corresponding mobilities, where for α = n, p we have Dα/µα = gkBT/q, where g ≡ 1
for Boltzmann statistics, kB is Boltzmann’s constant, and T is temperature. The
remaining function Rnet is the generation-recombination rate.

In order to solve for stationary solutions of (3.4) and ensure n, p are positive, we
employ the following transformation of the charge carrier densities n, p to the so-called
quasi-Fermi potentials φn, φp:

n = NcF
(
q(φ−φn)−Ec

kBT

)
, p = NvF

(
q(φp−φ)+Ev

kBT

)
,(3.6)

where F (η) = exp(η) for Boltzmann distributions or F (η) = F3/2(η) the complete
Fermi–Dirac integral with index 3/2 for Fermi–Dirac distributions; Nc, Nv are the
material dependent effective density of states. Now, g in Dα above is g = F/F ′. The
choice of F influences the choice of Rnet. In the general case, we have

Rnet =
(

1− exp
(

q
kBT

(φn − φp)
)) np

τp(n+ ni) + τp(p+ ni)
.

For Shockley–Read–Hall recombination terms, see also [54]. In the Boltzmann situa-
tion this expression reduces to the well-known form [21].

Most importantly, given Eg = Ec − Ev as well as Eg = Eg,0 +D : e(u(ϕ)), (3.6)
provides the final link between the topology ϕ, the strain e(u), the band energies
Ec, Ev, and the carrier densities n, p. These all feed into the formula for calculating
optical gain g, which we calculate and plot in section 6.5 for the optimal design.

4. The optimization framework. We now derive the optimization problem.
We start by introducing the objective function and, following a sensitivity study, we
prove existence of solutions and derive optimality conditions.

4.1. Objective function. We identify here a class of objective functions that
quantify the goal of maximizing the tensile strain inside the optical cavity. In contrast
to [1], we do not consider the optical cavity to be fixed. Instead, we assume that the
optical cavity is explicitly determined by ϕGe.

The underlying physics of the optical gain described in section 1 motivates our
approach to minimize the functional

−
∫

Ω

ϕGeΘ2D : e(u)dx = −
∫

Ω

j(ϕ,Θ)tr e(u) dx,
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where we assume that the deformation potential is diagonal, i.e., D = DI2×2 and
in our case we have j(ϕ,Θ) = ϕGeΘ2D. Recall, in particular, the general relation:
Eg(e) = Eg,0 +D : e(u).

Note that D contains material parameters. However, since Θ2D is scaled by ϕGe,
which is a relatively smooth approximation of the indicator function for the subset of
Ω corresponding to the Ge concentration, we need only consider the values of D for
Ge.

As observed in [52] and discussed in section 1, we wish to maximize the region
of overlap corresponding to the bulk of support for Θ2 and the region of high tensile
strain in Ge. At an optimal configuration, we expect the nonnegative bilinear rela-
tionship ϕGeΘ2 and tr e(u) to favor large overlap of suppϕGe and supp Θ2 along with
deformations for which tr e(u) is positive on average on (suppϕGe) ∩ (supp Θ2). We
henceforth denote the objective by

(4.1) J(ϕ,u,Θ) := −
∫

Ω

j(ϕ,Θ)tr e(u)dx.

We allow j to belong to a wide class of functions and make the following assumption.

Assumption A3. j is a superposition operator induced by a polynomial function
ĵ : RN × R→ R such that ĵ(ϕ(x),Θ(x)) = (j(ϕ,Θ))(x) a.e. on Ω.

By admitting higher-order polynomials for ĵ, we can potentially emphasize regions
where Θ(x) is large.

4.2. The optimization problem. Combining the objectives, constraints, and
forward problems from the discussions above, we arrive at the optimization problem:

(4.2)
min −

∫
Ω

j(ϕ,Θ)tr e(u)dx + αfGL(ϕ, ε) over (ϕ,u,Θ, λ) ∈ X

s.t. u solves (E(ϕ)); (Θ, λ) solves (H(ϕ)).

Here, α > 0 is a regularization parameter, the space X represents the Cartesian
product X := Gad×H1

0 (Ω;R2)×H1
0 (Ω)×R, and Gad := {ϕ ∈ G| ϕi = 1 a.e. on Πi, i =

1, . . . , N} combines the Gibbs simplex (2.2) and the requirement that material i must
be present on Πi ⊂ Ω. The Πi may arise due to manufacturing requirements or
physical limitations, e.g., some SiN must be above the Ge and SiO2 must serve as the
substrate. We henceforth impose the following assumptions.

Assumption A4. Ω ⊂ R2 and Πi ⊂ Ω are open, connected, and bounded sets with
Lipschitz boundary and Πi are strictly separable, i.e., cl Πi ∩ cl Πj = ∅ (i 6= j).

The norm on H1
0 (Ω) is given by ‖u‖2

H1
0 (Ω)

:=
∫

Ω
|∇u|2 dx. The usual duality

pairing between H1
0 (Ω) and its topological dual H−1(Ω) will be denoted by 〈·, ·〉.

4.3. The topology-to-eigenmode mapping SΘ. In this section, we perform
a sensitivity analysis for the Helmholtz equation (H(ϕ)). The Lipschitz continuity
derived in Lemma 4.1 is necessary for the existence result in Proposition 4.3, whereas
the differentiability result in Theorem 4.2 is needed for the first-order necessary op-
timality conditions in Theorem 4.4. The latter are subsequently used for numerical
experiments. Obviously any results providing explicit derivative formulae are ulti-
mately useful in adjoint-based solution algorithms.

Though it is possible that further eigenvalues and eigenfunctions may also be of
interest, the nontrivial multiplicity of even the second eigenvalue vastly complicates
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any differential sensitivity analysis; see [22] for a method of minimizing eigenvalues
with nontrivial multiplicity in the context of topology optimization of mechanical
structures. Even with this choice there are still some challenges. For example, it is
not possible to write (3.3) or its equivalent formulation (4.4) (below) as an equation
(H(ϕ)) because the former allows for all eigenvalues. Later in the proof of Theorem 4.2
we show that this is possible at least locally around the principal eigenvalue.

We recall that due to |g(ϕ)(x)| ≤ M for a.e. x ∈ Ω independent of ϕ, it is
possible to shift the operators and obtain a simpler but equivalent eigenvalue problem.
Choosing c > M , we make the operator on the left-hand side of (4.3) below elliptic,

(4.3) (−∆− g(ϕ) + c)Θ = (λ+ c)Θ.

It then readily follows from [8, Theorem 8.6.1, Remark 8.6.1] that all eigenvalues of
[−∆− [g(ϕ)+c]] are real and that λ1 may be computed as the Lagrange multiplier for
the normalization constraint in the (nonconvex) Courant–Fisher optimization problem

(4.4) min
{

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) over Θ ∈ H1
0 (Ω) | (Θ,Θ) = 1

}
.

Moreover, the above problem admits an optimal solution and all minimizers are the
eigenfunctions corresponding to the smallest eigenvalue.

For notational simplicity, we define the solution mappings Su : ϕ 7→ u, Sλ : ϕ 7→ λ
and SΘ : ϕ 7→ Θ as solutions to (E(ϕ)) and (H(ϕ)), respectively. We start with the
derivation of the Lipschitz continuity of Sλ.

Lemma 4.1. Assume A2 and A4. Then the following holds true:
(i) There exists M̃ > 0 such that for all ϕ ∈ H1(Ω,RN ), the corresponding

eigenfunction satisfies ‖SΘ(ϕ)‖H1
0 (Ω) ≤ M̃ .

(ii) The mapping Sλ is globally Lipschitz from L∞(Ω,RN ) → R with modulus L
and globally Lipschitz from L2(Ω,RN )→ R.

Proof. Let Θ0 by feasible for (4.4). Then for any ϕ ∈ H1(Ω,RN ) and Θ =
SΘ(ϕ) ∈ H1

0 (Ω) we have (∇Θ,∇Θ) − (g(ϕ)Θ,Θ) ≤ (∇Θ0,∇Θ0) − (g(ϕ)Θ0,Θ0),
which due to the normalization condition implies

(4.5) ‖Θ‖2H1
0 (Ω) ≤ (2M + ‖Θ0‖2H1

0 (Ω)) =: M̃2.

This yields (i). Next, fix ϕ, ϕ̂ ∈ H1(Ω,RN ) and let Θ, Θ̂ ∈ H1
0 (Ω) be the correspond-

ing eigenfunctions. Since Θ, Θ̂ are minimizers of (4.4), we have

(4.6)

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) ≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + ((g(ϕ̂)− g(ϕ))Θ̂, Θ̂)

≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + ‖g(ϕ̂)− g(ϕ)‖L2‖Θ̂‖2L4

≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + L̃‖ϕ̂−ϕ‖L2(Ω,RN ).

Here, L̃ combines the Lipschitz modulus L, the embedding constant from H1(Ω) into
L4(Ω) and M̃ . Since we may switch the roles of ϕ and ϕ̂, we obtain

(4.7) |(∇Θ,∇Θ)− (g(ϕ)Θ,Θ)− (∇Θ̂,∇Θ̂) + (g(ϕ̂)Θ̂, Θ̂)| ≤ L̃‖ϕ̂−ϕ‖L2(Ω,RN ).

As the eigenvalue is the Lagrange multiplier associated with the constraint in (4.4),
we obtain from the first-order optimality conditions for (4.4)

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) = λ(Θ,Θ) = λ,

(∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) = λ̂(Θ̂, Θ̂) = λ̂,
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where λ and λ̂ are the corresponding eigenvalues. Plugging this into (4.7), we see that

|λ− λ̂| ≤ L̃‖ϕ− ϕ̂‖L2(Ω,RN ), which proves the second statement in (ii). The proof of
the first statement in (ii) follows from (4.6) using the upper bound:

((g(ϕ̂)− g(ϕ))Θ̂, Θ̂) ≤ ‖g(ϕ̂)− g(ϕ)‖L∞(Ω)‖Θ̂‖2L2

= ‖g(ϕ̂)− g(ϕ)‖L∞(Ω) ≤ L‖ϕ̂−ϕ‖L∞(Ω,RN ).

Theorem 4.2. Under A2 and A4 the solution mapping S := (Sλ, SΘ) is Fréchet
differentiable at any ϕ ∈ H1(Ω,RN ) and, given a direction δϕ ∈ H1(Ω,RN ), its
directional derivative S′(ϕ)(δϕ) = (δλ, δΘ) can be computed as the unique solution
(δλ, δΘ) ∈ R×H1

0 (Ω) of the system

(4.8)
−[∆ + g(ϕ) + λ]δΘ = δλΘ + [g′(ϕ)δϕ]Θ,

(Θ, δΘ) = 0.

Proof. The proof and subsequent statement of the theorem are highly reminiscent
of a similar result from classical shape and topology optimization in a sharp interface
regime; we refer the reader to [36]. In the interest of completeness, we include a proof
for the current (phase-field) setting in the appendix.

4.4. Existence of an optimal topology. We define the reduced objective by

(4.9) J (ϕ) := −
∫

Ω

j(ϕ, SΘ(ϕ))tr e(Su(ϕ))dx.

We now prove the existence result.

Proposition 4.3. Under Assumptions A1–A4, (4.2) has an optimal solution.

Proof. We first show that J is bounded on Gad. Using standard arguments we
obtain the boundedness of Su in H1

0 (Ω,R2) on Gad. The boundedness of SΘ(ϕ) follows
from Lemma 4.1(i). Using u := Su(ϕ) and Θ := SΘ(ϕ), we infer

|J (ϕ)| = |J(ϕ,u,Θ)| ≤
∫

Ω

|j(ϕ,Θ)tr e(u)|dx ≤ ‖j(ϕ,Θ)‖L2(Ω)‖u‖H1
0 (Ω,R2).

By A3–A4, j(ϕ,Θ) is bounded in the L2(Ω)-norm.
Next, we consider an infimizing sequence {ϕk} of (4.2). Given the form of G,

this sequence is bounded in L∞(Ω,RN ). Based on the previous argument and using
the form of the Ginzburg–Landau energy we see that ϕk is bounded in H1(Ω,RN ).
This allows us to select subsequences, denoted by the same indices, such that ϕk ⇀
ϕ in H1(Ω,RN ),uk := Su(ϕk) ⇀ u in H1

0 (Ω,R2),Θk := SΘ(ϕk) ⇀ Θ in H1
0 (Ω) for

some ϕ ∈ H1(Ω,RN ), u ∈ H1
0 (Ω,R2), and Θ ∈ H1

0 (Ω). From [1, Lemma 3.2] we
obtain ϕ ∈ Gad and u = Su(ϕ). Moreover, for any Θ̂ ∈ H1

0 (Ω) with (Θ̂, Θ̂) = 1 we
have

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) ≤ liminfk
[
(∇Θk,∇Θk)− (g(ϕk)Θk,Θk)

]
≤ liminfk

[
(∇Θ̂,∇Θ̂)− (g(ϕk)Θ̂, Θ̂)

]
= (∇Θ̂,∇Θ̂)− (g(ϕ)Θ̂, Θ̂),

where in the second inequality we have used that Θk globally minimizes (4.4) for ϕk.
Since the minimizers of (4.4) are the vectors corresponding to the smallest eigenvalue,
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we have Θ = SΘ(ϕ). Finally, we obtain

lim
k

∫
Ω

j(ϕk,Θk)tr e(Su(ϕk))dx =

∫
Ω

j(ϕ,Θ)tr e(u)dx, and

liminfk fGL(ϕk) ≥ fGL(ϕ).

Since {ϕk} is a minimizing sequence and ϕ is feasible, ϕ is optimal for (4.2).

4.5. First-order optimality conditions. We now derive first-order necessary
optimality conditions. This implictly yields useful adjoint formulae.

Theorem 4.4. Assume that A1–A4 are satisfied. If ϕ is an optimal solution to
(4.2), with the corresponding u = Su(ϕ) and Θ = SΘ(ϕ), then the following first-order
necessary optimality conditions are satisfied:

(4.10)

αε(∇ϕ,∇(ϕ̂−ϕ)) +
α

2ε
(1− 2ϕ, ϕ̂−ϕ) +

∫
Ω

[C′(ϕ)(ϕ̂−ϕ)]e(u) : e(p)dx

−
∫

Ω

F ′(ϕ)(ϕ̂−ϕ) : e(p)dx−
∫

Ω

[g′(ϕ)(ϕ̂−ϕ)]Θwdx ≥ 0 ∀ϕ̂ ∈ Gad,

where p ∈ H1
0 (Ω,R2) is the adjoint state associated with the elasticity equation

(4.11) −divC(ϕ)e(p) = −J ′u(ϕ,u,Θ) in Ω,

and w ∈ H1
0 (Ω) is the adjoint state associated with the Helmholtz equation

(4.12)
−∆w − g(ϕ)w − λw = 〈J ′Θ(ϕ,u,Θ),Θ〉Θ− J ′Θ(ϕ,u,Θ) in Ω,

(w,Θ) = 0.

Here, J ′u, J
′
Θ denote the partial derivatives of J with respect to u and Θ, respectively.

Proof. For the first part of the objective of (4.2) we have J = J2 ◦ J1, where J1 :
H1(Ω,RN )→ Lq(Ω,RN )×L2(Ω)×Lq(Ω) and J2 : Lq(Ω,RN )×L2(Ω)×Lq(Ω)→ R
are defined by

J1(ϕ) := (ϕ, tr e(Su(ϕ)), SΘ(ϕ)), J2(ϕ, v,Θ) := −
∫

Ω

ĵ(ϕ(·),Θ(·))v(·)dx.

Then J1 is differentiable for all q ∈ [1,∞) due to Proposition 3.1 and Theorem 4.2.
Since j is a polynomial due to A3, by direct computation it can be shown that J2 is
differentiable, as well. Consequently, the reduced objective of (4.2) is differentiable.

By a standard technique (see, e.g., [40, section 1.6.2]), we obtain

(4.13) J ′(ϕ) = J ′ϕ(ϕ,u) + E′ϕ(ϕ,u)∗p+G′ϕ(ϕ,u)∗(wΘ, wλ),

where E denotes the operator on the left-hand side of the elasticity equation (E(ϕ))
and G is defined as in the proof of Theorem 4.2. Here p ∈ H1

0 (Ω,R2) is the solution of
the adjoint equation E′u(ϕ,u)∗p = −J ′u(ϕ,u,Θ) and similarly (wλ, wΘ) ∈ R×H1

0 (Ω)
solves the second adjoint equation G′λ,Θ(ϕ,u)∗p = −J ′λ,Θ(ϕ,u,Θ). While the first
adjoint equation amounts to (4.11), the second adjoint equation is given by

(4.14)
−∆wΘ − g(ϕ)wΘ = λwΘ + wλΘ− J ′Θ(ϕ,u,Θ) in Ω,

(wΘ,Θ) = 0.
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Using Θ as a test function in the first equation, the boundary condition and along
with the fact that (λ,Θ) is an eigenpair implies wλ = 〈J ′Θ(ϕ,u,Θ),Θ〉. Plugging this
back into (4.14) and setting w := wΘ, we obtain (4.12). The rest of the proof follows
from standard optimality theory; see, e.g., [14].

Remark 4.5. As in [1], we cannot guarantee the existence of Lagrange multipliers
for Gad and consequently, we only have variational optimality conditions.

5. Solution method for the optimization problem.

5.1. Data assumptions. As explained in section 1, the choice of integrand
j(ϕ,Θ) is crucial for forcing an overlap of the first eigenmode with the Ge experiencing
the highest levels of strain. For our numerical experiments, we choose

(5.1) j(ϕ,Θ) := ϕGeΘ2.

This is justified since, on the one hand, ϕGe ∈ [0, 1] is in effect a smoothed charac-
teristic function for the region ΩGe occupied by Ge. On the other hand, since we
are optimizing for tensile strain, we expect tr e(u) ≥ 0 (at least on average over the
domain Ω). Therefore, a minimization procedure should force Θ2 to be as large as
possible on ΩGe. Since (Θ,Θ) = 1, this ultimately confines the bulk of supp Θ to ΩGe.

Since the electronics are modeled externally, we need to add some small but non-
negligible restrictions on the possible configurations. We do so by using the fixed
regions Πi ⊂ Ω. Without them, the optimization method might suggest designs that
are infeasible from a manufacturing perspective, e.g., there must be an SiO4 substrate
or it might omit Ge.

5.2. Optimization algorithm. The optimization algorithm is based on a stan-
dard projected gradient step as in [33, 43]. Denoting the reduced objective by
Ĵ := J + αfGL, we thus obtain at each step

(5.2) ϕk+1(t) = ProjG
(
ϕk − tR−1

Riesz(Ĵ ′(ϕk))
)
, t > 0,

where ProjG(v) is the usual projection of v on the closed convex set Gad. Since

each ϕk ∈ H1(Ω;RN ), we have Ĵ ′(ϕk) ∈ H1(Ω;RN )∗. Therefore, we need to ob-
tain the Riesz representation R−1

Riesz(Ĵ ′(ϕk)) ∈ H1(Ω;RN ). Failure to do so may
result in a theoretical inconsistency on the continuous level as well as a drastically
reduced convergence rate or even lack of convergence in the discrete setting (asymp-
totically, assuming conforming discretizations). Fortunately, the Riesz representation
ξ = R−1

Riesz(Ĵ ′(ϕk)) can be easily calculated by solving a linear elliptic PDE:

(5.3)
−∆ξ + ξ = Ĵ ′(ϕk) in Ω,

∂nξ = 0 on ∂Ω.

As suggested in [12], we use a generalized Armijo rule in order to select the step size
tk = t in (5.2) and set ϕk+1 := ϕk+1(tk). Here, for a given σ > 0 we use a simple
backtracking strategy to find the largest tk > 0 such that

(5.4) Ĵ (ϕk)− Ĵ (ϕk+1) ≥ σ(tk)−1‖ϕk −ϕk+1‖2H1(Ω,RN ).

We then iterate until

(5.5) ‖ϕk − ProjG

(
ϕk −R−1

Riesz(Ĵ ′(ϕk)
)
‖H1(Ω,RN ) ≤ tolPG

is satisfied for some tolerance tolPG > 0, as suggested in, e.g., [12].

D
ow

nl
oa

de
d 

02
/1

5/
19

 to
 1

30
.2

09
.6

.6
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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The choice of a first-order numerical method is motivated by the nature of the
constraints in our problem. In particular, a direct application of second-order op-
timization techniques as in [1] is not possible here. Indeed, if we were to write the
Helmholtz equation in the form of optimality conditions (3.3), there would be no guar-
antee that the steps generated by a second-order method are related to the smallest
eigenvalue.

For the projection onto the Gibbs simplex G, we use the potentially mesh-depen-
dent semismooth Newton method as suggested in [38], where it is shown to be equiv-
alent to a primal-dual active set strategy with warm start. This strategy is efficient
provided the active sets are stable over mesh refinements. Another possibility would
be to use the path-following method from [2], as it is mesh-independent.

Finally, in order to calculate Ĵ ′ we need to solve both forward equations and
both adjoint equations (see Theorem 4.4). For the solution of the Helmholtz equation
(H(ϕ)), we first apply the shift as described in section 5.3 below, then (for the dis-
cretized problem) we solve the resulting eigenvalue problem via MATLAB function
eigs (which is built on top of ARPACK; cf. [42]) and finally apply a shift back. Since
the directional derivative from (4.8) has a unique solution, it can be simply solved as
a system of linear equations.

5.3. Estimating the shift parameter c. The choice of the shift parameter c in
(4.3) is a delicate matter as it has a major impact on the computation of the smallest
eigenvalue. Several methods such as the inverse method [50] find the eigenvalue closest
to zero and the rate of convergence equals to the ratio of the two eigenvalues closest
to zero. Thus, if the shift is too small, a different eigenvalue may be found, while if
the shift is too big, the convergence will be slow.

To keep positivity of the smallest eigenvalue, it is always possible to choose c = M ,
where M is the bounding constant from A2. However, this choice may be suboptimal.
Here, we present two possibilities for a shift which ensures positivity of the smallest
eigenvalue.

Lemma 5.1. Set Ω = (0, a) × (0, b) and assume that A2 and A4 hold. Consider
the shift

(5.6) c := L(M + 2‖g(0)‖L∞(Ω))− 2π2 /ab .

Then the smallest eigenvalue of −∆−g(ϕ)+cI is nonnegative for all ϕ ∈ H1(Ω,RN ).

Proof. Denote by λ1 the smallest eigenvalue of the operator −∆ − g(ϕ) and by
λ1(Ω) the smallest eigenvalue of the operator −∆. From Lemma 4.1 we infer

|λ1 − λ1(Ω)| ≤ L‖g(ϕ)− g(0)‖L∞(Ω) ≤ L(M + 2‖g(0)‖L∞(Ω)).

From [8, Proposition 8.5.2] we obtain λ1(Ω) = 2π2

ab . The assertion follows.

Let ϕ be the current iterate of a procedure for solving our optimization problem.
If c is the shift and the computed smallest eigenvalue of operator −∆ − g(ϕ) + cI
equals λ1, then the optimal shift is c−λ1. Even though we cannot use this information
for determining ϕ, it is of use for determining the next iterate. In fact, in this case
we may use the shift in (5.7). In what follows, CP denotes the Poincaré constant, i.e.,
for every Θ ∈ H1

0 (Ω) one has ‖Θ‖L2(Ω) ≤ CP ‖∇Θ‖L2(Ω).

Lemma 5.2. Assume that A2 and A4 hold and that for ϕ ∈ H1(Ω,RN ) and for
some shift c we know the eigenvalue λ1 of the operator −∆ + g(ϕ) + cI. Consider
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δϕ ∈ H1(Ω,RN ), define

(5.7) ĉ := c− λ1 + 2−3/4C−2
P (C2

P + 1)(2MC2
P + 1)L‖δϕ‖L2(Ω),

and denote by λ̂1 the smallest eigenvalue of operator −∆ + g(ϕ + δϕ) + ĉI. Then

λ̂1 ≥ 0. Moreover, denote the second smallest eigenvalues of the previous two operators
by λ2 and λ̂2, respectively. Let κ := 2−3/4C−2

P (C2
P + 1)(2MC2

P + 1)L. If ‖δϕ‖L2(Ω) <
(λ2 − λ1)/(2κ), then

(5.8) 0 ≤ λ̂1λ̂
−1
2 ≤ 2κ(λ2 − λ1)−1‖δϕ‖L2(Ω).

Proof. Due to [61, Chapter 3, Lemma 3.3], for any Θ ∈ H1
0 (Ω) we have

‖Θ‖2L4(Ω) ≤ 2
1
4 ‖∇Θ‖L2(Ω)‖Θ‖L2(Ω) ≤ 2−

3
4

(
‖∇Θ‖2L2(Ω) + ‖Θ‖2L2(Ω)

)
≤ 2−

3
4 (1 + C2

P )‖∇Θ‖2L2(Ω).

By definition, C−1
P = inf{‖∇u‖L2(Ω)/‖u‖L2(Ω) : u ∈ H1

0 (Ω)}. This optimization prob-
lem can be reformulated as inf{‖∇u‖L2(Ω) : u ∈ H1

0 (Ω), ‖u‖L2(Ω) = 1}, which has a

solution based on our analysis of (4.4). Therefore, there exists some Θ̂0 ∈ H1
0 (Ω) with

1 = ‖Θ̂0‖L2(Ω) = CP ‖∇Θ̂0‖L2(Ω). Now we provide an estimate for the constant L̃ in

(4.6). Fix any ϕ̂ ∈ H1(Ω,RN ) and let Θ̂ ∈ H1
0 (Ω) be the corresponding minimizer of

(4.4). Then we have

‖g(ϕ̂)− g(ϕ)‖L2(Ω)‖Θ̂‖2L4(Ω) ≤ L‖ϕ̂−ϕ‖L2(Ω)‖Θ̂‖2L4(Ω)

≤ 2−
3
4L(C2

P + 1)‖ϕ̂−ϕ‖L2(Ω)‖∇Θ̂‖2L2(Ω)

≤ 2−
3
4L(C2

P + 1)‖ϕ̂−ϕ‖L2(Ω)(2M + ‖∇Θ̂0‖2L2(Ω))

= 2−
3
4C−2

P (C2
P + 1)(2MC2

P + 1)L‖ϕ̂−ϕ‖L2(Ω),

where the third inequality is due to (4.5) and L is the Lipschitz constant of ĝ. Thus,

we have L̃ = 2−
3
4C−2

P (C2
P + 1)(2MC2

P + 1)L. Then the first two eigenvalues of the

operator−∆+g(ϕ)+ĉI are equal to λ̃1 := L̃‖δϕ‖L2(Ω) and λ̃2 := L̃‖δϕ‖L2(Ω)+λ2−λ1,

respectively. From Lemma 4.1 we then obtain 0 ≤ λ̂1 ≤ 2L̃‖δϕ‖L2(Ω), λ2 − λ1 ≤
λ̂2.

Note that the shift c = M and the shift from Lemma 5.1 are independent of ϕ,
where the one from Lemma 5.2 depends on the perturbation. Observe, furthermore,
that an iterative scheme for solving the optimization problem (4.2) in reduced form
yields δϕ → 0 in L2(Ω,RN ). Hence, the shift in (5.7) converges to the optimal shift
c− λ1 and the ratio in (5.8) tends to zero.

6. Calculating the optimal design. In this section, we present the results of
numerical optimization experiments. The optimal solution is then used in the final
section below to demonstrate the electronic properties of the associated microbridge
design.

6.1. Structural assumptions: Elasticity and optics. For the elasticity equa-
tion, we primarily follow the setting in [1]. The ϕ-dependent elasticity tensor is of
the form

C(ϕ) := ĉut(ϕ1)C1 + · · ·+ ĉut(ϕN )CN ,
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where Ci is a standard elasticity tensor associated with material i. Thus, for E1, E2 ∈
R2×2 we have CiE1 :E2 = λitrE1trE2+2µiE1 :E2, where λi and µi are Lamé constants
of individual materials and ĉut : R→ R is the cutoff function

(6.1) ĉut(x) :=


arctg(x− δ2) + δ2 if x ≥ δ2,
x if x ∈ [δ1, δ2),

x− 2δ1(x− δ1)3 − (x− δ1)4 if x ∈ [0, δ1),

a arctg(bx) + δ4
1 if x < 0

for some small δ1 > 0, δ2 > 0 with δ2 � δ1, a = δ4
1/π, and b = (1− 2δ3

1)π/δ4
1 . Note

that the cutoff function is a twice continuously differentiable increasing function with
the property ĉut(x) ≥ δ4

1/2 for all x ∈ R and thus A1 is satisfied. As in [1], where
we employed second-order optimization methods, ĉut is chosen to ensure that C is
sufficiently smooth and the resulting differentiable operator remains elliptic. Note
that as δ1 → 0 and δ2 → 1, ĉut approaches the identity on [0, 1].

Concerning the Helmholtz equation, we define g by

(6.2) g(ϕ) := 2π2λ−2(ε1 cut(ϕ1) + · · ·+ εN cut(ϕN )).

Here, λ > 0 is the desired wavelength and εi > 0, i = 1, . . . , N , are the relative
permittivities of the individual materials. For some small δ3 > 0, the cutoff function
cut : R→ R

(6.3) cut(x) :=


1 + δ3 arctg(x−1

δ3
) if x > 1,

x if x ∈ [0, 1],

δ3 arctg( xδ3 ) if x < 0

is necessary for Assumption A2 to hold true. Since the requirements on C and g are
different, we work with different cutoff functions.

6.2. Discretization and refinement strategies. For the numerical imple-
mentation, we discretize the underlying function spaces using P1-finite elements. All
numerical experiments are carried out using MATLAB. In order to increase the com-
putational efficiency of the scheme, we use an adaptivity heuristic to generate new
meshes following the “red” refinement strategy (cf. [15]), which is implemented in the
package P1-AFEM; see [28]. The marking heuristic is as follows: After solving (4.2)
on a given mesh, every element on which the phases are not pure or where there is a
transition between two materials is refined. Otherwise, we coarsen or leave the ele-
ment unchanged if there exist pure phases and no transition. It would go beyond the
scope of this paper to develop a proper AFEM scheme for the given problem. How-
ever, we believe that it should be possible to extend several ideas from the literature
to the current setting, e.g., as found in [27, 37, 5].

In addition to the role of the various phases in the refinement strategy, we need
to take into account the interfacial thickness parameter ε, which appears in the
Ginzburg–Landau term fGL. Since ε corresponds to the interfacial thickness, the
initial ε is chosen to be twice the length of the largest element. Subsequently, we
divide ε by 2 upon every mesh refinement. We refine the mesh in our experiments
five times.

6.3. Parameters and starting values. As mentioned above, we consider three
possible materials, Ge, SiN, and SiO2, as well as air. In Table 1 we summarize
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Table 1
List of material properties for elasticity.

λ [GPa] µ [GPa] ε [1] σ0 [GPa] ε0 [1]
Ge 44.279 27.249 17.64 · ·
SiN 110.369 57.813 4 −3.8 ·
SiO2 16.071 20.798 2.25 · 2.6·10−3

Table 2
List of parameters.

α N hmin εmin δ1 δ2 δ3 tolPG σ

4·10−4 4 2−8 2−7 10−3 1016 10−3 10−6 10−4

their physical properties (see [46, 64, 66]) and the fixed domains Πi are given by
ΠGe := [−0.125, 0.125]×[1, 1.49], ΠSiN := [−0.75, 0.75]×[1.5, 1.75], Π SiO2

:= [−2, 2]×
[0, 0.99], Πair := [−2, 2]× [2.5, 3] (in µm). Since the general model contains a number
of parameters, we list them here for convenience:

• N : Number of phases.
• α: Weights in the objective for the Ginzburg–Landau energy fGL.
• ε: Parameter corresponding to interfacial thickness.
• δ1, δ2, δ3: Cutoff parameters from (6.1) and (6.3).
• ε0, δ0: Constants for the eigenstrain generated by SiO2 and the thermal

(pre-)stress generated by SiN; see (3.1).
• λ, εi: The wavelength and the relative permittivities of materials; see (6.2).
• tolPG: Stopping tolerance for first-order system (5.5).
• hmin, εmin: Width of the smallest triangle and value of ε on the finest mesh.

The parameter values are summarized in Table 2. The cutoff parameters δ1, δ2, and
δ3 were chosen so that the cutoff has a negligible effect on the interval (0, 1). Since
Ω = (−2, 2)× (0, 3) (in µm), the values hmin = 1

256µm and εmin = 1
128µm give rise to

a rather fine mesh along the interface. For the wavelength we choose λ = 1.64µm.

6.4. Numerical results. In Figure 2 we depict the optimal ϕ (left) and the
corresponding strain field (right). For efficiency, we employ the mesh refinement
strategy described above. The meshes after the first, third, and fifth refinements are
shown in Figure 3. Since we are able to drive ε to a small value, the final design has
a rather sharp interface; see Figure 2.

The number of active nodes (where no material is prescribed) is depicted in the
left-hand side of Table 3. The small increase from the penultimate to the final mesh is
caused by the disappearance of an artifact above the structure, whose presence can be
inferred from the structure of the refined mesh in Figure 3. The refined region above
the structure in the final mesh is a remanent of this artifact, which disappears in the
final phase field ϕ; see Figure 2. The number of iterations is shown on the right-hand
side of Table 3. Note that on the intermediate meshes 3, 4, and 5, we accepted a
suboptimal, i.e., substationary, solution after reaching 500 iterations. Nevertheless,
on Mesh 6, the algorithm only needs 223 iterations to reach a tolerance below 10−7.

6.5. Optoelectronic properties of the optimal design. We conclude with
a numerical study investigating the optoelectronic properties of the optimal design.
As discussed in the introduction and later in section 3.3, we can expect the optimal
design to be successful only if it exhibits a positive net gain. We manually introduce
the contacting layers by adding two new phase fields ϕi with i = n-Si or i = p-Si
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274 ADAM, HINTERMÜLLER, PESCHKA, AND SUROWIEC

Fig. 2. Optimal ϕ (left) and its corresponding strain field (right).

Fig. 3. Adaptively updated mesh (both refined and coarsened) after first, third, and fifth refine-
ments.

Table 3
active: Number of active nodes (with no material prescribed). iter: number of iterations.

res: the best residual (5.5). GL: the value of the Ginzburg–Landau energy for all meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6
active 345 1043 3027 9902 25824 36273
iter 37 427 500+ 500+ 500+ 223
res 9.33·10−8 8.95·10−8 8.42·10−5 9.95·10−5 3.26·10−7 7.94·10−8

GL 9.298 8.821 8.659 9.154 8.630 8.580

Fig. 4. (left) Original phase fields ϕi with inserted Si contacts and (right) optimized phase fields
ϕi with inserted Si contacts and mesh with shading indicating i ∈ {Ge,SiN,SiO2,air,n-Si,p-Si}.

representing thin highly n- and p-doped Si layers above and below the Ge; cf. Figure 4.
For the simulation, we consider the stationary version of (3.4) after reformulating it
in terms of the quasi-Fermi potentials (φn, φp) in (3.6). We enforce inhomogeneous
Dirichlet boundary conditions for the potentials at the two Ohmic contacts ΓDi

(i =
1, 2) corresponding to ϕn-Si and ϕp-Si on ∂Ω; otherwise we have natural boundary
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Table 4
Spatial interpolation π(x) =

∑
i ϕi(x)πi for electronic simulation given phase fields ϕi(x) and

pure phase material parameters πi. The global parameters τn = τp = 10 ns and ni = 106 cm−3

are used for the recombination. (?) Given a strain distribution e(u), the band gaps are modified
by deformation potentials Dαkl = Dαδkl,xx via Eα(x) =

∑
i(Ei + Dαexx)ϕi(x) with α ∈ {c,v} and

in-plane biaxial strain exx. The electronic parameters and deformation potentials are from [52]; the
values for µn, µp, Nc, Nv, Ec, Ev for SiN, SiO2, and air are chosen to prevent existence and transport
of carriers.

Param. Phys. unit Ge SiN SiO2 Air Sitop Sibottom

εr [1] 16.2 7.5 3.8 1 11.9 11.9
µn [m2V −1s−1] 0.39 10−4 10−4 10−4 0.14 0.14
µp [m2V −1s−1] 0.19 10−4 10−4 10−4 0.045 0.045
Nc [1019cm−3] 1.256 10−2 10−2 10−2 3.2 3.2
Nv [1019cm−3] 0.118 10−2 10−2 10−2 1.8 1.8
Cdop [1019cm−3] 5 0 0 0 +20 −20
Ec [eV] 0.76? 1 1 1 1.169 1.169
Ev [eV] 0.09? 0 0 0 1.169 1.169
Dc [eV] −3.5 0 0 0 0 0
Dv [eV] +1.4 0 0 0 0 0

conditions. In particular, on each ΓDi
we have

φ = φ̄+ V iext, φn = V iext, φp = V iext,

where φ̄ is the built-in potential and the voltage biases are given by V 1
ext = 0, V 2

ext =
Vext, and ΓD1

∩ ΓD2
= ∅.

Given the optimal distribution of materials ϕ, the material data µn, µp, Nc,
Nv,Ec, Ev, εr, Cdop are made to depend on space through the phase fields via interpo-
lation as introduced in Table 4, e.g., µn(x) =

∑
i µ

i
nϕi(x). We treat the Fermi–Dirac

integral F3/2, used in the transformation into quasi-Fermi potentials, via a standard
closed-form approximation as in [10].

In order to easily fit the solver to the optimal design and associated refined mesh,
we use P1-finite elements to discretize the stationary van Roosbroeck system. The
nonlinearities are treated using a standard seven-point Gauss quadrature and the
inhomogeneous boundary conditions are enforced numerically using Lagrange multi-
pliers. The use of finite elements stands in contrast to the usual Scharfetter–Gummel
finite volume methods [55]. However, several studies do advocate for the benefits of
using finite elements; see, e.g., [23].

The resulting discretized system of equations is solved by using Newton’s method.
In order to ensure its convergence for large applied biases Vext, an initial value is
calculated by solving this system at thermal equilibrium. This is done by setting
Vext, φn, and φp to zero and solving the remaining system for φ, which amounts to
an elliptic equation of Poisson–Boltzmann-type. Given this initial value, we can then
calculate the stationary solutions at each desired bias Vext by a standard continuation
step. Finally, recalling the equations for the flux terms (3.5), we can calculate the
total current at a given bias Vext using the formula

J =

∫
ΓDi

(jp + jn) · n da,

We compute the currents, current densities, and the modal net gains, which are
defined (pointwise) by subtracting optical losses from optical gain and scaling the
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Fig. 5. (left) Current-voltage characteristic of initial (red) and optimized (blue) device (right)
current gain (solid) and current-net gain (dashed) characteristics of initial and optimized device
showing that the optimized configuration yields considerably higher gain and net gain compared to
the initial design.

result by the optical mode. The resulting gain model is the same as published in [51],
and generally higher net gains for a given current is desired. We refer to Figure 5,
where we see that the optimal design clearly exhibits positive net gain, as opposed to
the empirical design. We comment on this further in the conclusion below.

7. Conclusions and outlook. As desired, the topology optimization delivers
a rather smooth material distribution, which increases the in-plane biaxial strain in
the Ge phase for the initial design from an average strain ēxx = 2 ·10−4 to an average
strain of ēxx = 9 · 10−4 for the improved design; see Figure 2. While loss mechanisms
due to low confinement or recombination are not included in the optimization, the cost
functional in (4.2) is designed to optimize the overlap of the optical mode and regions
of large tensile strain. Therefore, the optimal designs exhibit overall improvements
for the integrated strain (on average) versus the maximal/peak in-plane strains. For
the latter, we see here that the maximal (pointwise) in-plane strain in the Ge cavity
only features an increase by a factor of ×1.2.

Another interesting feature of the optimal designs is that the Ge phase is sur-
rounded by an SiN stressor. This is very similar to the all-around stressor designs
considered for germanium microdiscs in [30].

The optimized design also features an aperture, which, as we showed previously,
can be highly beneficial for lowering the threshold current of an edge-emitting laser.
The main idea of the aperture is visible in the hole currents in Figure 6, where the
currents in the optimized microbridge (right) are guided efficiently into the optical
mode to recombine without creating a shortcut pathway around the center of the
optical mode, as is the case for the initial microbridge (left). For better interpretation
we also indicate the material boundaries between the phases by plotting regions where
ϕiϕj>0 between material i and j in white. However, while a doping optimization
can produce such an aperture geometry from a suitably defined cost functional, the
aperture of the optimized design is more likely created artificially due to the location
of the highly doped Si contacts above the cavity.

Nevertheless, due to the improved strain and the better overlap of the hole cur-
rent (see Figure 5) and the optical mode (see Figure 7), the Ge phase also features
much higher modal gain at the prescribed external bias (see Figure 8). Also, the char-
acteristic curve in Figure 5 features a lower current, certainly due to higher Ohmic
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Fig. 6. Hole currents for (left) initial design and (right) optimized design. Material boundaries
are indicated in white.

Fig. 7. Optical mode |Θ|2 (shading) and material boundaries indicated in white (left) for initial
design and (right) for optimized design.

Fig. 8. Modal gain g|Θ|2 [cm−1] for (left) initial design and (right) optimized design shows
almost threefold increase in gain due to optimized design. Material boundaries are indicated in
white.

resistance based on the implementation of the aperture. Most noticeable, however,
is that the modal gain as well as the net gain show significant improvement of the
optimized design as compared to the initial design. For a recent study containing
a thorough explanation of the calculation of the gain curves, we refer the interested
reader to [51].

This allows us to conclude that even though not yet fully coupled, topology op-
timization for optoelectronic devices can improve device designs significantly. The
optimized designs are similar to what is considered by engineers. The optoelec-
tronic simulations prove the feasibility of the optimization strategy. Nevertheless,
since optoelectronic devices also suffer from loss mechanisms due to recombination,
future optimization studies might even consider the fully coupled optoelectronic
system.
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Appendix. The following is a proof of Theorem 4.2, which we provide for the
sake of completeness.

Proof. Based on (3.3) and (H(ϕ)) we consider the following system of equations
in strong form:

(7.1)

(−∆− g(ϕ))Θ− λΘ = 0 in Ω,

Θ = 0 on ∂Ω,

(Θ,Θ)− 1 = 0.

Multiplying (−∆ − g(ϕ))Θ by ψ ∈ H1
0 (Ω) and integrating over Ω, it follows from

Green’s theorem that∫
Ω

(−∆− g(ϕ))Θψdx = (∇Θ,∇ψ)− (g(ϕ)Θ, ψ).

Therefore, there exists a unique coercive bounded linear operator A : H1
0 (Ω) →

H−1(Ω) such that 〈AΘ, ψ〉 = (∇Θ,∇ψ). Nevertheless, we allow a slight abuse of
notation and denote A by −∆. The boundary condition in (7.1) is therefore “ab-
sorbed” by the operator.

Continuing, we denote the solution mapping of (7.1) by Ŝ : ϕ 7→ (λ,Θ). Note that
Ŝ is in fact multivalued (for every ϕ, Ŝ(ϕ) is the set of all eigenpairs). Nevertheless,
since Sλ is single-valued, the Lipschitz continuity of Sλ from Lemma 4.1 implies that
there exists an open ball around ϕ and a selection of Ŝ that coincides locally with S.
To derive differentiability of S it suffices then to apply the implicit function theorem
[67, Theorem 4.B] to (7.1).

Denote the function on the left-hand side of (7.1) by G(ϕ;λ,Θ). Clearly, G is
continuous. By formally differentiating this mapping in direction (δϕ, δλ, δΘ), we
obtain the formula

G′(ϕ, λ,Θ)(δϕ, δλ, δΘ) =

(
−∆δΘ− [g′(ϕ)δϕ]Θ− g(ϕ)δΘ− δλΘ− λδΘ

2(Θ, δΘ)

)
.

Furthermore, by substituting this formula into the usual difference quotient, it is not
difficult to verify thatG : H1(Ω,RN )×R×H1

0 (Ω)→ H−1(Ω)×R is in fact continuously
Fréchet differentiable. Finally, we show that the partial derivative G′λ,Θ(ϕ, λ,Θ) is
bijective. We have

(7.2) G′λ,Θ(ϕ, λ,Θ)(δλ, δΘ) =

(
−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ

2(Θ, δΘ)

)
.

To demonstrate injectivity, we need to show that

(7.3)
−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ = 0,

(Θ, δΘ) = 0,

admits only the trivial solution (δλ, δΘ) = (0, 0) ∈ R×H1
0 (Ω). To this aim, suppose

(δλ, δΘ) is some solution pair. Using Θ as a test function in the first equation in (7.3)
we obtain

(7.4) (∇δΘ,∇Θ)− (g(ϕ)δΘ,Θ)− δλ(Θ,Θ)− λ(δΘ,Θ) = 0.

Realizing that (∇δΘ,∇Θ) − (g(ϕ)δΘ,Θ) − λ(δΘ,Θ) = 0 due to symmetry and the
definition of the eigenvalue, relation (7.4) reduces to 0 = δλ(Θ,Θ) = δλ. Plugging
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this back into (7.3) we see that (λ, δΘ) is an eigenpair. But this implies δΘ = 0
because the multiplicity of λ is one and δΘ is orthogonal to Θ. Thus, we have shown
injectivity.

For surjectivity, we need to show that for any v ∈ H−1(Ω) and µ ∈ R the system

(7.5)
−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ = v,

(Θ, δΘ) = µ

has a solution (δλ, δΘ). In what follows, we will construct a solution pair (δΘ, δλ)
associated with (v, µ). We use aspects of the proof of [26, section 6.2, Theorem 4].
Fix some γ > M + λ and define the mappping Lγ := −∆ − g(ϕ) − λI + γI. Since
γ > M +λ, the operator Lγ is H1

0 (Ω)-coercive, bounded, and linear. In what follows,
we let L := L0. Hence, L−1

γ exists. Moreover, since the canonical embedding E1,−1 of
H1

0 (Ω) into H−1(Ω) is compact, the operator K := (E1,−1 ◦ L−1
γ ) is a compact linear

operator from H−1(Ω) into itself.
Note that for the sake of making the compact embedding of H1

0 (Ω) into H−1(Ω)
explicit, we include the embedding operator E1,−1. However, we have left this out of
the notation on many other occasions for the sake of readability, e.g., in the definition
of Lγ .

The dual operator of K, denoted by K ′, is given by K ′ = L−1
γ E1,−1. This is

a mapping from H1
0 (Ω) into itself. The latter follows from the fact that E1,−1 :

H1
0 (Ω) → H−1(Ω) is defined by E1,−1ψ = (ψ, ·)L2 , where ψ ∈ H1

0 (Ω). Therefore,
for any ξ ∈ H1

0 (Ω), we have 〈E1,−1ψ, ξ〉 = (ψ, ξ)L2 = 〈ψ,E1,−1ξ〉. Hence, E1,−1

coincides with its dual operator. Similarly, for some h ∈ H−1(Ω), there exists a
unique zh := L−1

γ h ∈ H1
0 (Ω). Then given an arbitrary k ∈ H−1(Ω) we have

〈L−1
γ h, k〉 = 〈zh, k〉 = 〈zh,LγL−1

γ k〉 = 〈L′γzh,L−1
γ k〉 = 〈Lγzh,L−1

γ k〉 = 〈h,L−1
γ k〉.

The second-to-last equality follows from the specific form of Lγ . Hence, L−1
γ also

coincides with its dual operator.
Next, using R : H1

0 (Ω)→ H−1(Ω) with R = −∆ as the Riesz isometry, we define
the adjoint K∗ : H−1(Ω)→ H−1(Ω) of K by K∗ = RK ′R−1 = −∆L−1

γ E1,−1(−∆)−1.
In addition, we observe that K ′Θ = γ−1Θ, since z = K ′Θ = L−1

γ E1,−1Θ means

(7.6) Lγz = E1,−1Θ⇔ [L+ γ]z = E1,−1Θ⇒ z = γ−1Θ.

This property carries over to the adjoint as well since K∗RΘ = RK ′R−1RΘ =
RK ′Θ = γ−1RΘ, i.e., K∗RΘ = γ−1RΘ.

Continuing, we use the Fredholm alternative (see, e.g., [26, Appendix D, Theo-
rem 5]), which implies

(7.7) Rng(γ−1I −K) = Ker(γ−1I −K∗)⊥.

Here, I is the identity on H−1(Ω) and the orthogonal complement is defined using
the inner product on H−1(Ω).

Next consider that for w ∈ Ker(γ−1I −K∗), w ∈ H−1(Ω), we have

γ−1w −K∗w = 0⇔ γ−1w −RK ′R−1w = 0

⇔ γ−1R−1w − L−1
γ E1,−1R

−1w = 0.

But then LγR−1w = γE1,−1R
−1w ⇒ [L+γ]R−1w = γE1,−1R

−1w, which furthermore
implies LR−1w = 0⇒ R−1w = tΘ for t ∈ R. Hence, w = tRΘ.
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Conversely, for any t ∈ R, we can show that tRΘ ∈ Ker(γ−1I − K∗) using an
analogous argument. Hence, it follows from this and (7.7) that

(7.8) span(RΘ)⊥ = Rng(γ−1I −K).

In fact, for any for any h ∈ span(RΘ)⊥ it follows from (7.6) that

(7.9) (Kh,RΘ) = (h,K∗RΘ) = γ−1(h,RΘ) = 0,

where (·, ·) represents the inner product on H−1(Ω), i.e., for ξ, η ∈ H−1(Ω) we have
(ξ, η)H−1(Ω) = (∇R−1ξ,∇R−1η)L2(Ω). Hence,

(7.10) Kh ∈ span(RΘ)⊥,

as well. Then, taking v from (7.5), we observe that

〈v − (v,RΘ)H−1E1,−1Θ,Θ〉H−1,H1
0

= 〈v,Θ〉H−1,H1
0
− (v,RΘ)H−1(Θ,Θ)L2

= (v,RΘ)H−1 − (v,RΘ)H−1 · 1 = 0,

where we once again make use of the Riesz representation theorem. It follows that
(v − (v,RΘ)E1,−1Θ) ∈ span(RΘ)⊥. Furthermore, by (7.10), we also have K(v −
(v,RΘ)E1,−1Θ) ∈ span(RΘ)⊥. Then by the Fredholm alternative theorem, in partic-
ular due to (7.8), there exists a h ∈ H−1(Ω) such that

γ−1h−Kh = K(v − (v,RΘ)E1,−1Θ).

In fact, as the above equality implies h = E1,−1(γL−1
γ (h + v − (v,RΘ)E1,−1Θ))

we readily infer that h ∈ H1
0 (Ω). Furthermore, it follows that for any ψ ∈ H1

0 (Ω)

(7.11) 〈γ−1Lh, ψ〉 = 〈v, ψ〉 − 〈v,Θ〉(Θ, ψ).

Now define δΘ := γ−1h + (µ − (γ−1h,Θ))Θ, δλ := −〈v,Θ〉. Then we have for any
ψ ∈ H1

0 (Ω) that

〈LδΘ− δλΘ, ψ〉 = 〈γ−1Lh, ψ〉+ (µ− (γ−1h,Θ))〈LΘ, ψ〉+ 〈v,Θ〉〈Θ, ψ〉 = 〈v, ψ〉

due to (7.11) and LΘ = 0 due to the definition of eigenfunction. But this means that
(δΘ, δλ) solves the first equation in (7.5). Since obviously (Θ, δΘ) = µ, the second
equality holds true as well. Thus, we have verified the assumptions of the implicit
function theorem.
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Birkhäuser, Basel, 2006.

[36] A. Henrot and M. Pierre, Variation et optimisation de formes: Une analyse géométrique,
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